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Resonant wave-ion interactions are considered one possiblemechanism at the basis of the

solar corona heating and the solar wind acceleration [1, 2, 3]. Generally, wave-particle interac-

tions can be described by the quasi-linear theory [4] which is a well-established tool in plasma

physics and fusion research [4, 5]. The Fokker-Planck solver SSFPQL (steady state Fokker-

Planck quasi-linear, [5]), in particular, has been widely applied to fusion plasma, and the aim of

our work is to transfer those techniques into the context of the longstanding solar corona heat-

ing problem. As a necessary step, we have to demonstrate the feasibility of using a Legendre

polynomial representation of the pitch-angle dependence of ion velocity distribution functions,

as this representation is crucial for the application of SSFPQL. In this paper we report the first

numerical implementation of the model equations in terms ofLegendre polynomials and related

numerical problems.

We consider the case of coronal funnels, that are magnetic field structures roughly modeled

as half of a magnetic bottle having the high-field side attached to the solar surface (photosphere)

with field lines going into the interplanetary space. An axisymmetric analytical solution [6] is

our standard model for a funnel magnetic field. Particles move in spirals with the center of gy-

ration attached to a magnetic field line, parameterized, say, by s; averaging over the gyration

phase, a particle at the points is fully characterized by its parallel and perpendicular (to the

magnetic field) speeds,v‖ andv⊥, i.e., a population of ions of the speciesj at the positionscan

be described by a velocity distribution function of the formf j(s,v‖,v⊥). As for the dynamics,

in addition to the bounding force of gravity, one should consider the outwardly-oriented elec-

tric field due to the escaping electrons, as well as the magnetic mirror force due to the abrupt

expansion of the magnetic field lines in the funnel. Both theseforces reduce the gravitational

potential well for ions, so that, when enough energy is supplied, e.g., through absorption of

waves, they can flow out of the funnel at high speed (≈ 700km/s) and relatively low-densities

(from 1010cm−3 at the boundary of the solar coronaz= 0.01R⊙ down to 107cm−3 in the lower

corona atz= 0.3R⊙, wherez is the altitude from the photosphere andR⊙ is the solar radius).

Such low density values imply, particularly, that collisions are rare, and cannot fully restore

the local thermodynamical equilibrium [2]. At last, observed distributions exhibit evidences of
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interaction of ions with a spectrum of ion cyclotron waves which we describe in the framework

of the quasi-linear theory. The dynamics is summarized in the following set of equations, [7],
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−eNeE‖(s) = ∇‖pe, pe = kBNeTe. (2)

Equation (1) is the steady-state Fokker-Planck equation averaged over the fast gyration of the

particles and written in spherical velocity coordinatesv= (v2
‖+v2

⊥)
1/2, µ = v‖/v; here,E‖ and

g‖ are the parallel components of the self-consistent electric field generated by the electron

pressure gradient, equation (2), and of the gravitational acceleration; the magnetic field strength

B0(s) is obtained from the standard analytical solution [6]. The right-hand side of equation (1)

comprises the Coulomb collision operatorCj linearized on a Maxwellian background and the

quasi-linear diffusion operator [4] which depends on the wave energy spectrumE . Equation (2)

expresses the equilibrium conditions for the mass-less fluid of electrons. An equation for the

self-consistent evolution ofE should be added which, however, is not addressed here.

It is worth noting that the system (1)-(2) withQ j = 0 has a simple static solution of the form

f j ∝ exp(−ε) whereε is the total energy of an ion normalized tokBT0, T0 being a constant equi-

librium temperature (the same for all species). According to this solution the ion gravitational

potential energy is twice as large as the electric potentialenergy, so that ions are strongly gravi-

tationally bounded and their density profiles drop down quickly with the parameters which for

a straight field line can be identified with the altitude normalized to the solar radiuss= z/R⊙;

more specifically, the electric potential drop from the transition region to the interplanetary

space is≈ 1000V (Pannekoek-Rosseland potential), and, for a proton-electron plasma one can

prove the density scaling∝ 1/(R⊙+ z). In general, the Fokker-Planck equation (1) describes

a two-way diffusion process [8, 9], as the orientation of theevolution parameters changes de-

pending of the sign of the pitch-angleµ.

In order to take advantage of the routine SSFPQL [5], we need to exploit Legendre poly-

nomialsPn(µ), n ≥ 0, that constitute a basis for squared-integrable functions on the interval

−1≤ µ ≤ 1; we write the distribution functions as

f j(s,v,µ) =
N̄

V̄3
j

χ j(s)e
−u2/u2

j ∑
n≥0

Fj,n(s,u)Pn(µ). (3)

Here,N̄ andV̄j = (2kBT̄/mj)
1/2 are reference values for the density and the speed, the latter

being defined in terms of a reference valueT̄ for the temperature. With a slight abuse of notation,

the velocity coordinatesu = v/V̄j andµ used here are different from those in (1) as they are
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referred to the velocity frame co-moving with the plasma parallel fluid motion at the speedVj,‖.

A Maxwellian pre-factor with the normalized thermal speedu2
j = (2kBTj/mj)V̄

−2
j = Tj/T̄, has

been introduced for technical reasons: this allows us to avoid the fine-tuned balance between

terms in the collision operatorCj as well as in the transport operator at the left-hand side of

the Fokker-Planck equation (1). The substitution of (3) into (1) yields a degenerate evolution

equation along the magnetic field line for the coefficientsFj,n(s,u),

A
∂F
∂s

=
∂
∂u

[
Γ11∂F

∂u
+Γ10F

]
−Γ01∂F

∂u
−Γ00F, (4)

whereF =
(
Fj,n(s,u)

)
is the vector of coefficientsFj,n in (3) andA, Γab, a,b = 0,1, are ma-

trices. Equation (4) must be supplied with appropriate boundary conditions; with this aim, we

note that the results available for the two-way diffusion problem [8, 9] no longer apply as the

Legendre series expansion unavoidably mixes the positive-µ and the negative-µ contributions.

The character of the operatorµ∂/∂s is mapped into the matrix operatorA∂/∂s with A being

a strongly ill-conditioned matrix, i.e.,:A is formally invertible, but detA is close to zero. How-

ever, it appears physically natural to set up an initial/boundary value problem for (4), with initial

positions= s1 = z1/R⊙ = 0.01 set at the transition region between the chromosphere andthe

lower corona. The initial distributions can be local Maxwell distributions with parameters typ-

ical of the chromosphere. We also need the values of the vector F(s,u) for u= 0 which is the

boundary in velocity space. Whenu= 0 the distribution functions cannot depend on the pitch-

angleµ and this condition givesFj,n(s,0) = 0 for everyn≥ 1; as for the zero-order coefficient

we setFj,0(s,0) = Fj,0(s1,0) = constant, the information of the physical boundary condition

being retained through the factorχ j(s) in (3). The latter is determined in terms of the density

profile, hence, coupled to (4) we have fluid equations obtained by parallel velocity moments of

(1), namely,
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Nj = 4πχ j I j ,
1
2

kBNjTj,‖ =U j,‖, kBNjTj,⊥ =U j,⊥, (5c)

whereI j = I j(F) andU j,‖, U j,⊥ are the parallel and perpendicular internal energies, to beeval-

uated as velocity integrals of the coefficientsF . This is a system of fully nonlinear ordinary

differential/algebraic equations coupled to the system (4) via the integralsI j and internal en-

ergies. The prime denotes differentiation with respect tos and the operatordds−
B′

0
B0

is just the

divergence of a parallel vector field.
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We have designed a numerical routine that can solve rather general systems of degenerate

evolution equations coupled to general nonlinear ordinarydifferential/algebraic equations. The

algorithm is based on the combination of Galerkin finite elements in velocityu with stiffly-

accurate Runge-Kutta methods in positions, according to the so called Rothe method [10]. We

are currently applying this tool to the system (4)-(5) and the work is still in progress.

More specifically, we have been able to run some test cases solving separately the partial

differential equations (4) with given plasma profiles, as well as the fluid equations (5) with

given distribution functions. The static solution is particularly useful in this testing phase: the

solutions of both (4) and (5) reproduce the corresponding quantities of the static equilibrium

with good accuracy. For the specific case of the numerical solution for the distribution functions,

equation (4), we have successfully reproduced the deformation of the ion distribution functions

due to a uniform electric field imposed artificially for the purpose of the test.

On the other hand, the full self-consistent solution, in which the internal energies and the

integralIk(s) in (5) are computed from the solutionF of (4), exhibits numerical problems that

requires more efforts and this will be addressed in the future.
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