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Resonant wave-ion interactions are considered one posagxthanism at the basis of the
solar corona heating and the solar wind acceleration [1]. Zz@nerally, wave-particle interac-
tions can be described by the quasi-linear theory [4] whschwell-established tool in plasma
physics and fusion research [4, 5]. The Fokker-Planck s@®&FPQL (steady state Fokker-
Planck quasi-linear, [5]), in particular, has been widedpléed to fusion plasma, and the aim of
our work is to transfer those techniques into the contexheflongstanding solar corona heat-
ing problem. As a necessary step, we have to demonstratedbiility of using a Legendre
polynomial representation of the pitch-angle dependehaovelocity distribution functions,
as this representation is crucial for the application of BQE. In this paper we report the first
numerical implementation of the model equations in ternisegiendre polynomials and related
numerical problems.

We consider the case of coronal funnels, that are magndiicsfieictures roughly modeled
as half of a magnetic bottle having the high-field side atddio the solar surface (photosphere)
with field lines going into the interplanetary space. An gisetric analytical solution [6] is
our standard model for a funnel magnetic field. Particlesemnowspirals with the center of gy-
ration attached to a magnetic field line, parameterized, lsay, averaging over the gyration
phase, a particle at the poists fully characterized by its parallel and perpendiculartfie
magnetic field) speeds; andv, , i.e., a population of ions of the specigat the positiors can
be described by a velocity distribution function of the fofyiis, v, v, ). As for the dynamics,
in addition to the bounding force of gravity, one should ¢desthe outwardly-oriented elec-
tric field due to the escaping electrons, as well as the magmetror force due to the abrupt
expansion of the magnetic field lines in the funnel. Both tHesees reduce the gravitational
potential well for ions, so that, when enough energy is segple.g., through absorption of
waves, they can flow out of the funnel at high speed’Q0km/s) and relatively low-densities
(from 10%m~2 at the boundary of the solar corone: 0.01R., down to 1dcm~23 in the lower
corona aiz = 0.3R., wherez s the altitude from the photosphere aRd is the solar radius).
Such low density values imply, particularly, that collisgoare rare, and cannot fully restore

the local thermodynamical equilibrium [2]. At last, obsedwdistributions exhibit evidences of
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interaction of ions with a spectrum of ion cyclotron wavedsshhwe describe in the framework

of the quasi-linear theory. The dynamics is summarizederfélowing set of equations, [7],

dfj qj ﬁfj 1—u26f,— B6V(l—u2)dfj P . .
IJVE+(EE|—9|> [HW+TW _Z—BOW_CJ“J)“'QJ(C?’ fj), (1)
—eNEj(s) =) jpe; Pe= keNeTe. (2)

Equation (1) is the steady-state Fokker-Planck equatienaged over the fast gyration of the
particles and written in spherical velocity coordinates (vf +v2)Y2, =y /v; here E and
g are the parallel components of the self-consistent etetigld generated by the electron
pressure gradient, equation (2), and of the gravitatioceaglaration; the magnetic field strength
Bo(s) is obtained from the standard analytical solution [6]. Tigat-hand side of equation (1)
comprises the Coulomb collision opera@y linearized on a Maxwellian background and the
guasi-linear diffusion operator [4] which depends on theevenergy spectruré. Equation (2)
expresses the equilibrium conditions for the mass-lesd tiielectrons. An equation for the
self-consistent evolution ef should be added which, however, is not addressed here.

It is worth noting that the system (1)-(2) wi@®; = 0 has a simple static solution of the form
f; O exp(—¢) whereg is the total energy of an ion normalizedkglo, To being a constant equi-
librium temperature (the same for all species). Accordmthts solution the ion gravitational
potential energy is twice as large as the electric poteatiatgy, so that ions are strongly gravi-
tationally bounded and their density profiles drop down kiyigvith the parametes which for
a straight field line can be identified with the altitude nolizead to the solar radius= z/R;
more specifically, the electric potential drop from the &idion region to the interplanetary
space ist 1000V (Pannekoek-Rosseland potential), and, for a proeetren plasma one can
prove the density scaling 1/(R: + z). In general, the Fokker-Planck equation (1) describes
a two-way diffusion process [8, 9], as the orientation ofgékielution parametes changes de-
pending of the sign of the pitch-angle

In order to take advantage of the routine SSFPQL [5], we neezkploit Legendre poly-
nomialsP,(u), n > 0, that constitute a basis for squared-integrable funstmm the interval
—1 < u < 1; we write the distribution functions as
N e
\7,-§X' (s)e ™ n;FLﬂ(Sv u)Pa(p). 3)

fi(sv,u) =

Here,N andV; = (2kgT/m;)'/2 are reference values for the density and the speed, the latte
being defined in terms of a reference valuter the temperature. With a slight abuse of notation,
the velocity coordinates = V/\7j and u used here are different from those in (1) as they are
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referred to the velocity frame co-moving with the plasmaafial fluid motion at the speéd .

A Maxwellian pre-factor with the normalized thermal speéd: (2ksT;j/m; )\7]-‘2 =T, /T, has
been introduced for technical reasons: this allows us tadae fine-tuned balance between
terms in the collision operatd; as well as in the transport operator at the left-hand side of
the Fokker-Planck equation (1). The substitution of (3pi(it) yields a degenerate evolution
equation along the magnetic field line for the coefficigf)ts(s, u),

- Jdu u

OF 0 [-119F | _10 019F oo
o au{r SO 00F, 4)

whereF = (ij(s, u)) is the vector of coefficientBj n in (3) andA, rab ab=0,1, are ma-
trices. Equation (4) must be supplied with appropriate lolauy conditions; with this aim, we
note that the results available for the two-way diffusionlgem [8, 9] no longer apply as the
Legendre series expansion unavoidably mixes the pogitigad the negativer contributions.
The character of the operata@ /ds is mapped into the matrix operatdd /ds with A being

a strongly ill-conditioned matrix, i.e.A is formally invertible, but deA is close to zero. How-
ever, it appears physically natural to set up an initialfimtary value problem for (4), with initial
positions=s; = /R, = 0.01 set at the transition region between the chromospher¢hand
lower corona. The initial distributions can be local Maxinétributions with parameters typ-
ical of the chromosphere. We also need the values of the wE¢tou) for u = 0 which is the
boundary in velocity space. When= 0 the distribution functions cannot depend on the pitch-
anglep and this condition giveB; n(s,0) = 0 for everyn > 1; as for the zero-order coefficient
we setFj o(s,0) = Fjo(s1,0) = constant, the information of the physical boundary conditi
being retained through the factgy(s) in (3). The latter is determined in terms of the density
profile, hence, coupled to (4) we have fluid equations obthyeparallel velocity moments of

(1), namely,
(NjVj ) = (Bo/Bo)NVj |, (5a)
2 | ke N _ Borniy2 _ : gj 9y,
NV + 2o Ni Ty ) = & [N}V + 2%—'\'1 Ty =T + (my 1 = 9N + ( D)con,  (5b)
1
N;j = 4mx;lj, EkBNjTLH = ULH’ keNjTj | =Uj o, (5¢)
wherelj = Ij(F) andU; ;, U; , are the parallel and perpendicular internal energies, &vak

uated as velocity integrals of the coefficiefs This is a system of fully nonlinear ordinary
differential/algebraic equations coupled to the systejwi@ the integrald; and internal en-
ergies. The prime denotes differentiation with resped and the operatoa‘ls— S—/g is just the

divergence of a parallel vector field.
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We have designed a numerical routine that can solve rathearglesystems of degenerate
evolution equations coupled to general nonlinear ordingfgrential/algebraic equations. The
algorithm is based on the combination of Galerkin finite edata in velocityu with stiffly-
accurate Runge-Kutta methods in positg&raccording to the so called Rothe method [10]. We
are currently applying this tool to the system (4)-(5) arelork is still in progress.

More specifically, we have been able to run some test casemgaeparately the partial
differential equations (4) with given plasma profiles, adlwae the fluid equations (5) with
given distribution functions. The static solution is pautarly useful in this testing phase: the
solutions of both (4) and (5) reproduce the correspondirantjies of the static equilibrium
with good accuracy. For the specific case of the numericatisol for the distribution functions,
equation (4), we have successfully reproduced the defawmat the ion distribution functions
due to a uniform electric field imposed artificially for therpase of the test.

On the other hand, the full self-consistent solution, inchhihe internal energies and the
integrall(s) in (5) are computed from the solutighof (4), exhibits numerical problems that
requires more efforts and this will be addressed in the &utur
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