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Electromagnetic e�ects on the radial transport of electrons in the core

of tokamak plasmas are studied by means of linear and nonlinear gyrokinetic

simulations with the code GYRO (J. Candy and R. E. Waltz, J. Comput.

Phys. 186, 545 (2003)) and by an analytical derivation. The impact of a

�nite �, that is a �nite ratio of the plasma pressure to the magnetic pressure,

is considered on the 
uctuations of the magnetic �eld through Amp�ere's law,

as well as on the geometrical modi�cation of the vertical drift produced by the

Shafranov shift in the magnetic equilibrium, which, for realistic descriptions,

has to be included in both electrostatic and electromagnetic modeling. The

condition of turbulent particle 
ux at the null, which allows the determination

of stationary logarithmic density gradients when neoclassical transport and

particle sources are negligible, is investigated for increasing values of �, in

regimes of ion temperature gradient and trapped electron mode turbulence.

The loss of adiabaticity of passing electrons produced by 
uctuations in the

magnetic vector potential produces an outward convection. When the mag-

netic equilibrium geometry is kept �xed, this induces a strong reduction of

the stationary logarithmic density gradient with increasing �. This e�ect is

partly compensated by the geometrical e�ect on the vertical drift. This com-

pensation e�ect however is signi�cantly weaker in nonlinear simulations as

compared to quasi{linear calculations. A detailed comparison between quasi{
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linear and nonlinear results reveals that the predicted value of logarithmic

density gradient is highly sensitive on the assumptions on the wave number

spectrum applied in the quasi{linear model. The qualitative consistency of

the theoretical predictions with the experimental results obtained so far on

the dependence of density peaking on � is discussed by considering the ad-

ditional impact, with increasing �, of a particle source delivered by neutral

beam injection heating. (Some �gures in this article are in color only in the

electronic version)

I. INTRODUCTION

The increasing interest in high �N scenarios, like the hybrid scenario with �N up to 3

[1{3], for the operation of future fusion experiments like ITER [4] motivates the study of the

impact of � on the electron particle transport in tokamak plasmas. Here, the normalized

ratio of plasma kinetic pressure to magnetic pressure is de�ned as �N = �=(IP=aBT) with

� = hpi=(B2
T=8�) where hpi is the volume average kinetic pressure, Ip the plasma current, a

the plasma minor radius and BT the toroidal magnetic �eld. Particle transport determines

the peaking of the density pro�le, which directly impacts the fusion power, since this is

proportional to the density squared. The interplay between these parameters is underlined

by recent studies pointing out that the cost of fusion electricity will be proportional to

��0:4N (n=nG)
�0:3 [5], where nG is the Greenwald density limit [6]. Thus, operational scenarios

combining both high �N and high densities are required to reach the goal of an economically

viable energy source.

A rather large amount of studies performed during the last decade on both the exper-

imental and the theoretical standpoints strongly supports the idea that particle transport

in the core of tokamaks is produced by microturbulence, mainly due to ion temperature

gradient (ITG) and trapped electron modes (TEM), see [7] and references therein. However,
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only a rather limited amount of experimental studies have been performed so far speci�-

cally on the dependence of electron particle transport and density peaking on �. This is

perhaps also a consequence of the fact that from the experimental side, statistical analysis

over large data sets have found weak e�ects of � on the density peaking in general [8{10].

Interestingly, however, an increase of � in all these studies has been found to be correlated

with a reduction, albeit weak, of the density peaking. From the theoretical standpoint,

electromagnetic e�ects on particle transport have been investigated with both 
uid [11] and

gyrokinetic [12] approaches. In [11], a quasi{linear study has revealed the existence of a

convective contribution due to electromagnetic induction which is directed outward in the

case of ITG modes, and which can reverse direction and become a pinch in the case of TEM.

This result is consistent with the nonlinear gyrokinetic results presented in [12], where in an

ITG turbulence simulation the increase of �e is found to strongly a�ect the particle 
ux, and

to reverse its direction from inward, in the electrostatic case, to outward when �e exceeds

the experimentally relevant value of 0.5%. In both these previous works, the magnetic equi-

librium parameters were not varied consistently with increasing �e. Those theoretical results

indicate a rather strong impact of electromagnetic e�ects on particle transport, which might

be interpreted as being in disagreement with the experimental observations obtained so far,

although qualitatively consistent with the theoretical prediction of a reduction of density

peaking with increasing �.

In the present study, we investigate speci�cally the e�ect of � on particle transport con-

sidering both the electromagnetic e�ect due to the inclusion in the turbulent �elds of the

magnetic �eld 
uctuations given by the solution of the Amp�ere's law, and the geometrical

(electrostatic) e�ect produced by an increase of � in the magnetic equilibrium, which a�ects

the vertical drift. The investigation of both these two e�ects allows us to make simulations

in which the problem of the � dependence of density peaking in experimental conditions can

be addressed in a realistic way. In fact, these two e�ects are unavoidably combined in an

experiment, while they can be separated in theoretical studies, which are appropriate and

interesting for speci�c analysis. In the following Sections, results from linear and nonlinear
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gyrokinetic simulations performed with the code GYRO [13,14] are presented, and the un-

derlying physics is explained by means of an analytical derivation in which both the E �B

and the magnetic 
utter transport are computed starting from a formal analytical solution

of the gyrokinetic equation. Magnetic 
utter is caused by the 
uctuating magnetic �eld in

the direction perpendicular to that of the equilibrium �eld [15{17]. A quasi{linear approach

is applied, justi�ed by present knowledge of turbulent transport in the core of tokamak

plasmas, which reveals that most of the main features obtained in nonlinear simulations

are well captured by quasi{linear models [18{20]. In addition, comparisons among di�erent

assumptions for the wave number spectrum in quasi{linear calculations and with nonlinear

results, which require very high computational e�ort particularly for electromagnetic cases

so far, show the critical role played by this ingredient in the quasi{linear models for the

prediction of the logarithmic density gradients at the null of the 
ux. This quantity turns

out to be a particularly well suited �gure of merit for models of the wave number spectrum

assumed in quasi{linear transport calculations.

The problem of the e�ects of � on electron particle transport is studied in the present

paper as follows. In the next Section, an analytical calculation is presented by which ex-

pressions of the electromagnetic e�ects on particle 
uxes are derived and directly compared

with the numerical results, which allows the identi�cation of the main physical mechanisms

at play. In Section III, a set of quasi{linear calculations with GYRO show the impact of �e

on the logarithmic density gradient at the null of the particle 
ux, considering separately

both the e�ect due to magnetic �eld 
uctuations and the e�ect due to the geometrical mod-

i�cation of the curvature drift produced by the compression of the magnetic 
ux surfaces

with increasing �. Both collisionless and collisional simulations are performed, given the im-

portant role played by collisionality on particle transport [21]. In Section IV, a realistic case

with typical parameters of a high con�nement (H{) mode at mid{radius is considered and

the e�ect of � on the logarithmic density gradient at the null of the particle 
ux is computed

with both linear and nonlinear gyrokinetic calculations including a detailed comparison be-

tween quasi{linear and nonlinear spectra and addressing the problem of the comparison of
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the theoretical results with the experiment. Section V draws the main conclusions of this

work.

II. ANALYTICAL DESCRIPTION OF ELECTROMAGNETIC EFFECTS ON

PARTICLE TRANSPORT

A detailed analytical description of particle transport is presented, in which electromag-

netic e�ects provided by Amp�ere's law with a �nite value of �e are included. In the main

part of this Section it will be shown that the most signi�cant e�ect is on passing particles,

consistently with a previous 
uid calculation [11]. The passing particle 
ux is �nite due to

the loss of adiabaticity induced by the additional (vjj=c)Ajj term in the gyrokinetic equa-

tion of motion. The loss of adiabaticity of passing electrons was also pointed out in [22],

and has a strong in
uence in ITG dominated microturbulence. A set of subsections has

been included with the aim of discussing the separation of electromagnetic 
uxes into their

E�B and 
utter components, the impact of shear and the pressure gradient parameter �,

the role of collisions and the behavior in TEM dominated microturbulence. The parameter

� = �(8�q2R=B2
0)@rp, where B0 is the magnetic �eld strength (� and r independent) at the

reference major radius R, encapsulates the pressure gradient contribution to the curvature

drift in the s � � geometry model of circular 
ux surfaces in the large aspect ratio limit

[23]. Here, R is de�ned as the e�ective major radius at the center of the 
ux surface, and

@r denotes the derivative in the radial direction with respect to the minor radius r, which is

the half width of the 
ux{surface at the elevation of the centroid, as de�ned in [24].

Following the works of [25{28], the linear gyrokinetic equation for a particle species � is

given by an evolution equation for the non-adiabatic component of the perturbed distribution

function ~f�, i.e. ~h� = ~f� + F0;�Z�e~�=T�, where ~� is the 
uctuating electrostatic potential.

F0;� is the unperturbed Maxwellian distribution function. Z� and T� are the charge and the

temperature of the considered species, respectively. By spectral expansion in Fourier space,

the gyrokinetic equation for the perturbed distribution function ~hk at the wave number ky,
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binormal to the unperturbed magnetic �eld, reads

h
!r;k + i (
k + �k)� kjjvjj � !d;k=Z�

i
~hk;� =(

!r;k + i
k �
!D;k

Z�

"
R

Ln;�

+

�
E

T�
� 3

2

�
R

LT;�

#)
Z�e

T�
F0J0;� ~Uk (1)

where !r and 
 are respectively the real part and the growth rate in the complex eigenfre-

quency !. The subscript jj denotes the direction parallel to the unperturbed background

magnetic �eld, and E is the kinetic energy of a particle. The zero-order Bessel function

J0;� � J0(k?v?=
c;�), where 
c;� is the gyration frequency, produces the gyro-average

in Fourier space, while !D;k = ky�scs=R, where ky is the wave vector in binormal direc-

tion, �s = csmDc=(eBunit) and cs =
q
Te=mD with mD being the mass of deuterium and

Bunit = (1=r) @r [1=(2�)
R
BdS]. Here, the operator describing the spatial derivative along

the �eld line is formally replaced by a parallel wave number kjj and treated as a numeri-

cal factor proportional to 1=(qR). Similarly, a Krook collision operator is included, with

a generic collision frequency �(E; �) with the energy E and the pitch angle parameter

� = v2?=(v
2B(r; �)=Bunit(r)). The generalized potential ~Uk � ~�k � (vjj=c) ~Ajj;k consists of the


uctuating electrostatic potential ~�k and the parallel component of the 
uctuating vector

potential ~Ajj;k. The e�ect of the compressional Alfv�en dynamics has been computed for typ-

ical tokamak parameters used in this work and turns out to impact the results in a negligible

way (less than 2% for the highest �e values considered here). Therefore it is neglected in

the present work. However, it is worth noting that parallel magnetic �eld 
uctuations can

have an important in
uence at the very high values of �e obtained in spherical tokamaks,

as it has been shown in [29]. We use the simpli�ed s � � geometry model of circular 
ux

surfaces [23]. In this model, the perpendicular rB and curvature drifts are combined in the

drift frequency !d;k = !D;k

h�
v2
jj
+ v2?=2

�
=v2th;�

i
[cos � + (s� � � sin �) sin �].

In the following, we will focus on the electron dynamics and therefore drop the species

notation whenever possible. The radial electron particle 
ux, comprising both E�B and

magnetic 
utter, is given by
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�e = Re
X
k

h
Z
d3v J0;�~h

�

k

�
c

B
ejj �r ~Uk

�
rriFS = Re

X
k

h
Z
d3v J0;�~h

�

k

�
iky�scsÛk

�
iFS: (2)

Here, the normalization Ûk = e ~Uk=Te has been included. The h:::iFS operator denotes the


ux surface average and the asterisk '�' the complex conjugate. Then, Eq. (1) can be formally

solved for ~hk;�, and the result can be used in Eq. (2) to �nd an analytical expression for the

particle 
ux. Direct electromagnetic e�ects caused by (vjj=c) ~Ajj on trapped electrons can be

considered small due to the small average parallel velocity produced by the fast bouncing.

Therefore, for trapped electrons, electrostatic expressions, like those derived in [30] remain

applicable, and indirect electromagnetic e�ects on trapped particle 
uxes are produced by

the change of the real eigenfrequency and the linear growth rate caused by the inclusion of

a �nite �e. These e�ects are similar to those identi�ed on impurity transport [31]. These

e�ects, however, remain only a minor correction in electron particle transport, as compared

with the impact of the additional terms due to (vjj=c) ~Ajj for passing particles. Thus, in our

analytical derivations we focus on the passing electron response. A formal solution of Eq.

(1) for ~hk reads

~hk;� =
Np;k;�

Dp;k;�

F0;�J0;�Ûk;

Np;k;� =

�
!r;k + i
k � !D;k=Z�

�
R

Ln

+

�
E

T
� 3

2

�
R

LT

���
!r;k � kjjvjj �

!d;k

Z�

� i (
k + �k)

�
;

Dp;k;� = (
k + �k)
2
+
�
!r;k � kjjvjj � !d;k=Z�

�2
: (3)

In order to compare the expression containing Âjj through Û with the electrostatic one

in former works [7,30,32], it is instructive to reformulate the phase correlation between 
uc-

tuating density and the generalized potential Û used for the electromagnetic radial electron


ux. Thus, we rewrite Eq. (2) in a form containing only ~� such that the electromagnetic

e�ects caused by ~Ajj are explicitly included in the phase shift. This in turn allows us to

underline the actual electromagnetic ingredients in the physics. To this purpose, a relation

between Âjj and �̂ is required. This can be obtained using the Fourier transformed Amp�ere's

law for the parallel component of the vector potential, given by

k2?
~Ajj;k = �4�e

c

X
�

Z
d3vvjjZ�

~f�;kJ0;� (4)
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where k? is the perpendicular wave number. Keeping in mind that only the non-adiabatic

part of ~f�;k = ~h�;k � F0;�Z�e~�=T�, namely ~h�;k, produces a net current, and taking Eq.

(3) for the passing particles, the relation between ~Ajj;k and �̂k reads Âjj;k = (c=cs)
̂k�̂k =

(c=cs)
�

̂r;k + i
̂i;k

�
�̂k, with


̂k =
�e
P

�

R
d3vvjj=cs (�Z�Np;k;�=Dp;k;�)F0;vJ0;�

2 (k?�s)
2
+ �e

P
�

R
d3vv2

jj
=c2s (�Z�Np;k;�=Dp;k;�)F0;vJ0;�

; (5)

where F0;v = F0=n0. From this description it is apparent that �e is the parameter implying

perpendicular magnetic �eld 
uctuations. In present day tokamaks this parameter can reach

relatively large values, typically from 0.6 % to 1.3 % in hybrid scenario operation, like in the

experiments presented in [33]. Thus, the absolute value of 
̂k is if the order of a few percent.

At this point it is also important to discuss the symmetry properties of the additional terms

originating from 
uctuations in Âjj and contributing to Eq. (2) with respect to the ballooning

angle �, because the expression of the particle 
ux contains the integration over � in the


ux surface average. Since �̂k is symmetric in � and Âjj;k is antisymmetric, 
̂k must be

antisymmetric as well.

Introducing the trapped particle fraction ft, the expression for the radial particle 
ux

caused by passing electrons reads

�p = (1� ft)
X
k

hky�scs
Z
d3v

h
1� 2v̂jj
̂r;k + v̂2jj

�

̂2
r;k + 
̂2

i;k

�i
F0J

2
0;ej�̂kj2 �

(
̂k + �̂k) ky�s [R=Ln + (E=Te � 3=2)R=LTe]�
h

̂k
�
k̂jjv̂jj + !̂d;k

�
� !̂r;k�̂k

i
�
!̂r;k + k̂jjv̂jj + !̂d;k

�2
+ (
̂k + �̂k)

2
iFS; (6)

where all the frequencies have been normalized to cs=R and velocities to cs. The sign conven-

tion is such that a positive value of !̂r denotes a mode propagating in the ion diamagnetic

direction, that is an ITG. Compared to former works [7], the new terms in the expression of

the 
ux are those proportional to 
̂r;k and 
̂i;k.

The calculation of j ~Ukj2 yields the three terms in the �rst square bracket at the right hand

side of Eq. (6), where the electrostatic component, and the two electromagnetic components,

at the �rst and the second power of vk, and given respectively by �2Re(~��k ~Ak;k)vk=c, and

by j ~Ak;kj2(vk=c)2, can be easily identi�ed.
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It is important to note that the radial particle 
ux is not linear in the logarithmic

gradients of density and temperature due to the implicit dependence of !̂r and 
̂ on the

gradients. In addition 
̂ contains R=Ln and R=LT as well, providing a new source of nonlin-

earity. However, Eq. (6) can be still decomposed, and allows the identi�cation of di�usive,

thermodi�usive and convective parts due to the explicit occurrence of terms proportional

R=Ln and R=LT or terms not explicitly proportional to any gradient, originating from the

right hand side of the gyrokinetic Eq. (1).

In order to check the relative importance of electromagnetic e�ects on passing and

trapped electrons, a standard case of ITG dominated microturbulence for a plasma of

deuterons and electrons is de�ned. That case is used throughout this Section unless spec-

i�ed otherwise. The local parameters are the inverse aspect ratio r=R = 0:17, the safety

factor q = 1:4 with a magnetic shear of s = (r=q)@rq = 0:8, the normalized logarithmic

temperature gradients for deuterons and electrons R=LTi = R=LTe = 9 � R=LT and the

deuterium to electron temperature ratio Ti=Te = 1.

Fig. (1) shows the 
uxes computed in GYRO linear simulations at a single ky�s = 0:1

(where the maximum of the linear wave number spectrum of 
= < k2? > for the cases

considered in Section III is located), with di�erent values of R=Ln in circular geometry

neglecting the e�ects of pressure gradients on the magnetic equilibrium (� = 0), as a function

of the pitch angle parameter �. The normalization has been taken in such a way that the

total 
ux is given by the integral over �, i.e. � =
R �max
0 �(�)d�. The transition from passing

to trapped particles is denoted by the black vertical line. From the �e = 0 curves it is

apparent that the passing particles do not produce a signi�cant 
ux since they are nearly

adiabatic. Thus, the total 
ux is mainly given by the trapped particles, and it is inward

for low R=Ln, Fig. 1(a, b), while it points outward for large R=Ln, Fig. 1(c). At low

logarithmic density gradients, the thermodi�usive and convective trapped electron 
uxes

are directed inwards and dominate, while at higher R=Ln the increasing contribution of

the outward directed di�usive term together with a reduced thermodi�usion (due to the

fact that the mode frequency of the most unstable mode moves towards the electron drift

9



direction) reverses the direction of the electron 
ux. This behavior is qualitatively the same

also for trapped electrons at �nite �e, see the total electromagnetic 
ux in Fig. (1). The

latter is calculated as the sum of the E�B and the magnetic 
utter contribution (Fl), which

is usually very small for the trapped particle fraction. The di�erences with respect to the

trapped electrostatic 
uxes are, as mentioned previously, due to an increase of !̂r;k in the

ion diamagnetic direction and a decrease of 
̂k with increasing �e.

The physics behind the strong push of the electron 
ux in the outward direction by

including electromagnetic e�ects is the loss of adiabaticity of the passing particle fraction as

compared to the electrostatic cases. This can be seen in Fig. (1). Electromagnetic passing

particle 
uxes are directed outwards as much as the trapped 
uxes are directed inwards.

Thus, the resultant total 
ux is strongly reduced in the inward direction or even reversed

at �nite �e, as it will be shown in Section III. This behavior can be explained within the

analytical description. To this end, Eq. (6) is rewritten in a more explicit and simple form

for passing electrons which have � = 0 already providing the full qualitative information. It

reads

�p = (1� ft)
X
k

hky�scsn0
X
&=�1

1p
�

Z
1

0
d�
p
� exp(��)

�
1� 2&

q
2��
̂r;k + 4��

�

̂2
r;k + 
̂2

i;k

��

�
(
̂k + �̂k) ky�s [R=Ln + (�� 3=2)R=LT]�

h

̂k
�
&
p
2��=q + !̂d;k

�
� !̂r;k�̂k

i
�
!̂r;k + &

p
2��=q + !̂d;k

�2
+ (
̂k + �̂k)

2
j�̂kj2iFS:

(7)

The sign of the velocity in the parallel direction is included using & = �1. We put � =

E=Te = mev
2
e=(2Te), and we approximated J0(k?v?=
c;e) = 1. Here and in the following

derivations, the parallel wave number is put to kjj = 1=(Rq). The high value of the deuterium

to electron mass ratio is given by � = mD=me.

Electromagnetic contributions in Eq. (7) coming from ~Ak;k can be still identi�ed in the

second and third term in the �rst square bracket at the right hand side. In order to identify

the dominant electromagnetic contributions to the particle 
ux, we observe that the product

��, occurring both at the numerator and at the denominator in Eq. (7), is usually much
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larger than unity, unless particles with energies much smaller than the thermal energy are

considered. However the relative magnitude of the electromagnetic terms for those particles

in Eq. (7) remains small due to the smallness of �e, and the contribution to the total

particle 
ux of particles at very low energy has small weight over the energy integral. We

turn therefore to consider passing particles whose energy is of the order of the thermal

energy, and for which �� is large.

Inserting Eq. (5) in Eq. (7), it is found that most of the contributions to the total


ux are very small due to the deuterium to electron mass ratio in the denominator. In

particular, it is clear that the electrostatic passing electron 
ux, which is determined by Eq.

(7) imposing 
̂r;k = 
̂i;k = 0, is close to the null due to the fact that the large slab term in

the denominator (/ ��) is not balanced in the numerator, where the strongest contribution

is / p
��. This provides an almost adiabatic response and agrees with the simulation results

of Fig. (1).

In the case of a �nite �e, the situation changes. The reason for this is that the dominant

term in the mass ratio � at the denominator can be balanced by �nite �e terms in the

numerator. In particular, we observe that the term proportional to (
̂2
r;k + 
̂2

i;k) is linear in

�� and therefore of the same order as the denominator. However, at the same time this term

is of order �2e , and does not give the major contribution to the 
ux, even when multiplied by

the
p
�� term, coming from the vkkk at the left hand side of the gyrokinetic equation, Eq.

(1), in the last square bracket of the numerator in Eq. (7). The dominant electromagnetic

contribution to the particle 
ux comes from the second term 2&
p
2��
̂r;k in the �rst square

bracket in the right hand side, when it multiplies the k̂jjv̂jj term, that is 
̂k&
p
2��=q in the

last square bracket at the right hand side of Eq. (7), resulting in a term of order O(�e��),

that is of the same order in � as the leading term at the denominator, and yields an outward

directed contribution proportional to �e. Thus, the dominant electromagnetic contribution

to the particle 
ux is of pure convective type, since not provided by any term directly

proportional to a density or temperature gradient, and it is produced by the phase shift

between electrostatic potential and electromagnetic potential 
uctuations, due to the non{
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adiabatic motion of passing electrons, in combination with the parallel streaming of the

passing electrons described by the slab term k̂jjv̂jj. Moreover it is not caused speci�cally by

the resonance in the denominator of Eq. (7), but it is present over the full velocity space of

the passing electrons. A deeper demonstration of this last point is shown in the Appendix,

also with the help of linear gyrokinetic calculations with GYRO. Here, on the basis of the

derivation performed so far, we consider of interest to discuss the following points.

1. Separation of particle 
uxes into their E�B and magnetic 
utter compo-

nents

It is instructive to separate electromagnetic 
uxes into their E�B and magnetic 
ut-

ter (Fl) components in an analytical way. Taking Eq. (2), the phase correlation of

the non-adiabatic part of ~hk with the electrostatic potential ~�k and with the paral-

lel component of the vector-potential ~Ajj;k gives the E�B and 
utter contributions,

respectively. Therefore, using

Ûk =

�
1� vjj

cs

�

̂r;k + i
̂i;k

�� h
�̂r;k + i�̂i;k

i
; (8)

and keeping only the leading order terms in the deuterium to electron mass ratio, we

rewrite Eq. (7) as follows,

�p;E�B = (1� ft)
X
k

hky�scsn0
h
2q
�
ky�s
̂i;kR=Ln + 
̂k
̂r;k + !̂r;k
̂i;k

�i
j�̂kj2iFS (9)

and

�p;Fl = (1� ft)
X
k

hky�scsn0
h
2q
�
�ky�s
̂i;kR=Ln + 
̂k
̂r;k � !̂r;k
̂i;k

�i
j�̂kj2iFS: (10)

Here, a term proportional to the temperature gradient does not contribute after the

integration over energy and is therefore left out in both expressions. From Eq. (9)

and Eq. (10) we realize that the total passing 
ux, i.e. the sum of both contributions,

recovers the result of Eq. (7) in the same limit of large ��, since the terms proportional

to 
̂i in the two equations balance exactly. Therefore, the total electromagnetic passing
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particle 
ux, i.e. the sum of the E�B and the 
utter contribution, has no explicit

dependence on the logarithmic gradients of density and temperature in leading order of

�, and therefore it is of pure convective type, as already concluded, while both the E�B

and 
utter contributions separately exhibit a direct dependence on the logarithmic

density gradient.

At this point it is instructive to simplify the relation between Âjj and �̂, Eq. (5).

For the E�B component of the 
ux, only the electron current is considered while

the ion current is neglected. This approximation is valid since the electron current

gives the dominant contribution to Amp�ere's law, especially in the cases of large real

eigenfrequencies and growthrates (for !̂r, 
̂ of the order of one, the electron current

contribution is typically one order of magnitude larger than the ion current contri-

bution). Moreover, only the leading order terms proportional to �� are taken into

account. Then the dominant part of the relation between Âjj;k and �̂k can be written

as


̂k =
q�e (ky�sR=Ln + !̂r + i
̂)

(k?�s)
2

: (11)

Note that again a term proportional to the temperature gradient, namely

ky�s (�� 3=2)R=LT, has been left out since it does not give a contribution after inte-

gration over energy. The real part of Eq. (11), 
̂r, is proportional to !̂r and therefore

a positive number for ITG modes, while it can become negative for TEM modes. The

imaginary part 
̂i is always a positive number independent of the sign of the real

frequency.

For the 
utter component, only the ion current contribution in Amp�ere's law has to

be considered, since the electron current alone leads to �p;Fl = 0, as it can be deduced

combining Eq. (10) with Eq. (11). In the denominator of Eq. (5), the integral

proportional to v̂2
jj
is small compared to 2 (k?�s)

2
and is therefore neglected, such that

Eq. (5) can be written as
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̂k � � �e

(2k?�s)
2

Z
d3vF0;vv̂jj

n

̂(
̂ + �̂) + (!̂r � !̂�) (!̂r � k̂jjv̂jj � !̂d)

+i
h

̂(!̂r � k̂jjv̂jj � !̂d)� (
̂ + �̂) (!̂r � !̂�)

io n
(!̂r � k̂jjv̂jj � !̂d)

2 + (
̂ + �̂)
2
o�1

;

(12)

where !̂� = ky�s [R=Ln + (�� 3=2)R=LT]. For this expression it can be shown that

the real part of 
̂ is proportional to �!̂r while the imaginary part is a positive number

(proportional to 1=
̂).

By comparing the expressions of the E�B, Eq. (9) together with Eq. (11), and the


utter components, Eq. (10) together with Eq. (12), of the passing particle 
ux,

we note that the 
utter component is approximately one order of magnitude smaller

compared to the E�B. As explained above, this is due to the fact that the electron

current provides the dominant contribution in Amp�ere's law. The direction of E�B

and 
utter 
uxes, inward or outward, depends on the interplay among the signs of

!̂r and 
̂r, which can change depending on the type of instability, and the relative

magnitude of the various terms (we remind that 
̂i is always positive). In particular,

for ITG modes !̂r > 0, 
̂r > 0 and 
̂i > 0, we see that the three components of the E�B

passing particle 
ux in Eq. (9) are all directed outward, acting in the same direction.

Instead, the three magnetic 
utter components are in opposite directions and partly

balance each other. The inward directed terms/ 
̂i are larger than that/ 
̂r, directed

outward, and the 
utter 
ux is slightly inward. In contrast, for suÆciently large TEM

real frequencies in absolute value, 
̂r becomes negative, and E�B passing electron 
ux

can be directed inward, when the terms 
̂
̂r + !̂r
̂i exceed ky�s
̂iR=Ln in Eq. (9).

The 
utter component is directed outwards since the term �ky�s
̂iR=Ln in the 
utter

expression Eq. (10) is usually smaller than the other two. For very large density

gradients in TEM turbulence, however, the situation is reversed and the E�B passing

electron 
ux is directed outwards while the 
utter is directed inwards, in agreement

with simulation results.
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In conclusion, for ITG modes the E�B passing 
ux is always outward and signi�cant,

while the magnetic 
utter is inward and usually smaller in size. For TEMs with large

real frequencies in absolute value, the situation is reversed, and the E�B passing


ux can become directed inward, while the magnetic 
utter part becomes directed

outward. The reversal of the convective part of the E�B 
ux for modes propagating

in the electron drift direction with respect to the ion drift direction has also been found

in the 
uid description of [11]. However, as we shall show, and di�erently from ITG

modes, the electromagnetic contribution of passing electrons to the particle 
ux in the

case of TEMs is usually small as compared to the one produced by trapped electrons.

2. Impact of shear and �

The understanding of the role of parallel dynamics in the electromagnetic description of

particle 
uxes is deepened by studying the separate impact of the parameter s and � in

the s�� model. Fig. (2) shows the GYRO computations of real eigenfrequency !r (a),

linear growthrate 
 (b), normalized particle Ti�e=Qi (c) and normalized electron to ion

heat 
ux Qe=Qi (d) as a function of (s��) for the logarithmic density gradientR=Ln =

3 and a single poloidal wave number ky�s = 0:1. Both electrostatic and electromagnetic

dependences have been evaluated changing � while keeping the shear constant (s = 0:8,

circles) or vice versa, i.e. scanning shear at � = 0 (squares), respectively. For (s� �)

values larger than � 0:6, !r as well as 
 show almost the same values regardless of

the parameter which was changed, see Fig. 2(a, b). At (s � �) < 0:6 and varying

shear, stronger deviations to the behavior obtained with changing � can be found. The

electrostatic (s� �) dependence of the electron 
ux, Fig. 2(c), is in both cases (�xed

shear or �xed �) nearly the same, while the electromagnetic dependence shows strong

di�erences. A similar conclusion for the heat 
ux dependence can be drawn, Fig. 2(d).

This can be understood from the analytical derivation. Since the relation between Ajj

and � is given by the Amp�ere's law, Eq. (4), the perpendicular wave number k? plays

an essential role to determine the magnitude of 
̂, see Eq. (5). Within the s�� model,
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shear and pressure gradient enter in di�erent ways in the expression for k?, since the

shear is multiplied by the extended ballooning angle � and � by sin � (an expression of

k? is given in Eq. (13) in Section III). Thus, there is a substantial di�erence in k? by

either varying shear or � when the eigenfunctions become extended in �, that is along

the �eld line, as it is generally the case at �nite �e, due to the non{adiabatic passing

electron dynamics.

3. E�ect of �nite collisionality

From the physical point of view, electromagnetic e�ects imply radial magnetic �eld


uctuations which e�ectively decrease the otherwise fast parallel velocity of passing

electrons by rapid radial displacements of their positions. A �nite collisionality acts

in the same way and therefore also leads to non{adiabaticity. But unlike a �nite �e,

the latter enters through di�usive and thermodi�usive e�ects, which gives an inward

contribution at smallR=Ln. For the convective part, an additional 
ux is generated via

�nite collisionality being directed outwards with ITG as the most unstable mode, as

shown in [7,30,34]. The same considerations are true for the trapped particle fraction.

4. Electromagnetic electron 
uxes with trapped electron modes

Lastly, linear gyrokinetic simulations for microturbulence in the TEM domain are

performed. To this purpose we chose an electron logarithmic temperature gradient

R=LTe = 9 while the other gradients are R=LTi = R=Ln = 3 and other parameters

remain as in the ITG standard case. Figure (3) shows the electrostatic and electro-

magnetic components of the passing and trapped particle 
uxes. The most important

di�erence compared to the ITG case is the fact that the trapped particle 
ux in the

case of TEM becomes much larger than the passing particle 
ux, in both electrostatic

and electromagnetic cases. Thus, the impact on the particle 
ux due to a �nite value

of �e can be expected to remain small in the case of TEMs. Moreover, it is apparent

that already at �e = 0 the passing 
ux is �nite. The reason for this behavior is the
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fact that the mode real eigenfrequency is negative and thus the slab resonance in the

denominator of Eq. (7) is obtained at higher particle energy which in turn leads to

more particles encountering non{adiabaticity. The electromagnetic E�B component

is still slightly positive but rather small due to the fact that 
̂r changes sign which

leads to counteracting terms in Eq. (9). However, due to the stronger non{adiabaticity

of low energetic passing particles the total E�B 
ux remains slightly inwards. The

total electromagnetic passing 
ux contribution is almost at the null since the outward


utter component balances the E�B one. Trapped particles are directed more inwards

with increasing �e due to changes in the real eigenfrequency and growthrate. These

considerations are in agreement with the previous discussions based on the analytical

results.

In conclusion, the dominant term providing an outward push of the electron particle 
ux

in ITG turbulence in which electromagnetic e�ects are included, i.e. Amp�ere's law due to

�nite �e, has been identi�ed. This is given by the phase shift between electrostatic potential


uctuation and magnetic vector 
uctuations produced by the non{adiabatic dynamics of

passing electrons, in combination with the compression of their parallel streaming. As such,

this dominant transport mechanism is of pure convective type, that is, it is not directly

proportional to a logarithmic density or temperature gradient. It is signi�cant over the en-

tire energy range, and is mainly carried by E�B transport, while magnetic 
utter transport

provides a smaller, inward directed, contribution. For TEM with large real frequencies in

absolute value, the situation can be reversed, with the E�B transport being directed inward,

while the magnetic 
utter part is directed outward. However, electromagnetic passing parti-

cle 
uxes in case of TEM instabilities remain small as compared to the mainly electrostatic

trapped electron 
uxes. These can be indirectly a�ected by changes of the real frequency

and the growth rate produced by �nite �e.

In Appendix A the dependence of the particle 
ux on energy is illustrated in further

detail, also by means of GYRO numerical simulations.
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III. GYROKINETIC INVESTIGATIONS OF ELECTROMAGNETIC RADIAL

ELECTRON PARTICLE FLUXES

When both particle sources and neoclassical transport are negligible, the condition of

turbulent particle 
ux at the null can be applied to compute the stationary logarithmic

density gradient as a function of �, keeping �xed all the other local plasma parameters.

The stationary normalized logarithmic density gradient R=Ln;stat is de�ned as the value

of R=Ln = �(R=n)@rn where the turbulent particle 
ux �e = 0. As anticipated in Section I,

a variation of � is considered having two e�ects. One is the electromagnetic e�ect connected

with the 
uctuations of the magnetic �eld, which are given by the solution of the Amp�ere's

law, and in which �e appears directly as scaling parameter for the strength of the magnetic

�eld 
uctuations. The second e�ect is purely geometrical (electrostatic) and it is related to

the role of the radial derivative of the total plasma pressure @rp in the magnetic equilibrium

and consequently in the expression of the curvature drift. For given logarithmic gradients

of the temperature and density pro�les, this term is proportional to the total plasma �.

The quasi{linear calculations in this Section are performed using the same standard ITG

case in s � � geometry as before. With the linear version of the gyrokinetic code GYRO

particle 
uxes as a function of R=Ln are computed. In all the quasi{linear calculations the

particle 
ux � is normalized to the ion heat 
ux Qi. Fig. (4) shows the electromagnetic

gyrokinetic numerical calculations of the quasi{linear electron particle 
uxes as a function

of the logarithmic density gradient R=Ln for both �e = 0, as well as for �e = 0:5%. The

resultant 
uxes consist of the sum of E�B and magnetic 
utter contributions. Two di�er-

ent models for the wave number spectrum of the saturation amplitude of the electrostatic

potential are used. Following the works of [32,35], we use either the fully computed poloidal

wave number spectrum (12 points from ky�s = 0:05 to ky�s = 1:5 in logarithmic spacing)

with weighting due to 
=hk2?i, see Fig. (4a), or the model proposed in [36] which assumes an

exponential decrease of the saturation amplitude of the potential at ky�s smaller or larger

than the ky value at which 
=hk2?i is at the maximum, see Fig. (4b). This exponential
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shape of the saturation amplitude was based on measurements of the density 
uctuations

at high wave numbers [37]. In the s � � model, the perpendicular wave number is de�ned

as k? =

r
k2x + k2y

h
1 + (s� � � sin �)

2
i
such that hk2?i is given by

hk2?i = k2x + k2y

h
1 + h(s� � � sin �)

2i
i
; (13)

where

h(s� � � sin �)
2i =

R
(s� � � sin �)

2 j~�k(�)j2d�R
j~�k(�)j2d�

(14)

with � being the extended ballooning angle and ~� the 
uctuating electrostatic potential. We

�nd that 
=hk2?i has its maximum around ky�s � 0:1 (slightly shifted towards higher values

for low R=Ln and towards lower values at high R=Ln and �e), and strongly decreases with

increasing poloidal wave number such that the ratio of the maximum value of 
=hk2?i to the

value at ky�s = 0:5 is of order 100, as also found in [32].

The gyrokinetic calculations in Fig. (4) show that with a �nite �e the 
uxes are pushed

in the outward direction for R=Ln < 3 while they are only weakly a�ected at high R=Ln, as

already pointed out in Section II. Such a behavior leads to a reduction of the logarithmic

density gradient at which the 
ux is zero. This e�ect is larger in the case where � = 0 (open

circles) compared to the case in which it is included consistently with the value of �e = 0:5%

(open squares). A �nite experimentally relevant collisionality, here (R=cs)�ei = 0:06, has

also the e�ect of pushing the 
uxes in the outward direction, see diamond symbols in Fig.

(4). This is consistent with the discussion in Section II. From the collisional curve with

�e = 0:5% we realize that the wave number model proportional to 
=hk2?i predicts a value

of R=Ln close to the null.

Using these R=Ln scans, the value of the logarithmic density gradient at the null of the


uxes can be identi�ed, and computed for increasing values of �. The in
uence of a �nite

�e on the logarithmic density gradient at zero electron particle 
ux is presented in Fig. (5)

for the two di�erent models for the saturation amplitude of the wave number spectrum.

The cases with concentric circles (a), with a self-consistent value of �(b) and with �nite
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collisionality of (R=cs)�ei = 0:06 using concentric circles for the magnetic equilibrium (c)

are considered. We see that in the �rst case the decrease of the stationary logarithmic

density gradient with increasing �e is weak at low values of �e while it becomes strong for

�e approaching 0:5%. The inclusion of a consistent value of � reduces this e�ect. Also in

the collisional case, the drop of R=Ln;stat is more linear. It is interesting to note that the

model proposed in [36] predicts generally larger R=Ln;stat than the 
=hk2?i model at high

values of �e, while at low �e both models show similar values in the collisionless cases. The

reason for this behavior is the fact that 
uxes at high ky�s, which are directed inwards have

a larger weight in the model of [36]. Moreover, for increasing �e the high ky contributions

become larger in the inward direction while they are quite small at �e = 0. It is also of

interest to note that, using a corresponding circular Miller geometry [38] at the place of the

s � � model geometry, the predicted stationary density gradient decreases by about 10%.

These results motivate further investigations of the poloidal spectrum of particle 
uxes and

a detailed comparison of linear with nonlinear gyrokinetic calculations in realistic geometry.

We address this point in the next Section for parameters close to those measured in ASDEX

Upgrade.

IV. COMPARISON OF QUASI{LINEAR AND NONLINEAR

ELECTROMAGNETIC ELECTRON PARTICLE FLUXES

In Section III it has been pointed out that the logarithmic density gradient R=Ln, at

which the particle 
ux is at the null, decreases with increasing �e in Amp�ere's equation.

However, it was shown that di�erent choices of the wave number spectra of the 
uxes provide

di�erent R=Ln;stat. The main goal of this Section is the calculation of �nite � e�ects on the

peaking of the density pro�le containing both electromagnetic and geometrical implications

on a realistic case. In addition, we compute the stationary logarithmic density gradients

using nonlinear simulations. The comparison with linear calculations helps to identify a

quasi{linear model which predicts R=Ln;stat in good agreement with nonlinear results.
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To this purpose, calculations of electron transport including electromagnetic e�ects are

performed for H{mode parameters around mid-radius using the Miller geometry model for

the magnetic equilibrium. The choice of dimensionless parameters which are applied in the

gyrokinetic simulations are typical of an ASDEX Upgrade plasma and therefore should be

considered more realistic than the reference cases discussed previously. The equilibrium

parameters are given by r=a = 0:56, R=a = 3:53, q = 1:33, s = 1:12, Shafranov shift � =

�0:11, elongation � = 1:38 with elongation shear s� = (r=�)@r� = 0:11, and triangularity

Æ = 0:032 with triangularity shear sÆ = r@rÆ = 0:055. The local parameters for the two

species plasma consisting of deuterons and electrons are R=LTi = 6:13, R=LTe = 6:13,

Ti=Te = 1, �e = 0:65%. The collisionality is (R=cs)�ei = 0:067, and Ze� = 2. The value of

�e is scanned while the magnetic equilibrium was held constant.

In linear simulations, the dominant micro-instability in these conditions is an ITG mode

for ky�s <� 0:7. Beyond that value a TEM mode is found. We choose a spectrum from

ky�s = 0:05�1:5 with 12 points logarithmically spaced. A suÆciently high number of radial

simulation points is taken in order to keep the radial resolution dx=�s <� 0:5. For nonlinear


ux tube simulations, we took a spectrum from ky�s = 0:04� 2:68 using 64 toroidal modes.

The simulation box is chosen to be Lx=�s = 82 and Ly=�s = 148. Using 216 radial points

we obtain a radial resolution of dx=�s = 0:38. Moreover, we use a grid of 256 points in the

velocity space (8 energies, 8 passing and 8 trapped pitch angles and two signs of velocity).

Figure (6) shows the nonlinear spectrum of electrostatic and electromagnetic particle


uxes at R=Ln = 2. It is found that while the position of the peak for both the electrostatic


ux and the electromagnetic E�B 
ux component remains at ky�s � 0:2, the former is

directed less strong in the outward direction compared to the latter. The peak of the

electromagnetic 
utter component is at slightly higher ky�s and the 
ux is negative over the

full range of the poloidal spectrum.

Figure (7a) shows the results for the stationary logarithmic density gradient using linear

and nonlinear simulations at increasing �e in Amp�ere's equation. Electromagnetic 
uxes

consist of the sum of E�B and magnetic 
utter components. For the quasi{linear 
uxes,
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di�erent wave number spectra have been used for comparative reasons, i.e. 
uxes according

to the maximum of 
=hk2?i and to the maximum of 
 (in the ITG branch), wave number

spectra according to (
=hk2?i)2 and 
=hk2?i as well as the wave number spectrum proposed

in [36].

In linear simulations, the logarithmic density gradient decreases with increasing �e re-

gardless of the wave number spectrum, which is consistent with the results from the param-

eter study in Section II. However, there are big di�erences in the predicted values at which

the electron 
ux vanishes. Using the wave number spectral weight due to the maximum in


=hk2?i, which peaks at ky�s � 0:18, or due to the spectral average using (
=hk2?i)2 results

in a very low positive (or even negative) density gradient, while the wave number due to

the maximum in 
 or the spectrum due to 
=hk2?i allows for moderate values of R=Ln at

vanishing electron 
ux. Larger stationary gradients are obtained using the wave number

spectrum proposed in [36].

Taking the nonlinear simulation results we see that the decrease of R=Ln is quite sub-

stantial and rather linear with increasing �e. The comparison to quasi{linear results reveals

that the wave number spectrum proposed in [36] and (
=hk2?i)z with z = 0:7 works best for

these cases, while the other ones do not deliver satisfying agreements. At �e approaching

1% the former turn out to give higher stationaty density gradients compared to the nonlin-

ear results. However, it was impossible to obtain meaningful 
uxes for �e > 1% in linear

simulations since the reduction of turbulence and subsequently of growthrates due to elec-

tromagnetic stabilization led to strong spectral variations of the 
uxes such that a adequate

comparison of quasi{linear and nonlinear stationary density gradients cannot be made. In

order to check the impact of a realistic description of the geometry, the value of R=Ln;stat

at �e = 0:65% has been computed with a corresponding s� � geometry. It is found that in

s� � the value of R=Ln;stat is reduced by 30%.

A more appropriate and realistic description of the experimental conditions considers

not only the e�ect of �e in the Amp�ere's equation, but also the impact of � 0 = 8� @rp=Bunit

in the curvature drift. To this purpose, Fig. (7b) compares quasi{linear with nonlinear
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simulation results. The experimental stationary logarithmic density gradient at �e = 0:65%

remains unchanged, but in the cases with quasi{linear calculations including averages over

the wave number spectrum (open triangles and stars), the consistent inclusion of �nite �

in both the Amp�ere's law and the magnetic equilibrium shows a much weaker dependence

of R=Ln;stat on �e compared to the case in which only Amp�ere's equation is a�ected. This

is consistent with the results in Section III, Fig. (5). In nonlinear simulations, we �nd

that the reduction of R=Ln;stat with increasing �e, while changing consistently also � 0 in

the magnetic equilibrium parameters in input (open circles), is much closer to the result

obtained with increasing �e only and keeping �
0 �xed (full circles), with respect to the result

from quasi{linear simulations. Moreover, it is apparent that the same quasi{linear rules

for the wave number spectrum, which reproduced the nonlinear results when only �e is

changed in a fairly good way, do not agree with the nonlinear results. The reason for these

di�erences has been investigated and is shown in Fig. 8, for simulations with R=Lne = 2.

In Fig. 8(a), a comparison of j~�kj2 between the linear (black, full line for (
=hk2?i)0:7 and

dashed line for spectrum proposed in [36]) and nonlinear wave number spectra (color, circle

for �e = � 0 = 0, square for �e = 0 with � 0 consistent to a value if �e was 0.65%, and

diamond for �e = 0:65% with a � 0 consistent with �e = 0:65%) are shown for R=Ln = 2.

The normalization is done in such a way that the integral over all binormal wave numbers

ky gives one. The main di�erence between the linear choices and the nonlinear simulation

results is the fact that in linear calculations large ky values play an important role while in

nonlinear simulations the ky�s values around 0.2-0.3 have a much stronger impact. Moreover

it is interesting to note that for this case the linear choices for j~�kj2 do not change in the

three cases (maximum of 
=hk2?i remains at ky�s = 0:18) while for the nonlinear cases shifts

of the maximum are obtained, namely large scales reveal non{negligible di�erences in the

three cases while the small scale behavior (ky�s > 0:4) can be described by the power law

j~�kj2 / k�5y (j~�ky<1j2 / k�4:8y and j~�ky>1j2 / k�5:2y ), which is slightly steeper than the k�4:3y

result for density 
uctuations found in [39].

Such large di�erences between the spectra of j~�kj2 applied in the quasi{linear calculations,
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and the actual ones obtained in the nonlinear simulations might lead to the conclusion that

the total quasi{linear particle 
uxes are always signi�cantly far from the nonlinear ones.

However this is not always the case. The reason for this is shown in Fig. 8(b), where

the quasi{linear weights =(~nk ~��k)=j~�kj2 are directly compared with those extracted from

the actual nonlinear saturated state. Full symbols show the linear results, whereas open

symbols show the results from nonlinear simulations. In the comparison, we observe that a

clear di�erence appears in the high ky�s part of the spectrum, where linear results are more

strongly directed outwards, and cross the zero line at larger values of ky�s, as compared

with the nonlinear spectra. Moreover, from the comparison between �e = � 0 = 0 (circles)

with �e = 0, � 0(�e = 0:65%) (squares) and �e = 0:65%, � 0(�e = 0:65%) (diamonds) of the

linear simulations, the cause of the larger discrepancy between nonlinear and quasi{linear

stationary logarithmic density gradients in the case a consistent variation of � 0 is included in

the simulations, shown in Fig. 7(b), can be identi�ed. At ky�s > 0:7, the �e = � 0 = 0 values

are shifted in the outward direction compared to the cases with �xed � 0, thus lowering the

stationary density gradient, particularly in the case of a wave number spectrum giving a

large impact to small scales, like the one proposed in [36].

From the detailed comparisons presented in Fig. (8) it can be concluded that, particularly

when the particle 
ux is close to the null, the inward contribution from the relatively small

scales is usually weaker in linear calculations compared to nonlinear simulations, a feature

which was already observed in Ref. [34]. Thereby, in these cases, the use of the actual

nonlinear spectrum for j~�kj2 in quasi{linear models does not necessarily provide the most

accurate quasi{linear evaluation of the total nonlinear particle 
ux. A compensation should

take place for a more accurate matching of the total 
ux, where quasi{linear weights, which

are too small in size at small scales, have their contribution enhanced in a quasi{linear

model in which the corresponding values of the j~�kj2 spectrum at those scales are relatively

larger with respect to the actual nonlinear ones. These considerations can be of particular

importance for quasi{linear models of particle transport, since in this transport channel

quasi{linear weights usually change their sign from outward to inward with increasing wave
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number, as a consequence of the di�erent impact of collisionality at the di�erent scales [34].

Finally, it has to be noted that in the present comparison, linear results consider only one

mode at each wave number, that is the most unstable one, whereas a more appropriate

approach, like for instance that undertaken in [36], should take into account the entire

spectrum of unstable (or perhaps even stable) modes at each wave number. This indeed can

play a role in the establishment of the quasi{linear weights in the nonlinear simulations. In

addition, we believe that a strong component in the di�erences between linear and nonlinear

results comes from the impact of wave number (toroidal mode) coupling, which takes place

in the nonlinear simulations, but which is not included in the quasi{linear models.

The decrease with increasing � of the predicted value of R=Ln;stat obtained by the nonlin-

ear simulations with consistent variation of � 0, presented in Fig. 7(b), remains rather strong,

and does not appear to be qualitatively consistent with the weak e�ect documented so far in

non{dedicated experimental studies [8{10]. In order to address this problem within a more

realistic approach, we have also considered the impact of a particle source like the one pro-

vided by neutral beam injection (NBI) fueling on the theoretically predicted dependence of

R=Ln;stat on �. This can be done by looking for the value of R=Ln at which a given predicted

ratio �eT=Qtot matches the corresponding ratio of the volume integral of the particle source

to the volume integral of the heat source, instead of more simply the condition �e = 0, which

assumes no particle source. A rough estimate of the ratio of the volume integral of the parti-

cle source density delivered by the beams, �NBI , to the volume integral of the NBI heat power

density QNBI is given by �NBI=QNBI = 1=ENBI , where ENBI is an e�ective (averaged) beam

ion injection energy. Therefore, in the presence of beam fueling, and in stationary conditions,

with negligible neoclassical transport, the value of R=Ln;stat can be expected to be given by

the following condition �eT=Qtot ' �NBIT=QNBI (QNBI=Qtot) ' (T=ENBI) (QNBI=Qtot).

At constant plasma density, � / T and by this we observe that with increasing �, the value

of �eT=Qtot at which R=Ln;stat can be identi�ed, increases as well. Considering that most of

the present experiments are heated with intense neutral beam injection, we �nd of interest

to check whether, on the basis of our nonlinear simulations of a realistic ASDEX Upgrade
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case, this source e�ect is signi�cant in determining an \apparent" � dependence (or � inde-

pendence) of the density peaking. For this reason we have taken typical parameters of the

ASDEX Upgrade neutral beam injection system, and considered an e�ective beam energy

ENBI = 70 keV, which yields, with a toroidal magnetic �eld of 2.4 T and a �xed density of

6 � 10�19m�3, the following scaling T=ENBI = 3:41�e. Figure (9) shows the results of this

exercise, in which we considered three di�erent fractions of QNBI=Qtot, that is 0, 50% and

100%. On the basis of the nonlinear simulations presented in this paper, we �nd that the

e�ect is signi�cant and suggests that plasma discharges in which a large fraction of the heat-

ing power is not delivered by NBI systems should observe a stronger decrease of the density

peaking with increasing � with respect to experiments in which the plasma is heated almost

exclusively by beams. In the latter case, a � independence or even a moderate increase of

the peaking with increasing � is predicted.

V. CONCLUSIONS

Finite � e�ects on electron transport in tokamak plasmas due to both Amp�ere's law and

changes in the magnetic equilibrium have been investigated using linear and nonlinear gy-

rokinetic 
ux tube simulations. The logarithmic density gradient at the null of the turbulent

particle 
ux R=Ln;stat has been calculated as a function of �e. In ITG turbulence, the electro-

magnetic e�ect due to the inclusion of 
uctuations of the magnetic �eld in the perpendicular

direction implies a non{adiabatic response of the passing electrons, as it was pointed out

also in [22]. This produces an outward directed convection and strongly reduces the value

of R=Ln;stat with increasing �e. In TEM turbulence the e�ect is found to be weaker. The

physics of the electromagnetic e�ects on the particle 
ux has been investigated by means of

an analytical derivation, starting from a formal solution of the gyrokinetic equation, and the

analytical results have been shown to be fully consistent with the numerical simulations. The

contribution due to magnetic 
utter transport has been investigated, and has been found to

be directed inward in ITG turbulence and non{negligible at the highest values of �e. In this
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context, the present gyrokinetic study agrees and extends a previous analysis based on a


uid model [11], and con�rms the reversal of the particle 
ux from inward to outward with

increasing �e previously found in nonlinear gyrokinetic simulations of ITG turbulence [12].

Within a more realistic description of the impact of � on the density peaking, simulation

results have been presented in which also the e�ect of the total plasma pressure gradient

in the curvature drift, due to the modi�cation of the magnetic equilibrium, is included

consistently. The two e�ects are of course strongly combined in experiments, while they

can be separated in the theoretical calculations. The present study shows that once both

e�ects are included consistently in a realistic case, the predicted decrease of density peaking

with increasing � becomes weaker. A signi�cant di�erence has been found in these cases

between quasi{linear results and nonlinear simulations, since in the latter the inclusion of

a consistently varying plasma pressure gradient has a more limited impact. In fact, in

quasi{linear calculations, the predicted value of the logarithmic density gradient at the null

of the particle 
ux R=Ln;stat is found to be strongly a�ected by the assumptions made

on the binormal wave number spectrum of the 
uctuating potential. It has been shown

that contributions to the particle 
ux at di�erent wave numbers can be directed inward

or outward, and therefore require an appropriate weighting rule in quasi{linear models in

order to reproduce the total nonlinear 
ux. A detailed comparison between the quasi{linear

and the nonlinear spectra shows that linear calculation based on the most unstable linear

mode at each wave number produce contributions to the particle 
ux at small scales which

are signi�cantly more outward or less inward directed with respect to the corresponding

nonlinear results. In this context, the predicted value of R=Ln;stat is an appropriate and

experimentally relevant parameter over which the adequacy of the assumptions on the wave

number spectrum made in the quasi{linear models can be tested against the nonlinear

results.

In order to address at a qualitative level the comparison with the experimental obser-

vations, the e�ect of core fueling by neutral beams has been included in the estimate of

the predicted stationary value of the logarithmic density gradient R=Ln;stat. In conditions
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of neutral beam injection heating only, at constant plasma density, the impact of the beam

fueling on R=Ln;stat increases with increasing �. On the basis of the nonlinear gyrokinetic

simulations presented here, for typical ASDEX Upgrade parameters, this is found to have

non{negligible consequences on the dependence of the predicted R=Ln;stat on �. In condi-

tions of dominant neutral beam injection heating and constant density, R=Ln;stat is found to

become almost independent of �, in contrast with the prediction of a rather strong decrease

of R=Ln;stat with increasing � when core fueling by neutral beams is absent. These theo-

retical results should motivate further dedicated experimental research on this important

aspect for the performance of high � tokamak scenarios.

The present results are also relevant in other �elds of plasma physics. Due to the im-

portance of the parallel velocity for the behavior of electromagnetic particle 
uxes it is

emphasized that an electromagnetic kinetic treatment and in particular the consideration

of magnetic 
utter transport is crucial for small scale turbulence in slab-like astrophysical

plasmas, since in particular the value of � in interstellar (� � 1, see e. g. [40]) or intergalac-

tic media (� � 10� 100, see e. g. [41]) as well as in jet-formation regions at the black hole

magnetosphere (� � 1�100, see e. g. [42]), is signi�cantly higher than in tokamak plasmas.
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APPENDIX A: LOSS OF ADIABATICITY FOR ELECTROMAGNETIC

PASSING ELECTRONS IN THE FULL ENERGY RANGE

In order to show the loss of adiabaticity of passing electrons in response to electro-

magnetic 
uctuations over the full energy range, the energy dependences of quasi{linear

electrostatic (�e = 0) and electromagnetic (�e = 0:5%) electron 
uxes are shown in Fig.
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(10). Three di�erent values of � in the passing range have been chosen, and an ITG case

with R=Ln = R=LTe = 0:1 and all other parameters equal to the standard ITG case in-

troduced in Section II is considered. This choice of parameters allows us to focus on the

convective part of the electron particle 
ux. The normalization is taken in such a way that

the resulting quasi{linear 
uxes are plotted divided by the function of energy
p
� exp(��),

which includes the dependence on energy of both the Maxwellian and the Jacobian. This

procedure allows the identi�cation of the physics di�erences between an electrostatic and

an electromagnetic description of electron 
uxes by focusing on the resonant term in Eq.

(6). Figure (10a) shows the quasi{linear electrostatic 
uxes for � = 0:02, � = 0:44 and

� = 0:79. Particles at very low energy experience the resonance, see Eq. (6), and there-

fore give a contribution to the particle 
ux. However, the comparison with the quasi{linear

electromagnetic E�B 
ux, Fig. (10b), reveals that the electrostatic 
ux is very low since

the electrons are almost adiabatic. The electromagnetic E�B and 
utter contributions do

not have a strong resonance behavior at low energy, as shown in Fig. (10b, c). Instead they

exhibit �nite contributions in the full energy range. These numerical results are consistent

with the analytical derivations obtained in Section II.
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FIG. 1. (Color online) Normalized electrostatic (�e = 0) and electromagnetic (�e = 0:5%) linear

electron 
ux as a function of the pitch angle parameter � for the logarithmic density gradient

R=Ln = 0 (a), R=Ln = 3 (b) and R=Ln = 6 (c). A single poloidal wavenumber ky�s = 0:1 in

circular geometry has been chosen. The electron 
uxes are normalized to the full velocity space

integrated ion heat 
ux Qi;tot. Symbols over the curves identify the grid points in � used in the

GYRO calculations.
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FIG. 2. (Color online) Electrostatic (�e = 0) and electromagnetic (�e = 0:5%) dependence

of real eigenfrequency !r (a), linear growthrate 
 (b), normalized particle 
ux Ti�e=Qi (c) and

normalized electron to ion heat 
ux Qe=Qi (d) as a function of s � � for the logarithmic density

R=Ln = 3 and a single poloidal wave number ky�s = 0:1 in circular geometry.
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FIG. 3. (Color online) Normalized electrostatic (�e = 0) and electromagnetic (�e = 0:5%) linear

electron 
ux as a function of the pitch angle parameter � for a trapped electron mode (TEM) case

(see text). A single poloidal wavenumber ky�s = 0:1 in circular geometry has been chosen. The

electron 
uxes are normalized to the full velocity space integrated ion heat 
ux Qi;tot. Symbols

over the curves identify the grid points in � used in the GYRO calculations.
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Figures

FIG. 4. (Color online) Normalized electrostatic (�e = 0, full symbols) and electromagnetic

(�e = 0:5%, open symbols) quasi{linear electron particle 
ux Ti�e=Qi as a function of the logarith-

mic density gradient R=Ln with � = 0 and collisionless (circles), with � varied consistently with

� and collisionless (squares), and with � = 0 and collisional (diamonds). Wave number spectra

proportional to 
=hk2
?
iFS (a) or as proposed in [36] (b) have been assumed for the 
uxes.
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Figures

FIG. 5. Electromagnetic dependence of logarithmic density gradient R=Ln at the null of the

quasi{linear electron 
ux as a function of �e. A circular case (a), a case with values of � consistent

with � (b), and a circular case with �nite collisionality of (R=cs)�ei = 0:06 (c) with two models for

the wave number spectrum of the linear 
uxes are considered.
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FIG. 6. (Color online) Nonlinear gyro-Bohm normalized electron particle 
ux spectra for plasma

parameters similar to ASDEX Upgrade hybrid discharges (see text). The electrostatic as well as

the electromagnetic E�B and magnetic 
utter contributions are shown.
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FIG. 7. (Color online) Stationary logarithmic density gradient using nonlinear simulations and

quasi{linear calculations with di�erent assumptions for the poloidal wave number spectrum of

electron particle 
uxes as a function of �e (a). The in
uences of �nite � exclusively in Amp�ere's

equation ('�e only') as well as in both Amp�ere's equation and the consistent magnetic equilib-

rium (�e and �0) on the electron particle 
uxes are shown in (b) using quasi{linear and nonlinear

calculations. The chosen plasma parameters are similar to ASDEX Upgrade hybrid discharges.

40



FIG. 8. (Color online) Potential 
uctuation spectra j~�kj
2 from nonlinear gyrokinetic simulations

(a). Circles denote the case of �e = �0 = 0, squares stand for �e = 0 with �0 consistent to a

value if �e was 0.65%, and diamonds for �e = 0:65% with a �0 consistent with a �e of 0:65%.

Also the quasi{linear rules are shown. The normalization is
R
dkyj~�ky j

2 = 1. Quasi{linear weights

=(~nk ~�
�
k)=j

~�kj
2 obtained from linear (continuous lines) and nonlinear (dashed lines) simulations (b).

The chosen plasma parameters are similar to ASDEX Upgrade hybrid discharges with R=Ln = 2.
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FIG. 9. (Color online) Stationary logarithmic density gradient from nonlinear simulations chang-

ing both �e and �0 consistently for three di�erent assumptions of the fraction of neutral beam in-

jection heating to the total heating mix for plasma parameters similar to ASDEX Upgrade hybrid

discharges.
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FIG. 10. (Color online) Normalized electrostatic (�e = 0, a) and electromagnetic (�e = 0:5%, b,

c) quasi{linear electron 
uxes as a function of the normalized energy � = E=Te for an ITG case with

all parameters like the standard ITG case of Section II, except R=Ln = R=LTe = 0:1. A single

poloidal wavenumber ky�s = 0:1 in circular geometry has been chosen. The electron 
uxes are

normalized to the full velocity space integrated ion heat 
ux Qi;tot, and divided by the Jacobian

and the Maxwellian. Symbols over the curves identify the grid points in � used in the GYRO

calculations.
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