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Two global gyrokinetic codes are benchmarked against each other by comparing sim-

ulation results in the case of ion temperature gradient driven (ITG) turbulence, in the

adiabatic electron response limit. The two codes are the Eulerian code GENE and the

Lagrangian Particle-In-Cell code ORB5 which solve the gyrokinetic equations. Lin-

ear results are presented, including growth rates, real frequencies and mode structure

comparisons. Nonlinear simulations without sources are carried out with particular

attention to considering the same initial conditions, showing identical linear phase

and first nonlinear burst. Very good agreement is also achieved between simulations

obtained using a Krook-type heat source, which enables to reach a quasi-steady state

and thus to compare the heat diffusivity traces over a statistically meaningful time

interval. For these nonlinear results, the radial zonal flow structure and shearing

rate profile are also discussed. The very detailed comparisons presented may serve

as reference for benchmarking other gyrokinetic simulation codes, in particular those

which consider global geometry.
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I. INTRODUCTION

In fusion research devices based on magnetic confinement, such as Tokamaks, the energy

and particle transport is significantly larger than expected from purely collisional processes.

This anomalous transport is commonly attributed to small-scale turbulence, generated by

microinstabilities, which are driven by temperature and density gradients. A better under-

standing of these microinstabilities and associated turbulence is therefore of key importance

in view of achieving nuclear fusion and they are actively investigated in the frame of the

gyrokinetic theory1,2 by means of numerical simulations, see Garbet et al.3 for a recent

overview. Among the different physical models that have been considered in the wide vari-

ety of codes developed to solve the gyrokinetic equation, we shall in particular mention the

local4–8 and global9–14 approaches. In the local treatment, the so-called flux-tube approach15,

only a reduced simulation domain corresponding to a small plasma volume aligned with the

magnetic field lines is considered and the radial variations of macroscopic quantities such

as the density and temperature fields and their gradients as well as of the magnetic field

are neglected. This local approach enables to significantly reduce the computational cost

of microturbulence simulations. In some cases however, when the characteristic size of the

turbulence is not negligible with respect to the machine size, e.g. in a small device, or with

respect to a characteristic profile gradient length, such as found in transport barriers, a

global approach may be necessary, where the full torus is considered and radial variations of

equilibrium quantities are retained. Besides these two approximations of the physical sys-

tem, different numerical methods and implementations are also used in the various codes,

and important tests and benchmarks are thus required for their validation. To this end, sev-

eral efforts have been carried out in the past years16–19, mainly focussing on linear growth

rates and nonlinear heat diffusivity comparisons. A very good level of agreement was in par-

ticular reached over statistically significant time intervals for the heat diffusivity computed

with nonlinear flux-tube simulations17–19. Concerning the global approach, a qualitative

and semi-quantitative agreement between different codes was for instance reached in the

last publication19. However, these nonlinear global simulations were considering a problem

without source term in which the system relaxes to a marginal state and for which the

turbulent transport occurs only transiently and can depend on details in the initial system,

making relevant quantitative comparisons difficult. The need for more detailed and accurate
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benchmarking between global gyrokinetic codes thus appears necessary.

In the present work, detailed benchmarks between the global version of the Eulerian code

GENE14,20,21 and the global Lagrangian PIC code ORB522,23 are presented. In addition to

linear growth rates and nonlinear heat diffusivities, a particular emphasis is given to the

mode structure analysis. Nonlinear simulations including a Krook-type heat source are also

shown, allowing for the first time to perform systematic quantitative comparisons between

two global gyrokinetic codes in quasi-steady state over statistically relevant time intervals.

The remainder of the present paper, which can be viewed as a contribution to the cur-

rent emphasis on validation and verification of fusion-relevant simulations24, is organized

as follows. In section II, the model equations considered in the two codes as well as some

details on their numerical implementation are discussed. Linear results are then presented

in section III, showing growth rates, real frequencies and mode structure comparisons. This

is followed in section IV by the Rosenbluth-Hinton test showing estimates of zonal flow

residuals. Comparisons of nonlinear simulations without sources are then presented in sec-

tion VA. To obtain these results, a particular effort was made for using exactly the same

initial conditions, thus allowing for the detailed comparison of the linear phase and first

burst. Finally, nonlinear simulations in quasi-steady state obtained thanks to the imple-

mentation of source terms, are presented in section VB. In addition to the heat diffusivity

time traces, a particular emphasis is given to the zonal flow structures. Conclusions are

drawn in section VI.

II. THE NUMERICAL MODELS

In gyrokinetic theory, each plasma species is described in terms of its particle distribution

function f in a reduced 5−dimensional phase space ( ~X, v‖, µ), where ~X is the gyrocenter

position, v‖ the velocity parallel to the magnetic field, and µ = (m v2
⊥)/(2 B0) the magnetic

moment. Here m and q will respectively stand for the mass and electric charge of each

species, while the equilibrium magnetic field is given by ~B0. The time evolution of each

distribution function f(t, ~X, v‖, µ) is described by the gyrokinetic equation2:

df

dt
=

∂f

∂t
+ ~̇X ·

∂f

∂ ~X
+ v̇‖

∂f

∂v‖
= 0 . (1)
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where the equations of motion for the gyrocenter variables ( ~X, v‖, µ) read:

~̇X = ~vG = v‖~b0 +
B0

B∗
0‖

(~vE + ~v∇B + ~vc) , (2)

v̇‖ = −
1

m v‖
~vG · (q ~∇φ̄ + µ~∇B0) , (3)

µ̇ = 0 , (4)

with ~vE the ~E × ~B drift velocity

~vE = −
~∇Φ̄ × ~B0

B2
0

, (5)

where Φ̄ stands for the gyroaveraged electrostatic potential. The grad-B drift velocity is

given by

~v∇B =
µ

m Ω B0

~B0 × ~∇B0 , (6)

and the curvature drift velocity by

~vc =
µ0v

2
‖

Ω B2
0

~b0 × ~∇

(

p0 +
B2

0

2µ0

)

. (7)

One finally defines B∗
0‖ = [ ~B0 +(m/q) v‖ ~∇×~b0] ·~b0, where ~b0 is the unit vector parallel to the

equilibrium magnetic field. Note that although both codes can account for electromagnetic

perturbations, we constrain ourselves in this work to studying electrostatic fluctuations, and

the present equations have therefore been given in this limit.

In both codes, the particle distribution function f of each species is split into an equilibrium

f0 and a perturbed part δf , f = f0 + δf assuming |δf | ≪ |f0|. In GENE, f0 is chosen as a

local Maxwellian, whereas a canonical Maxwellian is usually considered in ORB525.

The GENE code, which was recently extended from a local to a global version14,20,21, con-

siders an Eulerian approach in which the gyrokinetic equation (1) is first discretized on a

fixed grid in phase space. The resulting system of ordinary differential equations (ODEs)

for the time evolution of the discretized particle distribution function is then numerically

integrated. The ORB5 code on the other hand is a Particle-In-Cell (PIC) code, based on a

Lagrangian approach, where the plasma is described by a statistical sampling of phase space

using so-called marker (or numerical) particles. The method then consists in following the

trajectories of these markers in phase-space.

For the different results that shall be presented in the following, a finite aspect ratio, circular

concentric flux-surface equilibrium model is used. This model was shown to give very close
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results to those using a numerical low β ideal MHD equilibrium with circular boundary26.

When using this ad-hoc circular model, the pressure term ~∇p0 appearing in Eq. (7) is

set to zero in GENE, while it remains active in ORB5 simulations and is obtained from

~∇p0 = (1/µ0) (~∇ × ~B0) × ~B0, using the approximate equilibrium magnetic field. Further-

more, B∗
0‖ has been approximated by B0 in GENE.

In order to close the system, the quasi-neutrality equation is solved for the electrostatic

potential Φ associated with the fluctuation. Assuming an adiabatic electron response, the

following equation is solved in GENE:

−
e n0e

T0e
(Φ − 〈Φ〉) +

2 π Zi

mi

∫

B∗
0‖ δf̄ dv‖ dµ

−
Zi qi n0i

T0i

[

Φ −
B0

T0i

∫

¯̄Φ exp(−
µB0

T0i
) dµ

]

= 0 . (8)

where δf̄ stands for the gyroaveraged fluctuation part of the ion distribution and ¯̄Φ for the

double gyroaveraging of Φ. In Eq. (8), the variations of equilibrium quantities with respect

to the ion Larmor radius ρi have been neglected. With respect to the fluctuations, k⊥ ρi

terms are retained to all orders in GENE, while only a second order expansion in k⊥ ρi is

considered in ORB5. ( k⊥ being the wave number perpendicular to the magnetic field). The

quasi-neutrality equation in ORB5 is thus given by:

−
e n0e

T0e
(Φ − 〈Φ〉) +

2 π Zi

mi

∫

B∗
0‖ δf̄ dv‖ dµ

+ ∇⊥

(

Zi n0i

B0Ωi
∇⊥Φ

)

= 0 . (9)

Note, that variations of equilibrium quantities with respect to ρi are retained in Eq. (9).

Neglecting them would correspond to taking the (Zi n0i)/(B0Ωi) factor out of the first ∇⊥

derivative in this equation, which would them become equivalent to (8) in the limit of a

second order expansion in k⊥ ρi of Φ.

In order to allow for quasi-steady state nonlinear simulations, a Krook-type heat source Sk

can be added to the right hand side of the gyrokinetic equation. In the ORB5 code, this

term is implemented as27:

SK(r, ǫ) = −γh

[

δf(r, ǫ) − f0(r, ǫ)

∫

d~v δf(r, ǫ)
∫

d~v f0(r, ǫ)

]

, (10)

where ǫ = m v2
‖/2 + B0 µ denotes the kinetic energy, r the minor radius of the considered

circular flux-surfaces and δf(r, ǫ) the fluctuating component of the distribution with respect

5



to these two variables.=. A similar form is used in GENE, given by:

SK(r, |v‖|, µ) = −γh



 〈δf( ~X, |v‖|, µ)〉 − 〈f0( ~X, |v‖|, µ)〉

〈

∫

d~v 〈δf( ~X, |v‖|, µ)〉
〉

〈

∫

d~v 〈f0( ~X, v‖, µ)〉
〉



 , (11)

where 〈.〉 refers to the flux-surface average and

δf( ~X, |v‖|, µ) =
δf( ~X, v‖, µ) + δf( ~X,−v‖, µ)

2
. (12)

Note that (10) differs from (11) as a result of having replaced δf(r, ǫ) with 〈δf( ~X, |v‖|, µ)〉

in the GENE implementation. This was done for practical reasons, as the computation of

the distribution δf(r, ǫ) in variables (r, ǫ) involves an energy binning which is not aligned

with the (v‖, µ) grid used in GENE, and therefore would involve cumbersome integrations.

Although the exact implementations differ, both operators are designed to keep the temper-

ature close to the initial profile considered for f0 while conserving the flux-surface averaged

density and parallel momentum. The heating rate constant γh is in general chosen to be

about ten times smaller than the typical linear growth rate, to ensure that the effect of the

heating operator would not strongly affect the turbulence dynamics27.

More details concerning the exact numerical implementation may be found in the corre-

sponding ORB522 and GENE14,20,21 publications.

In the following, one has used the relation

kθ =
n q0

r0
, (13)

as a definition for estimating the average poloidal wave number; where n is the toroidal mode

number, while q0 and r0 are respectively the safety factor and minor radius both evaluated

at r = 0.5 a, a being the outer minor radius of the Tokamak. One shall also make use of the

straight field line poloidal angle χ, which is defined such that the magnetic field lines are

straight on a given flux surface in the (χ, φ) plane, where φ is the toroidal angle.

III. LINEAR RESULTS

For the present benchmark, physical parameters similar to the standard Cyclone Base

Case (CBC)16 are considered. A magnetic equilibrium with circular concentric flux-surface
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FIG. 1. (Color online) Ion temperature profile and corresponding logarithmic gradient profile, as

given by relation (15) with κTi
= 6.96 and ∆Ti = 0.3.

is used with inverse aspect ration a/R = 0.36 and safety factor profile:

q(r) = 0.86 − 0.16 r/a + 2.52 (r/a)2 , (14)

which corresponds to a local safety factor q0 = 1.4 and shear ŝ = 0.8 at r = 0.5 a. The ratio

between the ion Larmor radius ρi and minor radius a is taken as ρ∗ = ρi/a = 1/180, i.e.

consistent with the DIII-D shot that inspired the Cyclone test case. The temperature and

density profiles are given by the functional form (where A stands either for Ti or n):

Â(r) =
A(r)

A(r0)
= exp

[

−κA a ∆A tanh
(

r − r0

∆A a

)]

, (15)

which corresponds to peaked gradient profiles as illustrated in Fig.1. The profile parameters

are set to κT i = 6.96, κn = 2.23, ∆Ti = ∆n = 0.3 corresponding to peaked gradient profiles

centered at r0 = 0.5 a. An adiabatic electron response is assumed and the ratio of electron

to ion temperature profiles is Te/Ti ≡ 1.

For these parameters, toroidal Ion Temperature Gradient (ITG) instabilities are the most

unstable modes and the corresponding linear growth rates and real frequencies computed

with GENE and ORB5 are shown in Figs. 2 and 3 for different mode numbers kθ = n q0/r0.

Comparing growth rates obtained with GENE and ORB5, a good agreement is found for the

lower kθ ρi values, while some discrepancies are observed for kθ ρi
>
∼ 0.3. Concerning the real

frequencies, the two curves agree within 20%. Among the differences in the model equations
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FIG. 2. (Color online) Linear growth rates of toroidal-ITG modes as a function of kθρi obtained

with GENE and ORB5 for CBC-like parameters. The ORB5 results have been obtained using

either the standard version of the code (circle), or by setting the ∇p0 contribution to zero.
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FIG. 3. (Color online) Real frequencies as a function of kθρi obtained with GENE and ORB5 for

CBC-like parameters. Same labels as in Fig. 2.

considered by the two codes, it was found that the ∇p0 term in Eq. (7) for the curvature

drift (set to zero in GENE, retained in ORB5) has the largest effect. Much closer growth

rates are indeed obtained when setting this contribution to zero in ORB5, as illustrated

in Fig. 2. One may be surprised by the strong influence of the ∇p0 term on the linear

growth rate, as we are considering only electrostatic perturbations and assuming a low β

limit equilibrium. It is however important to recall that this pressure correction is obtained
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FIG. 4. Contour plots of the electrostatic potential Φ for mode number kθ ρi = 0.3 for CBC-like

parameters, obtained respectively with GENE (left) and ORB5 (right).

here from an ad-hoc equilibrium magnetic field, which is not a true solution of the Grad-

Shafranov equation. The ∇p0 contribution might thus be overestimated in comparison to

a corresponding low β MHD equilibrium. The growth rates for the largest kθ ρi are still

lower in ORB5, even when setting ∇p0 to zero as compared to GENE. This may result from

differences in the field solver as the ORB5 code considers a second order expansion in k⊥ ρi of

the polarization density contribution to the quasi-neutrality equation, while GENE keeps all

orders in k⊥ ρi of this term, as already mentioned in Sec. II. Concerning the real frequencies,

some small deviations remain, which probably result from other minor differences between

the two codes.

In addition to these quantitative investigations of linear growth rates and real frequencies,

a detailed comparison of the corresponding mode structures was carried out. In Fig. 4, the

contour plots of the electrostatic potential Φ are shown for the toroidal mode number n = 19,

corresponding to the average poloidal wave number kθ ρi = 0.3. Remarkable similarity is

observed between results from the two codes. In order to further analyze the mode structures,

a comparison of the electrostatic potential as a function of the straight field line poloidal

angle χ is carried out on the given magnetic surface r = r0 = 0.5 a. The considered field

Φ(r, χ) is obtained in both GENE and ORB5 from a snapshot at the end of the simulation,

i.e. when the linear growth rate is converged. As a consequence, the global phases and
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FIG. 5. (Color online) Electrostatic potential at constant r = 0.5 a as a function of the straight

field line poloidal angle χ for kθ ρi = 0.3. These plots are obtained after normalizing according to

relation (17)

amplitudes of Φ from the two computations are in general different. In order to be able

to compare the potentials from the two codes, the amplitudes and phases of the fields

Φ(r = r0, χ) need to be appropriately re-normalized. This is achieved by making use of a

poloidal Fourier transform of Φ(r0, χ):

Φ(r = r0, χ) =
1

2

M/2
∑

m=−M/2

(Φm + Φ∗
−m) ei m χ , (16)

having invoked the reality condition. The re-normalized field Φ̃(r0, χ) is then given by:

Φ̃(r0, χ) =
A

2

M/2
∑

m=−M/2

(Φm ei ∆θ + Φ∗
−m e−i ∆θ) ei m χ , (17)

where the real amplitude A and phase shift ∆θ are adapted so that the complexe coefficient

Φm of the dominant poloidal Fourier mode obtained from the two codes match. Following

this procedure, the two electrostatic potentials are shown in Fig. 4, confirming the very close

agreement.

The radial structure of the mode is also analyzed. In Fig. 6, the squared amplitude of the

electrostatic potential from GENE and ORB5, averaged over the poloidal direction, is shown

as a function of the minor radius r. A similar shape of the envelope is observed for the two

simulation results. One notes however that the peaked positions slightly differ, which may

also account for the differences in the real frequencies observed in Fig. 3.
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FIG. 6. (Color online) Radial profile of the poloidal averaged |Φ|2 for kθ ρi = 0.3.

IV. ROSENBLUTH-HINTON TEST

The Rosenbluth-Hinton test28 consists of computing the linear evolution of the zonal flow

component (n = 0, m = 0), where m is the poloidal mode number, for an initial electrostatic

perturbation Φ. From the analytical resolution of the gyrokinetic equation for n = 0, and

local to a given magnetic surface, one expects to observe a damped oscillation of the Geodesic

Acoustic Modes (GAM)29 relaxing towards the zonal flow residual28. For a simplified set-up,

in particular large aspect ratio and small ρ∗ = ρi/a, the time evolution of the the zonal flow

component can be written:

Er(t)

Er(0)
= (1 − AR) e−γRt cos(wg t) + AR , (18)

where Er = − ∂〈Φ〉/∂x is the radial perturbed electric field, 〈Φ〉 being the flux-surface

averaged potential and (ωG, γG) the GAM frequency and damping rate respectively. The

residual is

AR =
1

1 + 1.6 q2/
√

r/R
, (19)

with r the minor radius of the considered magnetic surface, R the major radius, q the safety

factor on the surface of interest. A correct prediction of this residual level is an important

test for gyrokinetic codes, as zonal flows are identified to be a key saturation mechanism in

turbulent regimes, in particular for ITG turbulence. Both GENE and ORB5 have already

been successfully compared to analytical results20,22. We have observed, that in order to
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obtain such good quantitative agreement with the analytical predictions, it is necessary to

use a constant or linear safety factor profile so as to be closer to the local assumptions

considered for deriving Eq. (19). In the present benchmark study, the Rosenbluth-Hinton

test is carried out assuming a more realistic quadratic safety factor profile and results from

the two codes are therefore compared with each other instead of confronting them against

the analytical relations. The physical parameters used in the following are:

a/R = 0.1 , q(r) = 0.96 + 0.75 (r/a)2 , (20)

ρ∗ = ρi/a = 1/160, flat temperature and density profiles (κT i = κni = 0), and an adiabatic

electron response is again assumed.

The time evolution of the zonal flow component obtained with the two codes is shown in

Fig. 7, for r/a = 0.3. One observes very similar GAM damping rates and frequencies. The

residual level predicted by the GENE code is AR = 0.082 which agrees within 10% with the

ORB5 results, providing AR = 0.074. Note that, for the present parameters, the analytical

prediction is AR = 0.093.
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FIG. 7. (Color online) Time evolution of the normalized electric field at r/a = 0.3, obtained with

GENE and ORB5.
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V. NONLINEAR RESULTS

The nonlinear results in this section are obtained with Cyclone-like parameters, as in

Sec. III, i.e. with a/R = 0.36, ρ∗ = ρi/a = 1/180, and a safety factor profile:

q(r) = 0.86 − 0.16 r/a + 2.52 (r/a)2 . (21)

For the GENE simulations, a radial domain of width 0.8 a centered at r = r0 = 0.5 a is used

and a toroidal wedge corresponding to 1/3 of the Tokamak is considered, such that one out

of every three toroidal mode numbers is retained. The simulations are solved for a total

of 32 toroidal modes, corresponding to a resolved spectrum ranging from kθ ρs = 0.048 to

1.54. The box size is lx × ly × lz × lv‖ × lµ = 144 ρs × 132 ρs × 2 π× 4 vth,i × 16 Ti0/Bref , with

vth,i =
√

2 Ti0/mi, Ti0 = Ti(r = r0), r0 = 0.5 a and Bref the magnetic field on axis. One also

uses ρs = cs/Ωi, with cs =
√

Te0/mi, Te0 = T (r = r0), Ωi = e B0/mi. The corresponding grid

resolution is taken as nx ×ny ×nz ×nv‖ ×nµ = 150× 64× 16× 64× 16. Dirichlet boundary

conditions are used in the radial direction for both Φ and δf . In addition, damping regions

are considered in the vicinity of the inner and outer radial boundary each corresponding to

5% of the total radial domain14.

Concerning the ORB5 results, the radial width of the domain centered at r = r0 = 0.5a is

0.9a, and a toroidal wedge corresponding to 1/2 of the Tokamak is considered, such that

one out of every two toroidal mode numbers is retained. The simulations are carried out

considering a total of 45 toroidal modes, corresponding to a resolved spectrum ranging from

kθ ρs = 0.032 to 1.45, ensuring a similar largest resolved kθ in the two codes. The number of

markers is 320M and the grid resolution for the fields is Ns×Nχ×NΦ = 128×512×256. Free

boundary conditions are considered for Φ at the inner edge and Dirichlet at the outer edge.

Concerning the perturbed distribution function (δf), the boundary conditions are such that

any marker that leaves the domain at (rbnd, θ, φ, v‖, µ) is re-injected at a symmetric position

with respect to the equatorial mid-plane (rbnd,−θ, φ, v‖, µ). In an Eulerian description, this

reads:

δf(rbnd, θ, φ, v‖, µ) = δf(rbnd,−θ, φ, v‖, µ) (22)

One notes that the following comparisons are carried out considering the standard mode

of operation of the two codes, in particular different boundary conditions are retained.

These differences should only marginally influence the physical results, and good agreement
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between the simulations thus justify a posteriori the implementation choices that have been

considered in the two codes.

A. Relaxation problem

As a first comparison, nonlinear simulations without heat sources are presented. One

considers here peaked logarithmic gradient profiles of ion temperature and density, as defined

by Eq. (15), with κT i = 6.96, κn = 2.23, ∆Ti = 0.3 and ∆n = 0.3. The electron-ion

temperature ratio is τ = Te/Ti = 1 throughout the plasma.

The corresponding time evolutions of the nonlinear effective ion heat diffusivity χi =
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FIG. 8. (Color online) Time evolutions of the nonlinear heat diffusivity χ/χGB ( χGB = ρ2
i cs/a)

obtained with ORB5 and GENE for CBC parameters. Note the decrease of the heat diffusivity as

no sources are included.

〈Qi〉/〈|∇Ti|〉, where 〈Qi〉 denotes a radial average between r/a = 0.4 and 0.6, obtained with

ORB5 and GENE are shown in Fig. 8, and are given in gyro-Bohm units χGB = ρ2
s cs/a. For

this first nonlinear test, particular effort was made to start the simulations of both codes

with exactly the same initial condition taken as:

δf(x, ky, z) = Fky
exp



−
1

2

(

x

σx

)2

−
1

2

(

ky

σy

)2

−
1

2

(

z

σz

)2


 f0 (23)

with Fky
= 1 for ky 6= 0 and Fky

= 10−2 for ky = 0. The remaining widths of the initial

gaussian perturbation in the x,y,z directions are respectively given by σx = 10ρi, σy ρi =
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0.385 and σz = π/4. The linear phases (t cs/R <
∼ 20) from the two simulations are therefore,

as expected, essentially identical. Moreover, a very similar amplitude of the first burst is

observed in both GENE and ORB5 simulations. The subsequent evolution is stochastic and

the two time traces thus inevitably come to differ and can only be compared statistically

(in terms of mean value, variance, etc)30. Since no sources are considered here, the ion

temperature profile rapidly relaxes towards its nonlinear marginal value, which leads to a

decrease of the turbulence and the resulting heat diffusivity. Although a good qualitative

agreement is reached between the two codes, it is difficult to evaluate precisely the differences

between the two time traces after the first burst as no steady state is reached and therefore

insufficient time to acquire statistically significant estimates of the heat flux at a given

gradient value.

B. Nonlinear results with sources

In order to carry out more quantitative nonlinear comparisons between the two codes, the

Krook-type heat sources given by Eqs. (10)-(11) are now switched on for the ions, with

γh R/cs = 0.035. This value is chosen about ten times smaller than the typical linear growth

rate, so that the time scale on which the heat source affects the temperature profile is an

order of magnitude smaller the linear phase. For these simulations, logarithmic gradient

profiles for the characteristic time of turbulent eddy growth, estimated by γmaxR/cs = 0.27

according to Fig. 2. For these simulations, logarithmic gradient profiles for initial density

and temperature are used according to the following functional form (A stands for n or Ti):

R
d lnA

dr
= −κA

[

1 − cosh−2

(

r − (r0 − ∆r/2)

a ∆A

)

− cosh−2

(

r − (r0 + ∆r/2)

a ∆A

)]

, (24)

taken for r ∈ [r0−∆r/2, r0+∆r/2] and zero outside. These gradient profiles are flatter than

the ones considered in Sec. VA. The different constant parameters are set to κT i = 7.1,

κn = 2.2, ∆r = 0.8 a and ∆Ti = ∆n = 0.04. The corresponding profile and logarithmic

gradient profile for the ion temperature, radially average in the interval 0.4 ≤ r/a ≤ 0.6 are

shown in Fig. 9.

Using these initial profiles, the time evolution of the heat diffusivity and normalized loga-

rithmic gradient of the total temperature Ti,tot = Ti0 + δTi, where δTi is the temperature

profile variation related to δf , are shown in Figs. 10 and 12, together with their running
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FIG. 9. (Color online) Temperature and corresponding logarithmic gradient profile for κT i = 7.1,

∆r = 0.8 a and ∆Ti = 0.04 [see Eq. (24)].

time-average starting at t0 = 150R/cs, defined for a quantity A as:

Aav(t) =
1

t − t0

∫ t

t0
A(t) dt , for t > t0 . (25)

As opposed to the case with no sources, a quasi-steady state is reached here, illustrating

the advantage of using such a heat source for this code comparison as it enables to acquire

statistically relevant estimates of the turbulent regime. The averaged heat diffusivity over

the time interval t cs/R = [180 , 420], including approximately 10 bursts, is χi/χGB = 1.95

for GENE and χi/χGB = 1.76 for ORB5, i.e. a relative difference of about 10%. This small

deviation is of the same order as between the linear results shown earlier and may again be

partly accounted for by the different treatment of the ∇p0 term as well as the different field

solvers considered, which is only second order accurate in k⊥ρi in ORB5 while all orders are

retained in GENE. Moreover, it should be noted that studies carried out with ORB5 have

shown that the heat diffusivity computed with different initial conditions could vary within

±15%27,30. The present agreement is thus considered very satisfying.

In order to further compare the two simulations the Fourier spectra of the space and time

averaged field energy 〈δn Φ〉k are shown in Fig. 11 as function of the poloidal wave number

kθ ρi. A good agreement is here observed, in particular a similar decay, with near algebraic

scaling is shown in both cases in the region 0.3 < kθρi < 1.2. The measured slope in this
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FIG. 10. (Color online) Time evolution of the ion heat diffusivity χi in units of χGB = cs ρs/a
2.

These quantities have been obtained by radial averaging of the heat flux and ion temperature

gradient over the range r/a = [0.4, 0.6]. The bold lines represent the running time-average starting

from t0 = 150R/cs.

region is k ≃ −3.5. The effects of the k⊥ρi approximations in ORB5 field solver appears to

be only significant for kθρi > 1.2 where one clearly sees an important decrease of the mode

amplitudes. This particular approximation thus has only a minor influence on the present

results. Considering the region 0.15 < kθρi < 0.3 which mostly contributes to the transport,

one observes that the mode amplitudes obtained with ORB5 are smaller than those obtained

with GENE, consistent with χi values. We thus conclude that most differences on the total

heat diffusivity between the two codes result from contributions in this part of the spectrum.

Focusing now on the time evolution of the logarithmic gradient of the ion temperature

in Fig. 12, one observes that the quasi-steady state values, R/LT i = 6.7 for GENE and

R/LT i = 6.8 for ORB5, are smaller than the initial value R/LT i = 7.1. This can be ex-

plained by the value of the rate γh used in the heat source operator, which is chosen about 10

times lower than the typical growth rate. The quasi-steady state value of the total tempera-

ture gradient therefore reflects a partial relaxation corresponding to an equilibrium between

the turbulent transport which tends to flatten the temperature profile and the Krook-type

heat source which restores the temperature profile towards the initial background profile.
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FIG. 11. (Color online) Time and spacial averaged spectrum of 〈δn Φ〉k, shown in logarithmic

scales. The averages are taken in the t cs/R = [150 , 400] interval and considering the full spacial

domain. The spectrum is defined such that
∑

k ∆k 〈δn Φ〉k = 〈δn Φ〉, and the perturbed density

and electrostatic potential are respectively normalized to Ti ρi/(eR) and n0 ρi/R. Regions corre-

sponding to 0.15 < kθρi < 0.3, 0.3 < kθρi < 1.2 and kθρi > 1.2 have been respectively labelled

(a),(b) and (c). One notes an overall good agreement of the spectra and in particular very similar

inertial-type range with near algebraic scaling (k ≃ −3.5) are observed in region (b) in both cases.

As already mentioned in section IV, the zonal flow component ky = 0 (i.e. n = 0) plays a key

role for the nonlinear saturation in ITG regime, and an accurate description of its structure

is therefore of particular importance when comparing nonlinear simulations. In Fig. 13, a

two-dimensional representation of the normalized flux-surface averaged radial electric field

Er(t, x) is shown, defined as:

Ẽr(t, r) =
ρ2

s e

R Te

∂ 〈Φ〉

∂r
, (26)

with Φ the electrostatic potential and 〈 〉 the flux-surface average. When comparing GENE

and ORB5 results in the inner part of the simulation domain (r/a = [0.3 , 0.7]), one observes

similar small-scale avalanche-like structures31 in both cases. In order to compare quantita-

tively the radial structure of the flux-surface averaged electric fields, the time-average of

Er(t, x) over the interval t cs/R = [380, 420] is in addition shown in Fig. 14. The radial pro-

files of the electric field Er present in both cases multiple local extrema at similar positions.

One notes, however, that the absolute amplitudes of the fields are different, which can in

fact be explained by the different radial boundary conditions used in the two codes.
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FIG. 12. (Color online) Time evolution of the normalized logarithmic gradient RLTi,Tot
of the total

ion temperature Ti = T0i+T1i for CBC like parameters, obtained by radial averaging over the range

r/a = [0.4, 0.6]. The bold lines represent the running time-average starting from t0 = 150R/cs.

FIG. 13. Normalized flux-surface averaged electric field Ex obtained with GENE and ORB5 as a

function of the radial coordinate x and time t.

The influence of zonal flow on microturbulence results from its capability to shear the radial

coherent turbulent structures32. This effect depends on the shearing rate ωE×B, which is

proportional to the first radial derivative of the electric field (i.e. second derivative of the

electrostatic potential):

ωE×B ∝
dEr

dr
∝

d2 〈Φ〉

dr2
. (27)

By comparing in Fig. 15 the radial profiles of dEr/dr, one observes a very good quantitative

agreement between the two codes. This further explains the similar values obtained for the

heat diffusivity and shows that the choice of boundary conditions in the radial direction for
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FIG. 14. (Color online) Radial profile of the normalized flux-surface averaged electric field Er,

further averaged over the time interval t cs/R = [380 420], obtained with GENE and ORB5.
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FIG. 15. (Color online) Radial profile of the derivative dEr/dr, averaged over the time interval

t cs/R = [380 420].

Φ seems to have little effect on the physical simulation results.

VI. CONCLUSIONS

Several linear and nonlinear benchmarks between the global gyrokinetic codes ORB5 and

GENE have been carried out in the present work. In the linear regime, a good agreement
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was reached between the two codes for Cyclone like parameters16 concerning the growth

rates and real frequencies. Some of the remaining discrepancies in the growth rates could

be accounted for by the different treatment in the two codes of the pressure correction term

appearing in the magnetic curvature drift. In addition, the electrostatic potential fields

have been compared and very similar mode structures were observed. Considering nonlinear

results computed with identical initial conditions, excellent agreement has been observed

even up to the first burst, where nonlinear effects clearly affect the simulation, has been

observed. A Krook-type heat source was then introduced, allowing for the first time to

compare global gyrokinetic codes in quasi-steady state and to obtain statistically relevant

estimates of the averaged heat diffusivity and effective temperature gradient. It was shown

that a level of agreement within 10% could be reached under such conditions. In addition,

investigations of the zonal flow structure were carried out by comparing the flux-surface

averaged radial electric field. A similar overall radial structure of the radial electric fields

was observed, although the amplitudes were found to differ as a result of the different radial

boundary conditions used in the two codes. More importantly however, it was shown that

the derivative of the radial electric field, which is directly related to the shearing rate, agree

very well.

The presented comparisons were pushed to a new level of detail and thus represent a useful

contribution to the ongoing general effort for benchmarking gyrokinetic codes. Particular

attention was given to providing all necessary information required for reproducing these

simulations with other codes.

The high level of agreement between a global Eulerian and a global Lagrangian PIC code

obtained in the present work has been further confirmed in studies of finite size scaling of

turbulent transport33.
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