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Abstract

Impurity ions pose a potentially serious threat to fusion plasma performance by affecting the
confinement in various, usually deleterious, ways. Due to the creation of helium ash during
fusion reactions and the interaction of the plasma with the wall components, which makes
it possible for heavy ions to penetrate into the core plasma, impurities can intrinsically not
be avoided. Therefore, it is essential to study their behaviour in the fusion plasma in detail.
Within the framework of this thesis, different problems arising in connection with impurities
have been investigated.

Collisional damping of zonal flows in tokamaks

So-called zonal flows, i.e., poloidally and toroidally symmetric bands of plasma rotation, im-
prove the confinement by reducing radial transport caused by microturbulence. They are sub-
ject to a complicated interplay with the turbulence since they are created by the turbulence
itself. Other effects, such as collisional damping, can influence the development of this non-
linear system significantly. Since the Coulomb collision frequency increases with increasing
ion charge, heavy, highly charged impurities play an important role in this process. The effect
of such impurities on the linear response of the plasma to an external potential perturbation,
as caused by zonal flows, is calculated with analytical methods. The results are compared
with numerical simulation, resulting in good agreement. In comparison with a pure plasma,
the damping of the flows occurs, as expected, considerably faster; for experimentally relevant
parameters, the enhancement exceeds the effective charge Zeff of the plasma.

Impurity transport driven by microturbulence in tokamaks

Fine scale turbulence driven by microinstabilities is a source of particle and heat transport in a
fusion reactor. With regard to impurities, it is especially important whether the resulting flows
are directed inwards or outwards, since they are deleterious for core energy confinement on
the one hand, but on the other hand help protecting plasma-facing components from too high
energy fluxes in the edge region. A semi-analytical model is presented describing the resulting
impurity fluxes and the stability boundary of the underlying mode. The results are again
compared with numerical simulations. The main goal is to bridge the gap between, on the
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one hand, costly numerical simulations, which are applicable to a broad range of problems but
yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the
interpretation of the results but is so far rather rudimentary. The model is based on analytical
formulae whenever possible but resorts to a numerical treatment when the approximations
necessary for an analytical solution would lead to a substantial distortion of the results. Both
the direction of the impurity flux and the stability boundary are found to depend sensitively
on the plasma parameters such as the impurity density and the temperature gradient.

Pfirsch-Schlüter transport in stellarators

Due to geometry effects, collisional transport plays a much more prominent role in stellarators
than in tokamaks. In the final chapter of this thesis, analytical expressions for the particle and
heat fluxes in an impure, collisional plasma are derived from first principles. Contrary to the
tokamak case, where collisional transport is exclusively caused directly by friction, in stellara-
tors an additional source of transport exists, namely anisotropy between the pressures parallel
and perpendicular to the magnetic field. Whereas this anisotropy term does not contribute
much to the overall fluxes at high collisionality since it is then considerably smaller than the
friction contributions, it is nonetheless important since it is not ambipolar and therefore of
relevance to the ambipolar electric field.

Based on these results, the behaviour of heavy impurity ions under the influence of strong
radial temperature and density gradients of the background plasma is studied. It is shown that
a redistribution of the impurity ions within each magnetic flux surface arises. This process
has previously been found to reduce neoclassical transport in tokamaks, and in this thesis
the effect of 3D geometry is studied. Since the resulting partial differential equations are
too complicated for an analytical treatment, different limits are considered analytically and
the full equation is solved numerically. The redistribution is driven by parallel friction and
qualitatively influenced by the radial temperature gradient of the background plasma and the
spatially varying E ×B rotation due to the radial electric potential. The resulting impurity
density patterns on the flux surface are sensitive to the exact geometry of the device and can
be determined with the help of numerical databases of the magnetic configurations of different
experiments.
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Kurzfassung

Verunreinigungen spielen eine wichtige Rolle in Fusionsplasmen, da sie auf verschiedene,
üblicherweise schädliche Weise Einfluss auf den Plasmaeinschluss nehmen können. Durch
die Entstehung von Heliumasche, die längere Zeit im Plasma verbleibt, während des Fusions-
prozesses und die Wechselwirkung des Plasmas mit den Reaktorkomponenten, aufgrund derer
schwere Teilchen tief ins Plasma vordringen können, ist die Reinhaltung des Plasmas nahezu
unmöglich. Daher ist es wichtig, das Verhalten der vorhandenen Verunreinigungen in Fusions-
experimenten genau zu studieren. In dieser Dissertation wurden verschiedene Effekte, die im
Zusammenhang mit Verunreinigungen auftreten, untersucht.

Stoßbehaftete Dämpfung von zonalen Strömungen in Tokamaks

Sogenannte zonale Strömungen, d.h. toroidal und poloidal symmetrische Bänder unterschied-
licher Plasmarotation, begünstigen den Energieeinschluss im Plasma durch Reduktion des
durch Mikroturbulenz erzeugten Transports. Sie unterliegen einem komplizierten Wechsel-
spiel, da sie ihrerseits von der Turbulenz, auf die sie rückwirken, erzeugt werden. Andere
Einflüsse, wie beispielsweise Stoßdämpfung, können maßgeblich an der Entwicklung dieses
nichtlinearen Systems beteiligt sein. Da die Stoßfrequenz für Coulombstöße mit steigender
Ionenladung ebenfalls stark ansteigt, spielen schwere, hochgeladene Verunreinigungen eine
wichtige Rolle. Der Einfluss solcher Verunreinigungen auf die lineare Antwort des Plasmas
auf eine externe Potentialstörung, wie sie durch zonale Strömungen hervorgerufen wird, wird
mit Hilfe analytischer Methoden bestimmt und die analytischen Ergebnisse mit numerischen
Simulationen verglichen. Im Vergleich zum reinen Plasma erfolgt die Dämpfung, wie er-
wartet, deutlich schneller. Für experimentell relevante Parameter ist die zu erwartende Dämp-
fung um einen Faktor, der die effektive Plasmaladung Zeff übersteigt, beschleunigt.

Verunreinigungstransport aufgrund von Mikroinstabilitäten in Tokamaks

Feinskalige Turbulenz, getrieben durch Mikroinstabilitäten, führt zu Teilchen- und Energie-
transport. Im Bezug auf Verunreinigungen ist es besonders wichtig, ob die Teilchenflüsse
nach innen oder außen gerichtet sind, da Verunreinigungen im Kernplasma durch hohe Strah-
lungsverluste den Energieeinschluss schädigen, während sie durch Abstrahlung am Rand dazu
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beitragen, die Reaktorkomponenten vor zu hohen Energieflüssen zu schützen. In dieser Dis-
sertation wird ein semianalytisches Modell für die resultierenden Verunreinigungsflüsse und
die Stabilitätsgrenze der zu Grunde liegenden Mode hergeleitet und mit numerischen Simu-
lationen verglichen. Das Hauptziel ist es, eine Brücke zu schlagen zwischen einerseits nu-
merischen Simulationen, die zwar für ein breites Spektrum von Problemen anwendbar sind
aber schwer nachvollziehbare Ergebnisse liefern, und andererseits nur ansatzweise vorhande-
nen analytischen Beschreibungen, welche die Interpretation der Ergebnisse erheblich verein-
fachen könnten. Das hergeleitete Modell basiert soweit wie möglich auf analytischen Formeln,
greift aber auf numerische Hilfsmittel zurück, wenn die zur Lösung erforderlichen Approx-
imationen die Ergebnisse wesentlich verfälschen würden. Sowohl die Richtung des Verun-
reinigungsflusses als auch die Stabilitätsgrenze hängen stark von den Plasmaparametern wie
Verunreinigungsdichte und Temperaturgradient ab.

Pfirsch-Schlüter-Transport in Stellaratoren

Aufgrund von Geometrieeffekten spielt stoßbehafteter Transport in Stellaratoren eine wesent-
lich größere Rolle als in Tokamaks. In dieser Arbeit werden analytische Ausdrücke für
die Teilchen- und Wärmeflüsse in einem stoßdominierten Plasma (Pfirsch-Schlüter-Gebiet)
kinetisch hergeleitet. Im Gegensatz zum Tokamak, in dem stoßbehafteter Transport aus-
schließlich direkt durch Reibung hervorgerufen wird, gibt es im Stellarator eine zusätzliche
Transportquelle durch Druckanisotropie parallel und senkrecht zum magnetischen Feld. Ob-
wohl dieser Anisotropieterm bei hohen Stoßfrequenzen deutlich kleiner ist als der Reibungs-
term und daher nur geringfügig zum Gesamttransport beiträgt, spielt er aufgrund der Tatsache,
dass er im Gegensatz zum Reibungsterm nicht ambipolar ist, eine wichtige Rolle in Bezug auf
das ambipolare radiale elektrische Feld.

Aufbauend auf diesen Ergebnissen wird das Verhalten von schweren Verunreinigungen
unter dem Einfluss von starken radialen Temperatur- und Dichtegradienten des Hintergrund-
plasmas untersucht, die zu einer Umverteilung der Verunreinigungen innerhalb der magneti-
schen Flussflächen führen. In Tokamaks führt diese Umverteilung zu einer Verminderung des
neoklassischen Transports, und in dieser Dissertation wird der Effekt von 3D-Geometrie un-
tersucht. Da die resultierenden partiellen Differentialgleichungen für Stellaratoren analytisch
nicht mehr lösbar sind, werden verschiedene Grenzwerte analytisch betrachtet und die volle
Gleichung numerisch gelöst. Der der Umverteilung zu Grunde liegende Mechanismus ist pa-
rallele Reibung. Sowohl der radiale Temperaturgradient des Hintergrundplasmas als auch die
durch das radiale elektrische Potential hervorgerufeneE×B-Rotation, die auf der Flussfläche
variiert, beeinflussen den Prozess qualitativ. Die entstehenden Dichtestrukturen sind stark von
der Geometrie der Maschine abhängig und können mit Hilfe numerischer Datenbanken der
Magnetfeldkonfigurationen verschiedener Experimente entsprechend bestimmt werden.
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1 Introduction

This thesis is concerned with the effect of impurities on transport processes in fusion reactors.
The impurities in question are heavy ions that usually originate from the vessel containing
the plasma. The present introductory chapter is intended to give a fundamental overview of
the physical background of the addressed topics and to enable the reader to place the work
into context. A more mathematical treatment of the kinetic theory upon which the following
chapters are based is given in chapter 2. The subsequent chapters deal with several different
aspects of impurities as further described in section 1.5. In the concluding chapter, the results
are summarised and discussed, and an outlook on future work is given.

1.1 Nuclear Fusion

The Sun constantly releases energy at a rate of approximately 3.85 · 1017GW [1]. Exploiting
the underlying process, nuclear fusion, for harnessing energy provides an extremely powerful
but no less challenging option for the solution of mankind’s energy problem. Whereas the
reaction in the Sun, taking place under conditions of extremely high temperature, density and
gravitational force, is fuelled by hydrogen, the reaction with the highest cross section under
the circumstances we can reach on Earth is [2]

D + T→ 4He + n + 17.59MeV.

The released energy corresponds to the difference between the total masses of reactants, the
two hydrogen isotopes deuterium and tritium, and the reaction products, helium and a neutron,
according to Einstein’s famous formula E = ∆mc2. As this atomic process involves the
strong nuclear force, the amount of energy released in a single fusion reaction is six orders of
magnitude higher than in chemical reactions, taking place when, e.g., fossil fuels are burned.
The reaction cross section for the above mentioned reaction peaks at a temperature between
10–20 keV [2], and under these conditions the fusion reactants form a plasma. However,
in order for the fusion reaction to take place, the strong repulsive Coulomb force has to be
overcome, which makes ordinary Coulomb collisions the most likely event to happen in a D-
T collision. Although quantum-mechanical tunnelling makes the fusion reaction nonetheless
possible, it is necessary to confine the plasma long enough for many particle collisions to
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1. INTRODUCTION

happen before the particles get lost. In the Sun and other stars, confinement is provided by
their huge gravitation, which our experiments on Earth lack. However, as a plasma mainly
consists of freely moving charged particles, it is influenced by magnetic fields, forcing the
plasma particles to gyrate around the field lines via the Lorentz force, and can therefore be
confined in a magnetic cage.

1.2 Magnetic confinement

The simplest conceivable concept for a magnetic geometry confining a plasma is a straight
cylinder with homogeneous magnetic field strength. Whereas the gyromotion of the particles
around the field lines (see section 1.3.1) provides radial confinement, the particles may move
freely along the field lines, and a means has to be found to avoid end losses. Many different
concepts have been tried, such as using inhomogeneous magnetic fields so as to exploit the
magnetic mirror effect, e.g., closing the ends with so-called Baseball coils. However, most of
these attempts with linear geometry did not lead to satisfactory confinement or raised other
problems (e.g., instabilities), and the great majority of present experiments are based on the
far more successful approach of a toroidal device. Incidentally, the naive approach of bending
the linear device into torus shape does not work as it leads to radial particle drifts (see section
1.3.1), which spoil confinement. This problem can be overcome by introducing a rotational
transform ι by superimposing a poloidal magnetic field on the toroidal one1. This leads to a
poloidal shift of the field lines after one toroidal turn, and thus, instead of closing on them-
selves, they move around the torus, allowing particles to drift towards the centre on one side of
the torus and away from the centre on the other. Consequently, the net particle drift vanishes.
The two most prominent concepts for creating such magnetic fields that have been proposed
and proven successful in experiments are the tokamak and the stellarator.

1.2.1 Tokamaks

The tokamak concept (see fig. 1.1) was proposed by Tamm and Sakharov in 1952 [3], the name
being an acronym for the Russian word “toroidal’naya kamera s magnitnymi katushkami” - to-
roidal chamber with magnetic coils. In this axisymmetric configuration, the toroidal magnetic
field is produced by external coils, whereas the poloidal magnetic field is induced by using
the plasma itself as the secondary coil of a transformer. A drawback is that, due to the pulsed
nature of the transformer, steady-state operation is intrinsically not possible. Furthermore, the
vacuum field does not provide confinement as the current in the plasma itself is necessary to
create the poloidal component of the magnetic field. Therefore, if the plasma current disap-
pears because of a plasma instability (a so-called disruption), confinement is immediately lost,

1The toroidal direction is around the major axis of the torus, whereas the poloidal direction describes the direction
around the torus’ minor axis.

2



1.2. MAGNETIC CONFINEMENT

which can lead to severe damage of the plasma-facing components in a reactor. Nonetheless,
the tokamak concept has been proven very successful, mainly due to its simple axisymmet-
ric geometry, and today’s leading fusion devices are tokamaks, such as JET (Joint European
Torus) at Culham, Great Britain, and the big international project ITER (International Ther-
monuclear Experimental Reactor) which is currently under construction at Cadarache, France.

FIGURE 1.1 Schematic sketch of the plasma and coils of a tokamak [4].

1.2.2 Stellarators

The stellarator2 concept (see fig.1.2), proposed by Lyman Spitzer in 1951, differs fundamen-
tally from the tokamak in that the entire magnetic field is produced by external coils. Although
the geometry of the device is thereby complicated considerably (no axisymmetry, thus full 3D
geometry), it does not suffer from the tokamak’s drawbacks regarding steady-state operation,
which is intrinsic in the stellarator, and current disruptions, as no toroidal current is necessary
in the plasma. Although the stellarator looks at first glance like a “cleaner” concept as one
needs not worry about these issues, it is lagging behind the tokamak by approximately one
generation as much research has focussed almost exclusively on the much-simpler-to-build
tokamak. The main stellarator experiment which might play a role in the decision whether
DEMO, the first prototype reactor planned for the early mid century, will be a tokamak or a
stellarator, is W7-X, which is currently under construction in Greifswald, Germany.

2from Latin stella - the star
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1. INTRODUCTION

FIGURE 1.2 Plasma and non-planar coils of the future stellarator W7-X [4].

1.2.3 Flux surfaces

In tokamak equilibria, it can be shown that most magnetic field lines ergodically cover sur-
faces of constant pressure and constant magnetic flux, which are therefore referred to as flux
surfaces. These flux surfaces form nested tori, and whereas particle and heat transport within
the flux surface (i.e., along the magnetic field lines) is usually a very fast process, transport
across flux surfaces occurs on a much slower time scale in well-confined plasmas. The con-
fined region is enclosed by a last closed flux surface (separatrix), leading to the formation of an
x point (see fig. 1.3), and the plasma outside this region, the so-called scrape-off layer (SOL),
is characterised by open field lines. In stellarators, the existence of nested flux surfaces cannot
be proven mathematically, although there is numerical and experimental evidence (Poincaré
plots) that they usually exist to a very high degree of accuracy. However, this is not always
true. The rotational transform is usually not the same on different flux surfaces but varies radi-
ally (magnetic shear). Surfaces where ι takes on a rational value, so-called rational surfaces,
are very sensitive to perturbations which have a resonant symmetry with the flux surface. The
consequence is magnetic islands, i.e. structures within the confined region, separated from
the rest of the plasma via a separatrix. Islands are deleterious for plasma confinement since
particles and heat can quickly flow in the radial direction along the field lines , thereby de-
grading the confinement of the system. As both the poloidal and the toroidal magnetic flux
lying within one flux surface are constant, they can be used as a label for the corresponding
flux surface. Therefore, the poloidal magnetic flux function ψ, defined by the magnetic flux
passing through a cross section between the magnetic axis and the corresponding flux surface,
may serve as a radial coordinate. Functions which only depend on this flux label but do not
vary within the flux surface are called flux functions. The innermost (degenerate) flux surface
is called the magnetic axis; the major radius R0 of the device is the distance between the
torus axis and the magnetic axis. The minor radius a of the device is the distance between the
magnetic axis and the torus edge. In a stellarator, where these distances can vary, appropriate
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1. INTRODUCTION

averages have to be used. Each flux surface is then characterised by a local minor radius r,
which defines its distance to the magnetic axis, and a local major radius R defining the dis-
tance of the flux surface’s mid point to the torus axis. Again, appropriate averages have to
be used for stellarators, the exact definition of which is of no importance for the calculations
presented in this thesis. The ratio between the minor and the major radius is called the inverse
aspect ratio ε ≡ r/R, which is often used as a small parameter in asymptotic expansions.
Depending on the device, the value of ε at the edge can range from nearly unity in so-called
spherical tokamaks to around 0.3 in large aspect-ratio tokamaks and even smaller values in
stellarators. In the core of the plasma ε is of course smaller and vanishes at the magnetic axis.
The toroidal and poloidal angles are usually denoted by ϕ and θ, respectively (the coordinate
system will be discussed in more detail in section 2.7), see fig. 1.5.

field lines

magnetic
surfaces

z

R

R
a

r ��

0

FIGURE 1.5 Illustration of the geometric quantities [4].

1.2.4 The high-confinement mode

Experiments have shown the existence of different operating regimes in magnetic confine-
ment devices. This phenomenon was first discovered on ASDEX (Axial Symmetric Di-
vertor Experiment) at Garching in 1982 [5] and subsequently on various other tokamaks
and stellarators. When the heating power exceeds a certain threshold, the plasma may un-
dergo a sudden transition to a higher confinement regime, where the energy confinement time
τE ≡ WPlasma/Pheating, defined as the ratio between the energy stored in the plasma and the
external heating power, is found to be typically around twice that of the previous regime of
low confinement [6]. This high confinement regime is usually referred to as the H-mode, in
contrast to the L-mode of low confinement. Although the H-mode was discovered already
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1.2. MAGNETIC CONFINEMENT

more than 25 years ago, the reasons for this phenomenon are as yet mostly unclear, and a
fundamental theory on the mechanisms driving the L-H transition is lacking. Nonetheless,
many important characteristics of the H-mode have been studied. The most prominent feature
is the occurrence of very steep radial density and often also temperature gradients in the edge
region, thus forming a pedestal, which acts as a transport barrier. Fig. 1.6 shows such an evo-
lution of the density gradient during L-H transition in the TJ-II stellarator at CIEMAT, Spain.
First, the density gradient is rather flat (red curve); the plasma is still in L-mode. Subse-
quently, the gradient steepens during the L-H transition, until finally, in H-mode, the pedestal
has formed (black curve). This occurrence of edge barriers leads to an increase in density over
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FIGURE 1.6 Evolution of the electron density profile during L-H transition in TJ-
II vs. the normalised minor radius ρ. The different curves correspond to different
transition states during different shots (the corresponding shot numbers are given
in the legend) [7].

the whole plasma with improved confinement properties. Another characteristic feature is a
sharp drop of the level of turbulence right at the formation of the transport barrier, leading to
a reduction of the turbulent fluxes. Both turbulent and neoclassical effects (see also sections
1.3.2 and 1.3.3) or an interplay of both, are possible candidates in the riddle of the H-mode
formation. For a more detailed treatment of the H-mode, see [8]. The H-mode is nowadays
the most favoured operating regime, and the most promising experimental results regarding
fusion power output have been obtained in this regime. However, there are a couple of diffi-
culties. Apart from the fact that the density increase can lead to a transition back to L-mode,
the enhanced confinement also includes impurities, which can start accumulating in the centre

7



1. INTRODUCTION

and lead to radiation losses (see also section 1.4). This problem is eased by the occurrence
of so-called Edge-Localised Modes (ELMs), an instability which manifests itself in sudden
bursts from the plasma, leading to large fluxes out of the core region and thus “flushing out”
the impurities. However, they are accompanied by immense energy fluxes and might cause
severe damage to the plasma facing components, a problem which has yet to be overcome. In
this regard, the behaviour of impurities under H-mode operation is a very important issue, and
one aspect of this problem will be addressed in section 4.2.

1.3 Transport processes in fusion plasmas

One of the main topics of fusion research is the study of plasma transport processes. This
section presents a basic overview of the different mechanisms; a more mathematical treatment
of kinetic transport theory will be given in section 2. In principle, there are two fundamentally
different sources of transport in plasmas, one being collisional transport, which arises due to
Coulomb collisions between the particles, and the other being turbulent fluctuations in the
plasma. However, before the different transport processes are described in more detail, a few
words have to be said about charged particle motion in fusion plasmas.

1.3.1 Charged particle motion

The collisionless motion of charged particles in fusion devices is in general rather compli-
cated. Effects arising from the toroidicity, such as particle drifts or trapping, and from other
inhomogeneities in the magnetic field that occur in stellarators, are superimposed on the gy-
romotion, which can also be found in cylindrical geometry. These effects become extremely
important as they drive so-called neoclassical transport (see section 1.3.2), whereas classical
transport is driven by the gyromotion. The most important mechanisms of particle motion are
presented in this section.

Gyromotion

As already mentioned in section 1.1, the most basic mechanism behind radial particle confine-
ment in a magnetic field is the gyromotion of the particles due to the Lorentz force, given by
the equation of motion

ma
∂v

∂t
= eav ×B, (1.1)

where ma is the mass of a particle of species a, ea its charge and B the magnetic field vec-
tor. Assuming a homogeneous, constant magnetic field, where without loss of generality
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B = Bzez in a Cartesian coordinate system ex, ey, ez, one can identify velocity components
parallel and perpendicular to the magnetic field [6]

vx = v⊥sin(Ωat),
vy = v⊥cos(Ωat),
vz = v‖.

This set of equations describes a circular gyromotion around the so-called guiding centre of
the particle, which moves uniformly along the magnetic field line at the speed v‖. Here and
throughout the thesis, parallel and perpendicular refer to the directions along and perpendic-
ular to the magnetic field, respectively. The gyration frequency is Ωa = eaB/ma and the
orbit radius ρL,a = v⊥/Ωa is called the Larmor radius. For a particle moving at the thermal
speed vth,a ≡

√
2Ta/ma, where Ta denotes its temperature3, in the perpendicular direction,

ρL,a = vth,a/Ωa ≡ ρa. The guiding-centre position is typically denoted byR ≡ r+v×b/Ωa,
where the actual particle position is denoted by r. The unit vector along the magnetic field is
denoted by b ≡ B/B. The Lorentz force is charge dependent, and electrons gyrate clockwise
while positively charged ions gyrate counter-clockwise.

Drift motion

In the presence of external forces or fields perpendicular to the magnetic field, eq. (1.1) has
to be extended by adding the corresponding force terms on the right-hand side. The original
solution to the equation of motion is then modified in the way that additional drift terms
occur, describing a motion of the guiding centre perpendicular to both the magnetic field and
the driving force. Inhomogeneities of the magnetic field, which occur naturally in toroidal
devices, also give rise to drifts. The most prominent drifts usually kept in kinetic calculations
lead to an approximate perpendicular drift velocity

vd =
E ×B
B2

+
v2
⊥

2Ωa

B ×∇B

B2
+
v2
‖

Ωa

B × κ
B

,

where E is the electric field and κ ≡ (b ·∇)b is the magnetic curvature. The three terms
are usually called E ×B drift, grad-B drift and curvature drift, respectively. It is important
to note that this expression for the drift velocity is only valid for weak electric fields, since
the derivation of the expression is based on the assumption that the perpendicular parts of the
gyroorbits nearly close on themselves after one gyration, which is only the case if the E ×B
drift over one Larmor period is much smaller than the Larmor radius itself.

3Here and throughout the rest of the thesis, temperature is measured in units of energy, thereby implicitly includ-
ing the Boltzmann factor.
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Guiding centre orbits

In an inhomogeneous magnetic field, as it naturally occurs in toroidal devices, the guiding-
centre motion is more complicated than in a uniform magnetic field. Particles with a suf-
ficiently large parallel velocity component circulate continually around the torus and are
usually referred to as passing or circulating particles. On the other hand, the mirror force
Fmirror = −µ∇‖B, ∇‖B ≡ (B ·∇)/B, caused by variations of the magnetic field strength,
leads to a reflection of particles with small parallel velocity as such particles cannot penetrate
into regions of high B. This condition is a direct consequence of the conservation of energy
and the magnetic moment µa = mav

2
⊥/(2B), which can be shown to be an approximate con-

stant of motion (an adiabatic invariant) under certain conditions. Such particles getting caught
in the magnetic field wells are called trapped particles.

In tokamaks, where the magnetic field is stronger on the inboard side of the torus but is
constant in the toroidal direction, this trapping effect leads to the particles bouncing back and
forth on the low-field (outer) side of the torus, superimposed by vertical drift of the guiding
centre mentioned above. Fig. 1.7 shows a typical bounce orbit. Given their characteristic
shape, these orbits are usually called banana orbits. The condition for particles to get trapped
is that their pitch angle4 α exceeds

αc = arctan

((
Bmax
Bmin

− 1
)−1/2

)
,

where Bmax and Bmin are the maximum and minimum magnetic field strengths, respectively.
Due to axisymmetry, the canonical toroidal angular momentum of the guiding centre is an
approximate constant of motion in a tokamak, a property which implies radial particle con-
finement according to Tamm’s theorem [3]. Therefore, the guiding centres perform closed
drift orbits, i.e., although they depart slightly from the flux surface they originated from dur-
ing their motion along the orbit (which does not occur in a uniform magnetic field, where the
guiding centre is bound to the same field line at all times), they cannot leave it permanently.
For passing particles, the distance the guiding centre may depart from its flux surface can be
estimated with

∆rpassing =
v‖

Ωaθ

∼ ερaθ ,

where Ωaθ and ρaθ are calculated using only the poloidal magnetic field strength. Trapped
particles, whose change in parallel velocity is much more pronounced, depart by the larger

4the angle between the particle’s velocity vector and the magnetic field
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FIGURE 1.7 Trapped and passing orbits in a tokamak. The dashed line shows
the corresponding flux surface. R and z correspond to a cylindrical coordinate
system, θb is the bounce angle (the poloidal location of the turning point) [3].

size of a banana width

∆rtrapped =
v‖

Ωaθ

∼
√
ερaθ .

These departures of the guiding centres from the flux surfaces play an important role in trans-
port theory, as will be discussed in section 1.3. The time it takes a particle to complete a
banana orbit is called the bounce time [3]

τb =
∮

dθ

v‖∇‖θ
,

which exceeds the time a passing particle needs for one circulation around the torus by roughly
a factor ε−1/2.

In stellarators, the magnetic field strength varies both in the poloidal and in the toroidal
direction, and therefore particles can get trapped not only poloidally but also in the helical
magnetic field ripple. The consequence is a large number of different orbits, ranging from
ordinary passing particles as can be found in the tokamak and purely helically trapped particles
to so-called superbananas, where the whole orbit of a helically trapped particle moves on a
banana orbit, and more or less chaotic orbits with particles changing back and forth between
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different states of trapping. As the stellarator lacks the tokamak’s axisymmetry, the canonical
toroidal angular momentum of the guiding centre is not a constant of motion, and consequently
there is no guarantee that all of these orbits stay close to one flux surface. Indeed, many of
them do not. Thus, unlike in a tokamak, trapped particles are not intrinsically confined in
an arbitrary stellarator. However, the number of unconfined orbits can be greatly reduced by
adjusting the configuration of the magnetic field in a suitable way, and thus much of present-
day stellarator research is focused on stellarator optimisation.

1.3.2 Collisional transport

As mentioned above, the majority of plasma particle collisions do not lead to a fusion re-
action but are instead the source of ordinary Coulomb scattering processes. Upon collision,
the particles undergo a random walk, which, in the presence of density, temperature and/or
potential gradients, leads to transport. The typical step size is of the order of the deviation of
the particles from the field line, which is the Larmor radius of the particle in a straight homo-
geneous magnetic field, leading to a diffusion coefficient Dclassical

ab ∼ ρ2
a/τab for collisions

between particle species a and b, where τab is the collision time. This source of transport,
usually referred to as classical transport, cannot be avoided and is intrinsically present in all
fusion devices. In toroidal devices, inhomogeneities in the magnetic field strength are un-
avoidable (see section 1.3.1). The corresponding departure of the guiding centres from the
flux surfaces, again combined with particle collisions and background gradients, leads to a
much stronger transport, the neoclassical transport. The exact magnitude depends strongly on
the collisionality; whereas classical transport scales linearly with the collision frequency, par-
ticle orbit effects lead to a more complicated scaling of the neoclassical diffusion coefficient
in toroidal devices. Fig. 1.8 shows the neoclassical diffusion coefficient versus collisionality
in a tokamak. When the collisionality is low, particles can complete their orbits, including
banana orbits, before they experience a collision with another particle. The characteristic ra-
dial diffusion step is of the order of the banana orbit width, and the diffusion coefficient scales
linearly with collision frequency ν. The corresponding regime of low collisionality is called
the banana regime. When collisions get more frequent, such that banana orbits are interrupted
by collisions whereas circulating orbits can still be completed (as noted in section 1.3.1, the
bounce time exceeds the time a passing particle needs by a factor ε−1/2), the diffusion coef-
ficient becomes nearly independent of collisionality as de-trapping effects cancel the effects
due to the higher collision frequency. The corresponding regime is called plateau regime.
When the collision frequency gets yet higher, such that all particle orbits are typically inter-
rupted by collisions before they can be completed, the scaling between collision frequency
and diffusion coefficient becomes linear again; this high-collisional regime is usually referred
to as the Pfirsch-Schlüter regime after the two plasma physicists Dieter Pfirsch and Arnulf
Schlüter. In particular, physical effects arising from the particle orbits are completely lost at
high collisionality, which clears the way for a fluid treatment of the plasma (see section 2.5).
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FIGURE 1.8 Neoclassical diffusion coefficient vs. collisionality ν∗ = ν/(εωb)
in a tokamak. ωb denotes the bounce frequency (the frequency of the bounce
motion).

In a stellarator, the situation is, as usual, more complicated. In the low-collisionality regime,
where the collision frequency is small enough to allow particle orbits to be completed, the ra-
dial electric field plays a major role. Without a radial electric field, the losses due to helically
trapped particles, which are not confined as they do not circulate around the torus, get rather
large, leading to the so-called 1/ν-regime where the diffusion coefficient is inversely propor-
tional to the collision frequency ν (see fig. 1.9). However, the presence of a radial electric
field causes the helically trapped particles to get convected around the torus by theE×B ve-
locity, and if this process happens sufficiently fast, these particles are consequently confined.
This effect reduces the diffusion coefficient, depending on the strength of the radial electric
field Er, so much as to make it proportional to

√
ν or, for even higher Er, proportional to ν.

Accordingly, these regimes are termed
√
ν-regime and ν-regime, respectively.

1.3.3 Turbulent transport

Although it exceeds the classical transport considerably, neoclassical transport alone cannot
explain the high values for the diffusion coefficients found in experiments. A great part of the
transport stems from a completely different cause, namely small-scale turbulent fluctuations of
the plasma parameters, such as density, temperature, electrostatic potential and the magnetic
field. In a stellarator, turbulent and neoclassical fluxes are often comparable and are both rather
high, and thus both mechanisms have to be investigated in detail. However, in a tokamak, due
to the simple geometry the neoclassical fluxes tend to be much smaller than in a stellarator and
are usually negligible compared with the contribution from turbulence, which is therefore the
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FIGURE 1.9 Neoclassical diffusion coefficient vs. normalised collision fre-
quency in a stellarator for different strengths of the radial electric field (Source:
Craig Beidler).

dominant transport mechanism. A lot of research presently aims at understanding the highly
nonlinear process of turbulent transport. The driving mechanism is furnished by so-called
microinstabilities.

Microinstabilities

The occurrence of fine-scale turbulence in fusion plasmas is often associated with microinsta-
bilities, i.e., instabilities with perpendicular wavelengths comparable to the ion Larmor radius.
Contrary to long-wavelength instabilities, they are no threat to the plasma equilibrium itself,
but they can greatly enhance the radial transport across the flux surfaces and thereby harm the
confinement. The primary issue of interest is therefore not whether they are stable or not, as
is the case with long-wavelength instabilities, but rather the level of transport caused by the
microturbulence. This involves calculations of the nonlinear, saturated state of these microin-
stabilities, which are usually complicated and not amenable to analytical theory. However,
if the microturbulence is sufficiently weak, the correlation time is determined by the growth
rate of the underlying microinstability, and the theory can be described by quasilinear diffu-
sion [9]. Furthermore, an analytical linear theory may assist in identifying possible drives and
conditions for the turbulence. Different types of microinstabilities include dissipative insta-
bilities driven by collisional effects or Landau damping and reactive instabilities which do
not require dissipation. Two of the most prominent examples are the trapped-electron mode
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(TEM) carried by the non-equilibrium part of the trapped electron distribution for the former
and the ion-temperature-gradient mode (ITG) for the latter. This mode is named after the fact
that its growth rate depends on the value of ηi = (dlnTi/dψ)/(dlnni/dψ), ψ being a radial
coordinate (see section 2.7) and na denoting the particle density, driving it unstable above a
certain threshold, which is actually rather a critical temperature gradient than a critical ηi if
the density profile is sufficiently flat. For a more detailed treatment of microinstabilities, see
[6, 9].

Zonal flows

So-called zonal flows have received much attention during the last decade as they can greatly
influence fusion performance. A similar phenomenon exists in the Jovian atmosphere, visible
from the earth as bands of different colours. Zonal flows in fusion reactors are bands of
poloidal (and toroidal) rotation due to an E ×B flow associated with a toroidally symmetric
electric field perturbation [10]. They are constant on flux surfaces, but vary rapidly in the
radial direction, even so much as to reverse the sign of the flow from one band to the next.
As a consequence, radial turbulent structures, which can have a greater radial extent than
the small-scale zonal flow bands, get “sheared apart” on this smaller scale. Since energy
and particles can easily be transported radially along these turbulent structures, this reduction
in the radial extent leads to a substantial reduction of the turbulent transport [11, 12] and
thereby improves the confinement, a feature which can be crucial for reactor performance.
It is therefore necessary to understand the mechanisms involved in the zonal flow creation
and destruction in detail. Fig. 1.10 shows a GYRO turbulence simulation demonstrating the
shearing process of the turbulent structures. Interestingly, zonal flows are driven by Reynolds
stress due to microinstabilities, and therefore a feedback mechanism between, on the one hand,
the turbulence creating the flows and, on the other hand, the flows suppressing the turbulence,
exists, making the system highly nonlinear (and complicated). Besides the creation process,
any mechanism which damps the zonal flows can have a deleterious influence on confinement
by letting the level of turbulence rise again. Due to their toroidal symmetry, zonal flows are
not subject to Landau damping (see, e.g., [6] for a short introduction, or the original paper
by Landau [13] for a more detailed derivation), but other damping mechanisms can occur,
amongst others collisional damping. This problem will be addressed in section 3.1.

1.4 Role of impurities

Impurities play a crucial role in fusion devices by affecting the confinement in various, usu-
ally deleterious, ways [6, 14]. The occurrence of impurities in the plasma can intrinsically
not be avoided; on the one hand, during the fusion reaction itself, α-particles (He2+ ions) are
created, which for some time remain as ash in the plasma. On the other hand, impurity ions
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FIGURE 1.10 GYRO simulation of zonal flows
(Source: https://fusion.gat.com/theory/Gyromovies).

are released from the plasma-facing components through interaction with the plasma, and can
penetrate deep into the plasma, in the worst case even into the core of the plasma. There,
they may degrade the confinement by enhancing the radiated energy, both by increasing the
bremsstrahlung in electron-impurity collisions (scaling with a factor Z2 [2], where ez ≡ Ze),
and most severely by line radiation and recombination radiation in the case of high-Z impu-
rities, which are only incompletely stripped even at the very high temperatures reached in the
plasma core. If the impurities get too numerous, the radiation losses can become so severe that
they lead to a “radiation death” of the plasma, meaning that the plasma radiates away more
energy than can be supplied by the heating. Therefore the level, especially of high-Z, impuri-
ties must be very small in a reactor. In this respect, the “deleteriousness” of the impurities is
often expressed in terms of the effective ion charge

Zeff =

∑
ions a

naZ
2
a∑

ions a
naZa

.

In a fusion reactor, the losses get too high if the condition Zeff . 2 is violated. Unfortunately,
currently considered wall materials include tungsten W74, which is, due to its high atomic
number, an intrinsic source of strong radiation. Therefore, a lot of research attention is paid to
the behaviour and transport of impurities, advantages and disadvantages of different configu-
rations and operation scenarios regarding the accumulation of impurities in the core plasma,
etc. Impurities can influence a great number of other important processes in fusion devices,
and various aspects are addressed within this thesis.
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1.5 Contribution of this thesis

This thesis is concerned with several different problems arising in connection with impurities
in fusion plasmas. The first two problems, addressed in section 3, treat turbulence-related is-
sues in tokamaks. The first (see section 3.1) is concerned with the influence of highly charged
impurities on collisional zonal-flow damping. Although zonal flows are intrinsically an ef-
fect of turbulence, dissipation via collisional damping can be important in the interplay of
turbulence and shear flows. As the collision frequency scales with Z4, even small amounts
of impurities can raise the collision frequency considerably, and the effect of this enhanced
damping is studied in detail. The second problem (see section 3.2) deals with the effect of
impurities on quasilinear particle fluxes arising due to ITG turbulence. Quantities of interest
are the radial impurity flux and scalings of the frequency and growth rate of the underlying
microinstability with Z and Zeff . This work attempts to bridge the gap between nonlinear
simulations with large numerical codes yielding amounts of parameter-sensitive output on the
one hand and analytic theory aiming at explaining basic mechanisms on the other hand. An
analytic theory is derived for some limiting cases, and the full problem is solved numerically.
Both solutions are compared with quasilinear runs of the GYRO code [15]. The subsequent
two chapters shed light on the neoclassical transport of impurities in stellarators, a topic which
so far has been not been treated as carefully as tokamak neoclassical transport. In section 4.1,
the particle and heat fluxes of heavy impurities in the collisional (Pfirsch-Schlüter) regime,
appropriate to cold edge plasmas, are calculated analytically. The following section 4.2 builds
upon these results and deals with impurity redistribution within flux surfaces in the presence
of steep radial gradients of the bulk ion density, temperature, and the electrostatic potential.
These conditions occur, e.g., during H-mode operation, where transport barriers characterised
by steep gradients form in the edge region, and the understanding of the redistribution pro-
cess might be of help for shedding light on the neoclassical processes involved with H-mode
operation which has previously been shown to significantly reduce the neoclassical bulk ion
transport in tokamaks. The results of the different sections are summarised and discussed in
section 5.

17



1. INTRODUCTION

18



2 Basics of kinetic transport theory

This chapter introduces the fundamentals of kinetic transport theory, which the following
chapters are based upon. Throughout the entire thesis, the plasma will be considered to consist
of electrons, whose physical quantities will be indicated by a subscript e, hydrogenic bulk ions
with an index i, and a third particle species with index z. Throughout most of the calculations,
this species is assumed to be a species of highly charged impurities with charge Z � 1.
However, in principle Z can be arbitrary and could also refer to, e.g., tritium in contrast to
the deuterium ions, which are usually considered as bulk ions. Assumptions about Z will be
stated explicitly in the relevant chapters.

2.1 Quasi-neutrality

A fusion plasma consists of an enormous number of charged particles, whose trajectories
are governed by the interaction with externally applied electromagnetic fields and with other
plasma particles via long-range Coulomb forces. It therefore acts as a many-body system and
exhibits collective behaviour. On length scales exceeding the Debye length λD the plasma is
charge neutral. This property is called quasi-neutrality, and manifests itself in the fact that, on
length scales exceeding a Debye length, the electron density must be approximately equal to
the density of positive charges,

ne = ni + Znz.

When a deviation from this condition occurs, electric fields start building up, in accordance
with the Poisson equation ∇ ·E = e(ni +Znz −ne)/ε0. The corresponding force drives the
particles back towards quasi-neutrality.

2.2 Distribution functions

The most general form of a distribution function describing a plasma withN particles is given
by Fa(r1, .., rN ,v1, ...,vN , t), which describes the probability for a configuration where the
exact position and velocity of each plasma particle at the given time t are specified. However,
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it is conventional in plasma physics to work with reduced distribution functions, which are
obtained by integrating the distribution function of an arbitrary particle over the coordinates of
the other particles. The resulting distribution function in six-dimensional phase-space, written
as f(r,v, t), describes the probability density of any particle being at the position r with a
velocity v at the time t, where the other plasma particles can occupy arbitrary states. In this
sense, a statistical average over the distribution function can be defined by taking weighted
moments over velocity space

〈g〉 |f ≡
∫
g(r,v, t)f(r,v, t)d3v∫

f(r,v, t)d3v

for any function g(r,v, t). In particular, the “zeroth” moment with respect to which the other
moments are normalised yields the particle density of species a,

na(r, t) =
∫
fa(r,v, t).

Employing g = v, where v denotes the velocity of a particular particle, yields the macroscopic
flow velocity Va of species a,

V a(r, t) = 〈v〉 |f .

In a similar way, the temperature Ta can be defined as

3
2
Ta(r, t) =

〈
ma(v − V a)2

2

〉 ∣∣∣∣
f

,

where only the deviation of the particle velocity from the mean flow velocity is taken into
account, so that the total energy can be found to equal the sum of the thermal energy and the
kinetic energy from the mean flow,

mana
〈
v2
〉
f

2
=

3naTa
2

+
manaV

2
a

2
.

Furthermore, defining the pressure pa as

pa ≡
1
3
mana

〈
(v − V a)2

〉 ∣∣
f
,
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one can show the relation pa = naTa.

2.3 Kinetic equations

In a plasma, the movement of each particle is governed by the equations of motion

ṙ = v,

v̇ ≡ a =
ea
ma

(E + v ×B),

where an overdot denotes a time derivative. Thus, a is the acceleration the particles experience
due to electric and magnetic fields. As the number of particles is conserved, assuming that
there are neither sources nor sinks of particles, fa must obey the continuity equation

∂fa
∂t

+
∂

∂z
(żfa) = 0,

z = (r,v) being the six-dimensional phase-space variable. Since the phase-space flow veloc-
ity is divergence free (Liouville’s theorem), this equation can be rewritten, using the equations
of motion, as

∂fa
∂t

+ v ·∇fa +
ea
ma

(E + v ×B) · ∂fa
∂v

= 0.

This equation is known as the Vlasov equation. In this representation, E and B are the total
electric and magnetic fields, including not only externally imposed forces but also the full elec-
tromagnetic interactions of all particles in the system. However, the practically relevant forces
and distribution functions are not these microscopic ones but instead ensemble-averaged quan-
tities, denoted by â and f̂a. Ensemble averaging the kinetic equation, one encounters the
problem that in general

̂
a · ∂fa

∂v
6= â · ∂̂fa

∂v
,

where equality is provided if and only if a and fa are statistically independent, i.e., in the
absence of interactions. Otherwise, there is a non-zero contribution from the interaction term,
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2. BASICS OF KINETIC TRANSPORT THEORY

typically taken into account by introducing a collision operator

Ca(fa) ≡ â · ∂̂fa
∂v
−

̂
a · ∂fa

∂v
=
∂fa
∂t

∣∣∣
Collisions

,

which accounts for short-scale field fluctuations as they become important during close ap-
proaches of particles (on length scales comparable to or smaller than the Debye length) where
the fields from the individual particles dominate over the macroscopic large-scale fields. In
this way, the usual form of the kinetic equation can be obtained, yielding

∂fa
∂t

+ v ·∇fa +
ea
ma

(E + v ×B) · ∂fa
∂v

= Ca(fa), (2.1)

where now E and B represent only the large-scale fields, and the overhats have been omit-
ted. In a gas, the collision operator is usually a Boltzmann operator, and the corresponding
kinetic equation the Boltzmann equation. In a fusion plasma, however, collisional processes
are dominated by small-angle scattering events, and thus a Fokker-Planck operator is used,
which is described in more detail in section 2.4. Equation (2.1) is therefore usually referred to
as the Fokker-Planck equation. Obtaining a complete exact solution to this partial differential
equation is theoretically possible but usually practically not achievable. Therefore, approxi-
mations have to be made in order to simplify the problem. The main trick in kinetic theory
is to find a suitable ordering scheme, which, if successful, makes it possible to keep only the
terms relevant for the problem of interest and neglect small terms which do not influence the
solution much. Which ordering assumptions to use depends on the effect one wishes to study;
two particularly beneficial and frequently used ordering concepts, the drift-kinetic ordering
and the gyrokinetic ordering, will be introduced in the subsequent sections, after defining two
useful averaging procedures which will be used in the derivations and frequently later on.

2.3.1 Gyro-average

Most processes of interest in a fusion plasma occur on time scales much slower than the gyro-
motion and on length scales much longer than the Larmor radius. Thus, for these processes,
effects due to the gyromotion of the particles are negligible, and it is possible to reduce the
number of independent variables in velocity space by taking an average over the gyroangle ϑ,

ā(r, v⊥, v‖, t) =
1

2π

2π∫
0

a(r, v⊥, v‖, ϑ, t)dϑ,
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where R = r + v × b/Ωa , v‖ and v⊥ are kept fixed and b ≡ B/|B|. In this sense, the
gyromotion is considered as the motion of a charged ring around the guiding centre.

2.3.2 Flux-surface average

When considering processes where the motion of the particles across the flux surfaces is much
slower than the motion within the flux surface, such as, e.g., radial transport processes, the
exact dynamics within the flux surface are often unimportant. What matters is the amount
of particles, heat, energy etc. that leaves or enters the flux surface. Therefore, the kinetic
treatment can be conveniently simplified by taking an average over the flux surface,

〈A〉 =

∮
A(ψ, θ, ϕ)

√
gdθdϕ∮ √

gdθdϕ
,

for some set of coordinates where ψ represents a flux label serving as a radial coordinate and
θ and ϕ are some poloidal and toroidal angle coordinates, respectively,

√
g being the Jacobian

for this set of coordinates. An introduction on different sets of coordinates will be given in
section 2.7. This average describes a volume average between two neighbouring flux surfaces.
A useful property of the flux-surface average is that it annihilates the termB ·∇, i.e.

〈B ·∇F 〉 = 0 (2.2)

for all periodic functions F (ψ, θ, ϕ).

2.3.3 Drift kinetic equation

Drift kinetic theory is concerned with processes occurring on spatial scales large compared
with the particle gyroradius scale, for example transport processes. In order for drift kinetic
theory to be valid, the plasma has to be strongly magnetised, meaning that the magnetic field
is sufficiently strong to make the bulk ion Larmor radius much smaller than the plasma dimen-
sion L, thus the relation δa ≡ ρa/L � 1 must hold. As the electrons’ gyroradius is smaller
than that of the ions by a factor of a square root of the mass ratio, electrons are automatically
included in this ordering if the ions are. In any reasonable magnetic confinement device, this
condition is usually well fulfilled. The kinetic equation can then be expanded in the small
parameter δa, which, as will become clear in the following, leads to the particle distribution
functions being approximately (to lowest order) Maxwellian and constant on flux surfaces in
toroidal devices. Thus, the problem is local, allowing a treatment on each single flux surface
separately. If δa is not small, the problem becomes non-local and instead involves a large part
of the plasma volume, which makes it impossible to look only at processes within one flux
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2. BASICS OF KINETIC TRANSPORT THEORY

surface. The derivation of a mathematically rigorous theory becomes extremely challenging
in this case.

The ordering assumptions applied to obtain the drift kinetic equation from 2.1 are δa � 1
and ∂/∂t � Ωa, where the second relation, to be interpreted mathematically in the way that
∂α/∂t � αΩa, should hold for all fields and distribution functions α. Furthermore, the flow
velocities are ordered to be one order smaller than the thermal speed, Va ∼ δavth,a. Using
guiding centre variables w = (R, εa, µa, ϑ), where εa = mav

2/2 is the kinetic energy, µa
the magnetic moment and ϑ the gyroangle, the kinetic equation can be written as

∂fa
∂t

+ Ṙ ·∇fa + ε̇a
∂fa
∂εa

+ µ̇a
∂fa
∂µa

+ ϑ̇
∂fa
∂ϑ

= Ca(fa). (2.3)

The last term on the left-hand side corresponds to the Larmor rotation of the particle and is the
largest in this equation under the given ordering assumptions as the drift term is smaller by a
factor δa and the two terms ∂fa/∂t and ε̇a∂fa/∂εa are formally small as the time derivatives
are ordered small. The magnetic moment µa is approximately conserved, and effects from
the term containing µ̇a only affect the equation in second order. As the expansion is typically
truncated after first order, the µa term can be dropped. Additionally, the collision frequency
νa is usually much smaller than the gyrofrequency, ∆a ≡ νa/Ωa � 1, so that the collision
term is smaller than the gyroterm by a factor ∆a. Therefore, the distribution function must be
independent of the gyroangle to lowest order in δa and ∆a, and it proves convenient to take a
gyro-average of eq. (2.3) to get rid of the last term and thereby reduce the number of variables
by one, yielding

∂fa0

∂t
+ ε̇a

∂fa0

∂εa
+ Ṙ ·∇fa0 = Ca(fa0).

A mathematically more accurate derivation of the drift kinetic equation is based on Hamil-
tonian mechanics, see e.g. [16]. In the following, the overbar will be dropped and fa is meant
to represent the gyroaveraged distribution function.

One can now expand the distribution function in δa as fa = fa0 + fa1 + ..., where faj =
O(δja). However, it does not make sense to include orders higher than fa1 as the drift-kinetic
equation itself is only accurate to first order in δa. In lowest order in this expansion, only two
terms remain, showing that collisions are balanced by parallel motion,

Ca(fa0) = v‖∇‖fa0 . (2.4)
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2.3. KINETIC EQUATIONS

It can be shown that the only possible solution to this equation is a stationary Maxwellian,

fa0 =
na

π3/2v3
th,a

exp−v
2/v2

th,a ,

where vth,a = 2Ta/ma ≡ x2
a is the thermal speed. To do so, multiply (2.4) by lnfa0 and

integrate over velocity space. Taking the flux-surface average of the velocity-space integrated
eq. (2.4) and exploiting (2.2) yields〈∫

(lnfa0)Ca(fa0)d3v

〉
= 0.

But one can show that

∂nasa
∂t

= −
∫

(lnfa0)Ca(fa0)d3v,

where sa is the entropy density. If only self-collisions are considered, the H-theorem implies
that the entropy change is always greater than zero, and a similar argument can be applied
for unlike particle collisions by taking a sum over all particle species, which is not shown
here. Thus, if

〈∫
(lnfa0)C(fa0)d3v

〉
is to vanish, it can only do so when the argument itself,

i.e., the collision operator, vanishes, which is the case if and only if fa0 is a Maxwellian and
the different species have equal equilibrium flow velocities and temperatures. In particular,
all lowest-order quantities, such as density and temperature of the different species and, by
quasi-neutrality, also the electrostatic potential, are flux functions.

The zeroth order solution can now be used to successively derive the higher-order correc-
tions to the Maxwellian, leading to the following equation in first order

C(fa1) = v‖∇‖fa1 + vd ·∇fa0 + ε̇a
∂fa0

∂εa
.

A major part of kinetic transport theory consists of solving this first order drift-kinetic equation
under different additional assumptions.

2.3.4 Gyrokinetic equation

Another frequently used ordering scheme leads to gyrokinetic theory, which applies to situa-
tions in which some components of the electromagnetic field are allowed to vary significantly
across a particle’s Larmor orbit. This is, e.g., often the case in linear stability analyses, in
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which the wavelengths of the perturbed fields perpendicular to the magnetic field may be
comparable to the ion Larmor radius. Consequently, so-called finite Larmor radius (FOL)
effects have to be included, meaning that the movement of the particle is not regarded as that
of a particle sitting at the guiding centre but as the movement of a charged ring around the
guiding centre. Quantities varying significantly across these short length scales are therefore
averaged over this ring (averaged over the gyroangle), as is the whole equation. As in drift
kinetics, the zeroth order (in an expansion in δa) equation is independent of the gyroangle. It
is important to note that a rigorous theory based on such an expansion is only possible if the
amplitudes of the perturbed quantities which vary on the Larmor radius scale are small (i.e.,
of order δa), otherwise the full kinetic equation has to be solved.

Averaging the kinetic equation in guiding-centre variables R, εa, µa, ϑ (eq. (2.3)) over the
gyroangle ϑ leads to

∂fa
∂t

+ (v‖b+ vd + vE) ·∇fa + ε̇a
∂fa
∂εa

+ µ̇a
∂fa
∂µa

= Ca(fa) (2.5)

as in drift kinetics, and the term containing µa vanishes to lowest order as the magnetic mo-
ment is an approximate constant of the motion. Here, fa denotes only the gyrophase indepen-
dent part of the distribution function, as the lowest order distribution in the δa expansion is
again found to be independent of the gyroangle due to the gyration term dominating over all
other terms in this ordering. However, whereas the parallel velocity v‖b and the magnetic drift
velocity ((4.3) without the E ×B term) only contain slowly varying quantities, the E ×B
velocity

vE =
b×∇φ̃

B

contains the perturbed electric potential φ̃, which is allowed to vary on the gyroscale. There-
fore,

vE =
b×∇φ̃

B
.

The overbars will be suppressed in the following, and the appearing quantities are to be under-
stood to denote the gyroaveraged quantities. Furthermore, the equation is usually linearised.

The gyrokinetic ordering is

δa ∼
k‖
k⊥
∼ eaφ̃

Ta
∼ ∂

∂t
/Ωa � 1,
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where k‖ and k⊥ are the parallel and perpendicular wave numbers, respectively. As for the
fluctuations k⊥ρa = O(1) is allowed, this implies in particular that the fluctuation scale length
is shorter than the equilibrium scale length L, and the ratio is ordered to be O(δa), such that

∇fa0 ∼∇⊥fa1 .

In this ordering, the zeroth order equation in δa becomes

v‖∇‖fa0 + vd ·∇fa0 = Ca(fa0),

the solution to which is again a Maxwellian but with finite orbit width (FOW) corrections
stemming from the drift term. In first order, one finds

∂fa1

∂t
+ v‖∇‖fa1 + vd ·∇fa1 + vE ·∇fa0 − ε̇a

∂fa0

∂εa
= Ca(fa1).

In the following, a circular, large-aspect-ratio tokamak is considered and an eikonal ansatz for
the perturbed electrostatic potential and the perturbed particle distribution functions is used,

fa1 = Fa1(r)eiS(r) and

φ̃ = φ(r)eiS(r),

where

∇⊥S ≡ k⊥ �∇Fa1 ,∇φ and

∇‖S = 0,

which is valid for perturbations whose longitudinal wavelengths are comparable to the equilib-
rium scale length L whereas the transverse wavelengths are comparable to the Larmor radius
[17]. However, when the magnetic field is sheared, this assumption poses a problem on irra-
tional flux surfaces as it is not compatible with the periodicity of the angles. To overcome this
problem, the Ballooning transform is applied. The idea is the following: the finite, physical
domain, in which periodicity of the poloidal angle is required, is replaced by an infinite do-
main without this requirement, and the integro-differential equation is solved there. One can
show the existence of solutions g(θ), decaying quickly to zero as θ → ∞. Whereas g is not
periodic, the integro-differential operator to which it is a solution is, and therefore g(θ+2πm)
is a solution as well for anym ∈ N. A periodic solution can thus be constructed by summing g
over all m. The angle θ occurring in the gyrokinetic equation after ballooning transformation
is sometimes referred to as the extended poloidal angle [18].
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Using this approach and an ansatz e−iωt for the time dependence of the perturbed distribu-
tion functions leads to

v‖
qR

∂ga
∂θ
− i(ωDa − ω)ga − Ca(ga) = −ieafa0

Ta

(
ω − ωT∗a

)
φJ0

(
k⊥v⊥

Ωa

)
, (2.6)

where

ga = fa1 +
eaφ

Ta
fa0

is the nonadiabatic part of the perturbed distribution function and q denotes the safety factor.
The Bessel function J0,

Jn(z) =
1

2π

∮
e−inγ+iz sin γdγ,

allows for a convenient representation of the gyro-averaged perturbed potential, and, for a
circular, large-aspect-ratio tokamak, the different frequencies appearing in the equation are

ωDa = − kθ
ΩaR

(cosθ + sθsinθ)
(
v2
⊥
2

+ v2
‖

)
,

ωT∗a = ω∗a

[
1 +

(
x2
a −

3
2

)
ηa

]
,

ω∗a = − kθTa
eaBLna

.

In this notation, kθ is the poloidal wave number, s = r dlnq/dr is the magnetic shear, r and R
the minor and major radius, respectively, and ηa = Lna/LTa , where the inverse radial density
and temperature scale lengths are defined as

Lna = −
(
∂lnna
∂r

)−1

and LTa = −
(
∂lnTa
∂r

)−1

.

Eq. (2.6) is the version of the gyrokinetic equation used in section 3.2. More detailed treat-
ments on the gyrokinetic equation can be found in refs. [17, 19, 20]. For a derivation involving
Lie transforms, see [21].
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2.4. COLLISION OPERATOR

2.4 Collision operator

Although they are rare, collisions play a fundamental role in magnetised fusion plasmas. In the
previous section, the operator denoted by Ca is meant to represent the full collision operator
for species a, consisting of contributions from various two-species collisions,

Ca(fa) =
∑
b

Cab(fa, fb).

The sum has to be taken over all particle species b, including a itself. As mentioned before,
the collisions are dominated by small-angle deflections. Physically, the charges in the plasma
are shielded on distances exceeding the Debye length, so particles separated by a distance
larger than λD can be assumed not to interact. Thus, for particle separation ∼ λD, small-
angle deflections occur. On the other hand, the mean value for the impact parameter of a 90◦

scattering process can be found to be

λL ≡ eaeb
4πε0Ta

,

the so-called Landau length. Comparing this quantity with the average distance between
colliding particles, one finds that they are on average too far away from each other for a
90◦ scattering if the Coulomb logarithm lnΛ ≡ λD/λL is much greater than unity. In a
typical fusion plasma, lnΛ ≈ 10 − 20, and thus fusion plasmas are dominated by small-
angle collisions. The consequence is that, instead of having to employ the full Boltzmann
collision operator, it is possible to use the simpler Fokker-Planck operator, which is obtained
by an expansion in the smallness of ∆v, the change in velocity during a collision. For a full
derivation of the Fokker-Planck operator, see [3]. The form of the collision operator found by
Landau in 1936 reads

Cab(fa, fb) = −
mav

3
th,a

2nb
ν̂ab

∂

∂vk

∫
Ukl

[
fa(v)
mb

∂fb(v′)
∂v′l

− fb(v′)
ma

∂fa(v)
∂vl

]
d3v′,

where

Ukl ≡
|v − v′|2δkl − (vk − v′k)(vl − v′l)

|v − v′|3
,
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v − v′ expressing the relative velocity between the colliding particles, and

ν̂ab ≡
nbe

2
ae

2
b lnΛ

4πε20m2
av

3
th,a

denotes the non velocity-dependent part of the collision frequency

νabD = ν̂ab
Erf(xb)−G(xb)

x3
a

.

Erf(x) ≡ 2/
√
π
∫∞

0 exp(−t2)dt denotes the error function, and

G(x) ≡ Erf(x)− x Erf′(x)
2x2

is the so-called Chandrasekhar function. Note that the collision frequency is not defined in a
way describing the frequency at which every single collision occurs, but rather such that 1/ν̂ab
is the time it takes until an average particle has effectively been scattered by a 90◦ angle. The
collision operator above does not include fusion reactions, which are much less frequent than
Coulomb scattering, and conserves particles as well as momentum and energy. Furthermore,
it is Galilean invariant and can be shown to always lead to positive entropy production [3],
thereby driving the system towards thermodynamic equilibrium. As mentioned before, the
equilibrium distribution itself is a Maxwellian distribution with equal temperatures and flow
velocities for all particle species a.

2.4.1 Linearised collision operator

The full Coulomb collision operator is bilinear, i.e.

Cab(λ(fa + ga), µ(fb + gb)) = λµ [Cab(fa, fb) + Cab(fa, gb) + Cab(ga, fb) + Cab(ga, gb)]

for any constants λ, µ and distribution functions fa, ga, fb, gb. In particular, the self-collision
operator is nonlinear since

Caa(λfa) = Caa(λfa, λfa) = λ2Caa(fa),

which can complicate any equation involving the collision operator enormously. However,
fusion plasmas are usually close to local thermodynamic equilibrium, and thus the distribution
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functions deviate only slightly from a Maxwellian,

fa = fa0 + fa1 with
fa1

fa0

� 1.

Substituting this expression into the collision operator yields the following expression for the
linearised operator,

Cab(fa, fb) = Cab(fa0 + fa1 , fb0 + fb1) ' Cab(fa1 , fb0) + Cab(fa0 , fb1) ≡ C lab(fa, fb),

where the term containing the two Maxwellian distributions vanishes for equal particle tem-
peratures, and the term Cab(fa1 , fb1) is quadratic in the perturbation and thus small. The
linearised operator has the same properties regarding particle, momentum and energy conser-
vations as the full operator. Throughout the rest of the thesis, Cab will be understood to denote
the linearised collision operator without adding the superscript l.

2.4.2 Other approximate collision operators

When considering collisions between particles of very disparate masses, further significant
simplifications of the full collision operator are possible. They will be described in the subse-
quent sections and frequently be employed throughout the thesis.

Disparate mass ratio

If the speeds at which two colliding different particles move are very disparate, which is
usually the case if one species is much heavier than the other as the temperatures do not
tend to differ too much, the collision operator can be simplified using the mass ratio as a
small parameter. The point is that, as seen from a particle of the lighter (and thus much
faster) species, the distribution of the heavy species in velocity space can be approximated
with a delta function around the mean flow velocity. If a denotes the lighter species, then the
simplified operator becomes

Cab(fa) = νab(v)
(
L (fa) +

ma

Ta
v ·Vbfa0

)
.

It is accurate in the limitma/mb → 0. Here, in spherical velocity-space coordinates (r, θ∗, ϕ∗),

L (fa) =
1
2

[
1

sinθ∗
∂

∂θ∗

(
sinθ∗

∂fa
∂θ∗

)
+

1
sin2θ∗

∂2fa

∂ϕ∗2

]
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is the so-called Lorentz scattering operator, accounting for the fact that in the case of dis-
parate mass ratio pitch-angle scattering is the most important mechanism; it does not alter the
magnitude of the velocity but describes diffusion in velocity space on a sphere v = const.
Therefore, Legendre polynomials

Pn(ξ) =
1

2nn!
dn

dξn
[
(ξ2 − 1)n

]
are eigenfunctions of this operator, where ξ ≡ v‖/v. Consequently, as v‖ is proportional to
the first Legendre polynomial, one can derive the useful relationL (v‖) = −v‖.

Another useful property is the Lorentz operator’s self-adjointness in the sense that

S[f̂a, ĝa] ≡
∫
F (v)ĝaL (fa0 f̂a)d

3v =
∫
F (v)f̂aL (fa0 ĝa)d

3v = S[ĝa, f̂a].

The collision frequency can be simplified to νabD = ν̂ab/x
3
a. In particular, for the case

of collisions between electrons and ions, the collision operator does not depend on the ion
mass but only on the charge, yielding the simple expression for the total electron-ion collision
operator (assuming that all ion species are stationary)

Cei(fe) = Zeffν
ei
DL (fe).

On the other hand, for collisions between the heavier and the lighter species, the most
dominant effects are friction and energy exchange, yielding

Cba(fb) =
Rab

mbnb
· ∂fb
∂v

+
mana
mbnbτab

∂

∂v
·
[
(v − V b)fb +

Ta
mb

∂fb
∂v

]
,

where τab = 3
√
π/(4ν̂ab) and Rab denotes the friction force between particle species a and

b. However, this type of collisions can usually be neglected compared with self collisions of
the heavy species as Cba is smaller than Caa by a factor

√
ma/mb � 1. Energy exchange is

usually even smaller than the friction contribution.

Self collisions

Although the linearised collision operator is much simpler than the full one, for many pur-
poses, especially for analytical calculations, it is still far too complicated. Thus, a frequently
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employed model operator for self collisions, again based on the observation that, under many
circumstances, pitch-angle scattering is the most important process, reads

Caa(fa) = νaaD

(
L (fa) +

ma

Ta
v ·uafa0

)
.

After its inventor, this operator is sometimes also referred to as the Connor operator [22].
Here, the term involving

ua =
∫
vνaaD (v)fad3v∫

νaaD (v)mav2/(3Ta)fa0d
3v

is constructed to restore momentum conservation, as the Lorentz operator itself does not have
this property. Note that it strongly resembles the operator for disparate mass ratio. However,
although it satisfies particle, momentum and energy conservation and is Galilean invariant as
the full operator, it has certain drawbacks. Strictly speaking, it is only accurate for weakly-
collisional plasmas in the limit of large aspect-ratio, ε → 0, in tokamaks, as in this case the
distribution function has a boundary layer localised to the trapped and barely passing region,
where pitch-angle scattering plays the dominant role.

2.5 Fluid description

For most applications, the microscopic behaviour of the plasma is not very relevant; what
matters are the macroscopic properties. Experimentally measurable quantities are not distri-
bution functions, but rather densities, flow velocities etc. Therefore, it is often sufficient to
take moments of the kinetic equation instead of solving it directly. The quantities appearing
in these equations are then the different moments of the distribution functions, the first few
of which, density, temperature, pressure, and flow velocity, have already been introduced in
section 2.2. Higher moments of relevance include the heat flux qa and the components of the
viscosity tensor, πajk ,

qa ≡ na

〈
ma|v − V a|2

2
(v − V a)

〉 ∣∣∣∣
f

,

πajk ≡ mana
〈
(vj − Vaj )(vk − Vak)

〉 ∣∣
f
,
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and the related fluxes of energy and momentum,

Qa ≡
mana

2
〈
v2v
〉 ∣∣
f
,

Πajk ≡ 〈manavjvk〉 |f .

In a similar way, moments can be taken of the entire kinetic equation. Integrating (2.1) over
velocity space leads to the continuity equation

∂na
∂t

+ ∇ · (naV a) = 0,

where the right-hand side vanishes as particles are conserved during Coulomb collisions and
thus ∫

Ca(fa)d3v = 0.

Taking the velocity moment of (2.1) yields the momentum equation

mana
∂V a

∂t
+ ∇ ·Πa = naea(E + V a ×B) +Ra.

The friction forceRa describes the momentum transfer during unlike-particle collisions,

Ra =
∫
mavCa(fa)d3v,

and, as momentum must be conserved, in particular∫
mavCab(fa)d3v = −

∫
mbvCba(fb)d3v

and ∫
mavCaa(fa) = 0.

34



2.5. FLUID DESCRIPTION

The third equation of importance, the energy equation, is obtained by taking the mav
2/2

moment of (2.1)

∂

∂t

(
3naTa

2
+
manaV

2
a

2

)
+ ∇ ·Qa = eanaE ·V a +

∫
mav

2

2
Ca(fa)d3v.

Again, as energy must be conserved during collisions,

∫
mav

2

2
Cab(fa)d3v = −

∫
mbv

2

2
Cba(fb)d3v

and consequently

∫
mav

2

2
Caa(fa)d3v = 0.

From the equations above, it becomes obvious that solving one of the moment equations re-
quires knowledge of the moments of the distribution function of one order higher, and thus
the problem of closure arises, i.e., finding a way of reasonably approximating this infinite hi-
erarchy of equations with a finite number of equations. Entire books have been written on that
subject; two principal methods involve truncation schemes and asymptotic schemes. In trun-
cation schemes, higher-order moments are arbitrarily assumed to vanish or simply expressed
through lower moments, which are easy to handle but intrinsically involve uncontrolled ap-
proximations. Asymptotic schemes, on the other hand, rely on a mathematically rigorous
expansion in a small parameter, having the advantage of providing some error estimates, but
tend on the other hand to be mathematically challenging. A classic asymptotic scheme for
a collisional neutral gas is the Chapman-Enskog [23–25] method, based on an expansion in
the smallness of the ratio of the mean-free path to the macroscopic scale length. For fusion
applications, i.e., in a magnetised plasma, a rigorous theory is usually derived from an expan-
sion in the small parameter δa already introduced, and, further, the shortness of the mean-free
path compared with the system size. Applying the Chapman-Enskog method to a collisional
plasma leads to the well-known Braginskii equations [26]. However, a fluid approach for fu-
sion plasmas is only possible in regions where the mean-free path is indeed short, i.e., the
collisional Pfirsch-Schlüter regime. In less collisional regimes, finding an appropriate way of
closing the fluid equations becomes extremely challenging, and one usually has to resort to a
full solution of the kinetic equation.
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2.6 Intrinsic ambipolarity

In the conventional neoclassical ordering described in the previous sections, angular momen-
tum is approximately conserved in axisymmetric systems. This has important consequences
for the neoclassical particle flux, making it intrinsically ambipolar to lowest order, i.e.,

∑
a

ea 〈Γa ·∇ψ〉 = 0, (2.7)

where the sum is taken over all particle species and Γa is the particle flux of species a. Con-
sequently, ambipolarity is automatically maintained. Related to this property is the influence
of a radial electric field. Applying such a field in a tokamak leads to a purely toroidal rotation
of all the particles on one flux surface simultaneously. Due to the Galilean invariance of the
system, the radial electric field has little influence on the physics of the system. In particular,
eq. (2.7) always holds, independently of the radial electric field. That means in particular that
any radial electric field can be applied, which leads to a corresponding rotation, meaning that
a tokamak plasma can rotate freely.

The situation is different in a stellarator. The lowest order neoclassical particle fluxes are
not ambipolar, i.e., one of the particle species may escape faster than the others. As a conse-
quence, a radial electric field builds up, which enhances the confinement of the fast escaping
species until the net transport is ambipolar again. This radial electric field is called the am-
bipolar electric field. Depending on the plasma parameters, in particular on the electron and
ion temperatures, different stable equilibrium points exist; for usual parameters, when the
electron and ion temperatures do not differ too much, the ions tend to escape faster, leading
to negative values for the ambipolar electric field. This scenario is called ion root operation.
For high electron temperatures, the ambipolar electric field is positive (electron root), and in
between there exist regimes where several values are possible (multiple roots). An important
consequence is that the radial electric field is clamped at the value set by ambipolarity, and
therefore sets the speed at which the plasma can rotate. Thus, a stellarator plasma cannot
rotate freely [27]. Furthermore, as the rotation velocity is not uniform on the flux surface, it is
not possible to transform to a system moving with a constant angular velocity without altering
the structure of the equations, and consequently the radial electric field does influence stel-
larator physics. This will become important for the stellarator transport problems addressed
in section 4.

2.7 Coordinate systems

In this section, the coordinate systems used in the subsequent sections shall be introduced. As
the geometry advantages in axisymmetric systems allow for significant simplifications in the
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representation of the magnetic field, it is helpful to use different coordinates for tokamaks and
stellarators.

2.7.1 Coordinates for axisymmetric systems

Defining the magnetic field B as the curl of a vector potential A, one can find the following
representation

B = ∇×A = BReR +Bϕeϕ +Bzez

in cylindrical coordinates (R,ϕ, z). In an axisymmetric, toroidal system, all derivatives with
respect to the toroidal angle ϕ vanish, and ϕ is usually defined to vary in the clockwise direc-
tion when viewed from above (contrary to the commonly used cylindrical angle). Therefore,
er × ez = eϕ. The toroidal part of the magnetic field is in the direction of ∇ϕ = eϕ/R and
can be written as [3]

Bt ≡ Bϕeϕ = I(R, z)∇ϕ,

whereas the poloidal field is expressed as

Bp ≡ BReR +Bzez =
∂Aϕ
∂z

eR −
1
R

∂(RAϕ)
∂R

ez = ∇ϕ×∇ψ,

with

ψ ≡ −RAϕ(R, z)

being the poloidal flux function. From Ampere’s law and the equilibrium condition that the
magnetic pressure must be balanced by the outer pressure, it is possible to show that I(R, z) =
I(ψ) [3]. The two terms can be combined to yield a convenient representation of the magnetic
field,

B = I(ψ)∇ϕ+ ∇ϕ×∇ψ.

This representation will be used in the tokamak calculations in chapter 3. The Jacobian for
the set of coordinates (ψ,ϕ, θ) is

√
g =

1
|(∇ϕ×∇ψ) ·∇θ|

=
1

|B ·∇θ|
.
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2.7.2 Coordinates for full 3D geometry

Unfortunately, the magnetic field of a stellarator does not have such a simple representation.
The most convenient sets of coordinates are so-called magnetic coordinates. The derivation
requires the assumptions that the equilibrium condition j0 × B = ∇p0, where j0 is the
equilibrium current and p0 the equilibrium pressure, is satisfied and that surfaces of constant
p0 form nested toroids. Let θ and ϕ denote arbitrary poloidal and toroidal angles with period
2π, respectively; fromB ·∇p0, it follows that the magnetic field can be written as

B = B1(p0, θ, ϕ)∇p0 ×∇θ +B2(p0, θ, ϕ)∇ϕ×∇p0,

and, after a bit of algebra, as

B = ∇ψ ×∇θ + ∇ϕ×∇χ

for some functions ψ(p0) and χ(p0). Originating from this representation, the rotational
transform ι is defined as

ι =
(∇ϕ×∇χ) ·∇θ

(∇ψ ×∇θ) ·∇φ
=

1
q

where q is the safety factor usually used in tokamak literature.

An alternative representation for the magnetic field can be derived exploiting the conditions
∇ · j = 0 and j ·∇p0 = 0 as well as Ampère’s law, µ0j = ∇ ×B. One can show that it
must then be possible to writeB as

B = I∇θ + J∇ϕ+ ν∇ψ + ∇F, (2.8)

where I = I(ψ) and J = J(ψ) are flux functions and the two arbitrary functions ν(ψ, θ, ϕ)
and F (ψ, θ, ϕ) can be further simplified using the fact that (2.8) does not change its structure
when replacing the angle coordinates as

θ → θ′ + ιw

φ→ φ′ + w

for any well-behaved function w which is periodic in both angles. As there is the freedom to
choose w appropriately, magnetic coordinates are not uniquely defined, and different Ansätze
for the choice of w have been tried and found convenient, e.g. so-called Hamada coordinates,
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where w is chosen such as to make the Jacobian a flux function. Another example are Boozer
coordinates, where w is chosen in such a way that F vanishes, leading to

B = I(ψ)∇θ + J(ψ)∇ϕ+ β(ψ, θ, ϕ)∇ψ.

I and J can be associated with the toroidal and poloidal currents, respectively. The Jacobian
becomes

1
√
g

= (∇ψ ×∇θ) ·∇φ =
B2

ιI + J
.

This is the set of coordinates used in the stellarator calculations in chapter 4; note, however,
that different normalisations are used for Boozer in the literature.
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3 Aspects of impurity transport in Tokamaks

In this chapter, two turbulence-related problems which arise in axisymmetric devices are stud-
ied. The first part deals with the effects of heavy impurity ions on the collisional damping of
zonal flows and the consequences for plasma confinement. The second part addresses the
topic of microinstabilities and the quasilinear particle fluxes as well as the behaviour of the
unstable modes responsible for the production of the turbulence in the presence of impurities.

3.1 Effect of impurities on collisional zonal-flow damping in
tokamaks

Zonal flows, which have been introduced in section 1.3.3, are nowadays widely accepted to
play a crucial role in reducing turbulent fluxes by shearing apart turbulent eddies, thereby im-
proving the confinement considerably. As they are produced by the turbulence itself, on which
they back react to suppress it, they are intrinsically characterised by complicated nonlinear
processes involving a multitude of different driving and damping mechanisms, the interplay
of which has not yet been fully understood and therefore has attracted a lot of attention. The
damping of these flows can be important. One question which arises is thus which damping
mechanisms occur and how strong they are. As already mentioned, the poloidal and toroidal
symmetry of the zonal flows prevents them from being Landau-damped, which provides a
rather strong damping mechanism for any waves with finite wave numbers, and as a conse-
quence the relative importance of collisional damping is enhanced. The presence of heavy,
highly charged impurity ions, whose collision frequency exceeds that of hydrogenic bulk ions
notably (by a factor Z3/2), is therefore expected to influence this delicate balance by speeding
up the damping process. The purpose of the work presented in this section was to establish
whether and to which extent this is the case, and the results can be found in [28].

3.1.1 Rosenbluth-Hinton problem

In an attempt to understand the fundamental mechanisms and processes involved in the com-
plicated creation and destruction processes of zonal flows, analytical theory can be a powerful
tool to accompany numerical simulations, which, while being applicable to a much broader
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3. ASPECTS OF IMPURITY TRANSPORT IN TOKAMAKS

range of problems, unavoidably constitute a black box producing results according to the input
parameters but without giving any further explanation of why this result was achieved. In the
case of the zonal-flow problem, Rosenbluth and Hinton developed a theory to short-circuit the
problem of nonlinear feedback between the turbulence and the zonal flows, which of course
is far too complicated to be described with analytical theory. The idea is to assume that an
initial potential perturbation corresponding to a zonal-flow potential has already been created
by turbulence and impose a short-wavelength radial electric field as an initial condition. Then,
the linear response of the plasma to this potential perturbation is calculated. As the ion or-
bits can move radially to some extent, the plasma is polarisable and is thus able to partially
shield out the externally applied electric field, and the question is then how the electric field
evolves with time. The exact time evolution is not necessarily of importance but rather the
state of the plasma after some time has passed. The answer to this question is sufficient to
get some first ideas about the relative importance of the damping processes without having
to calculate the full nonlinear dynamics; if the potential is quickly shielded out completely or
nearly completely, the time scale might be too short for the corresponding zonal flows to have
an influence on the turbulence. However, if the shielding is weak and the potential persists
for a long time, it may be enough to know how large the influence of such a potential on the
turbulence is without having to know the full feedback circle.

Polarisation of the plasma

Polarisation has two different sources, the first being the gyration of the ions around the mag-
netic field lines, thereby allowing them to leave the corresponding flux surface by a distance of
the order of the ion Larmor radius. In accordance with the transport nomenclature, this effect
is called classical polarisation. The second, dominant part of the polarisation originates from
the much greater departure of the guiding centres from the flux surfaces (see section 1.3.1)
and is accordingly called neoclassical polarisation. It has proven convenient to express the
potential response in terms of the neoclassical polarisation.

Time evolution, Rosenbluth-Hinton test

If the plasma is in the “banana” regime, where the collision time exceeds the ion bounce time,
the evolution of the initial potential occurs in different stages: on the very fast time scale
of the ion gyromotion, the plasma acquires an E × B drift perpendicular to the magnetic
field. On the longer time scale of the ion bounce motion, the plasma starts moving in the
parallel direction, and this motion is modified again on the yet longer time scale of ion-ion
collisions, which damp the flows and compel the plasma ions to be Maxwellian as t → ∞.
A particle-in-cell simulation of the collisionless potential evolution is shown in fig 3.1. The
time steps on the x axis are normalised to the ion gyromotion, i.e. to Ω−1

i . The electrostatic
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FIGURE 3.1 PIC simulation (EUTERPE) of the collisionless pure-plasma po-
tential response (Source: Ralf Kleiber).

potential on the y axis is given in arbitrary units. As is visible from the figure, the first thing
to happen, after some ion gyrations, is that the plasma starts oscillating. These oscillations
are called geodesic acoustic modes. As they get Landau damped on time scales much faster
than that on which collisional damping occurs, they do not influence the considered problem
and will therefore not be addressed any further in the following. Superimposed on the Landau
damping of the geodesic acoustic modes is a global drop of the potential due to the plasma
polarisation. If collisions, which lead to a further global damping on a third, and much longer,
time scale, are absent, the electrostatic potential does not decay entirely to zero but instead
reaches a finite value, the so-called zonal-flow residual (the fluctuations which are still visible
in the figure at these late times are no plasma oscillations but due to numerical noise). This
result, found by Rosenbluth and Hinton [29], is of great importance as it shows that zonal
flows do not get shielded entirely in a collisionless plasma, with severe consequences for
transport and plasma confinement. For gyrokinetic [30] and gyrofluid [31, 32] simulations of
zonal flows, this property provides an excellent benchmark, and the procedure has become
known as the Rosenbluth-Hinton test. When collisions are present, the residual is reduced to
a much lower level, as shown analytically for a pure plasma by Hinton and Rosenbluth [33]
using a variational principle and later on by Xiao, Catto and Molvig [34] via an eigenfunction
expansion technique, which is the method the calculation in this section is based on. The
analytic calculation of the collisionless residual is shown in section 3.1.5, followed by the
solution of the full multi-species collisional problem, including strongly collisional, highly
charged impurities, in the subsequent sections.
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3.1.2 Basic equations

Throughout this section, a plasma in the banana regime consisting of hydrogenic bulk ions
and a single species of highly charged impurities is considered, where explicitly Z � 1 and

Z2nz
ni
∼ Zmi

mz
∼ 1,

i.e. Zeff − 1 ∼ 1.

3.1.3 Kinetic equation

For each species, the drift kinetic equation introduced in section 2.3.3 reads

∂fa
∂t

+ (v‖ + vd) ·∇fa + ε̇
∂fa
∂ε

= Ca(fa) (3.1)

where vd = b ×∇φ/B + (v2
⊥/2 + v2

‖ )b ×∇lnB/Ω is the drift velocity, ε = mav
2/2 the

kinetic energy of the particles and ε̇ = −ea(v‖ + vd) ·∇φ represents a drive in form of a
given electrostatic zonal flow potential φ(ψ, t), ψ being the flux surface label. Expanding in
the smallness of δi as described earlier, one finds the lowest-order time-dependent equation

∂fa0

∂t
+ v‖∇‖fa0 = C(fa0).

In equilibrium (when t → ∞), the time derivative must vanish, and thus the zeroth-order
distribution functions are stationary Maxwellians as shown in section 2. In first order, em-
ploying the typical ordering in the banana regime of small effective collision frequency,
(νzzD qR)/(ε3/2vthz)� 1, yields

∂fa1

∂t
+ v‖∇‖

(
fa1 +

Iv‖
Ωa

eaφ
′

Ta
fa0

)
= C(fa1).

Here, νzzD is the impurity collision frequency, q the safety factor, R the major radius and
vthz the impurity thermal velocity. The non-vanishing term vd ·∇fa0 was dropped as it
causes ordinary neoclassical transport, which adds linearly to the effect of interest. ε ≡
r/R0 is the inverse aspect ratio with minor radius r and the on-axis value of the major
radius R0. The term containing the energy derivative has been rewritten as ε̇∂fa0/∂ε =
v‖fa0∇‖(Iv‖/Ωa)eaφ′/Ta, where a prime always denotes derivation with respect to ψ (see
appendix at the end of this chapter). This notation suggests splitting off the adiabatic part from
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the distribution function by letting

fa1 = ga −
Iv‖
Ωa

eaφ
′

Ta
fa0 .

If one assumes the distribution function to vary on time scales much longer than the bounce
time τb and the collision frequency ν to be much smaller than the bounce frequency ωb, it is
possible to further expand ga to find in zeroth order

v‖∇‖ga0 = 0, (3.2)

and then in first order

∂ga0

∂t
− Iv‖

Ωa

ea
Ta

∂φ′

∂t
fa0 + v‖∇‖ga1 = C(fa1). (3.3)

Conveniently, only the passing particle distribution has to be calculated, as ga0 can be shown
to vanish in the trapped region [3]. To this end, note first that ga0 must be an even function
of σ ≡ v‖/|v‖| since this must be true at the bounce points (the points where the trapped
particles turn around) where v‖ vanishes, and consequently everywhere as (3.2) implies that
∂ga0/∂θ = 0. Rewriting the parallel gradient in eq. (3.3) in terms of a θ derivative and
integrating between the bounce points yields

θb∫
−θb

dθ

B ·∇θ

B

σ|v‖|

(
Ca(fa1) +

Iv‖
Ω

ea
Ta

∂φ′

∂t
fa0 −

∂ga0

∂t

)
= ga1(θb)− ga1(−θb).

Taking the difference of the σ = +1 and the σ = −1 version annihilates all terms odd in σ
(note that this also holds for the parts of fa1 proportional to v‖ on which the collision operator
acts, as the σ dependence is not influenced by this operation), and from the remaining terms
one finds

θb∫
−θb

dθ

B ·∇θ

B

|v‖|

(
Ca(ga0(σ = 1)) + Ca(ga0(σ = −1))−

(
∂ga0(σ = 1)

∂t
+
∂ga0(σ = −1)

∂t

))
= 0.

But this relation can only be satisfied if ga0 is odd in σ, and it therefore vanishes identically
in the whole trapped region. Thus, only particles with 0 ≤ λ ≤ λc ≡ B0/Bmax matter,
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where the pitch-angle variable λ is defined as λ = v2
⊥B0/

(
v2B

)
. Furthermore, B0 is defined

via B2
0 = 〈B2〉, where angular brackets denote the flux-surface average. Multiplying (3.3) by

B/ξ, ξ ≡ v‖/v, and taking the flux surface average annihilates the parallel gradient, so that
the differential equation which needs to be solved becomes〈

B

ξ

(
∂ga0

∂t
− C(fa1)

)〉
=
ma

Ta
Ivfa0

∂φ′

∂t
, (3.4)

together with the boundary condition ga0(λc) = 0 needed for continuity of the distribution
function at the trapped-passing boundary. This equation will be solved in section 3.1.6 for
both bulk ions and impurities, taking into account the different collisional behaviour of the
two species.

3.1.4 Neoclassical polarisation

In order to study the response of the plasma to a zonal flow potential, the kinetic equation of
the previous section can be coupled with the gyrokinetic quasineutrality condition in the limit
of small ion gyroradius (k⊥ρi � 1, where k⊥ is the perpendicular wave number),

ene =
∑
a=i,z

ea

(
Na + ∇ ·

(
na

ΩaB
∇φ

))
,

where na denotes the number density for the respective species and Na the guiding centre
density which is defined by

Na(Ra) =
∫
f(Ra,v, t)d3v

∣∣∣
Rafixed

whereRa = r− b×v/Ωa is the guiding-centre position of the species a. Since the electrons
are frozen into the field, the electron density is conserved and one gets

∂

∂t

[
Ni + ZNz + ∇ ·

(
(mini +mznz)∇φ

eB2

)]
= 0. (3.5)

Taking the flux surface average and using the relation

〈∇ ·A〉 =
1
V ′

∂

∂ψ
V ′ 〈A ·∇ψ〉 ,
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which holds for any vector A and where V (ψ) is the volume within the flux surface ψ, one
can rewrite (3.5) as

∂

∂t

〈
(mini +mznz)|∇ψ|2

B2
φ′

−
∫
Iv‖
B

(
migi0 +mzgz0 −

Iv‖
B
φ′
(
m2
i

Ti
fi0 +

m2
z

Tz
fz0

))
d3v

〉
= 0, (3.6)

where

∂ 〈Na〉
∂t

= − 1
V ′

∂

∂ψ
V ′
〈∫

fa1vd ·∇ψd3v

〉
= − 1

V ′
∂

∂ψ
V ′
〈∫

gav‖∇‖
(
Iv‖
Ωa

)
d3v

〉
=

1
V ′

∂

∂ψ
V ′
〈∫

Iv2
‖

Ωa
∇‖gad3v

〉
− 1
V ′

∂

∂ψ
V ′
〈
B∇‖

(∫
v‖
B
ga
Iv‖ma

eB
d3v

)〉
︸ ︷︷ ︸

=0

= − 1
V ′

∂

∂ψ
V ′
〈∫

Iv‖
Ωa

(
∂ga0

∂t
− Iv‖

Ωa

ea
Ta

∂φ′

∂t
fa0 − Ca(fa1)

)
d3v

〉
.

was used. Note that the terms containing the collision operator drop out due to momentum
conservation. Noticing that〈

I

B

∫
mav‖fa1d

3v

〉
=

〈
manaRVa‖b · eϕ

〉
= L‖

is the angular momentum of the parallel motion while that of the perpendicularE×B motion
is

L⊥ =
〈
mana

b×∇φ

B
·Reϕ

〉
=
〈
mana

Ib−RBeϕ

B
·Reϕ

〉
φ′

= mana

〈
I2

B2
−R2

〉
φ′ = −mana

〈
|∇ψ|2

B2

〉
φ′,

one finds that eq. (3.6) represents the conservation of toroidal angular momentum. Here Va‖
denotes the parallel velocity of the particle species a, b is the unit vector along the magnetic
field and eϕ the unit vector in the ϕ direction.
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For later calculations, it is convenient to Laplace transform the equations and choose the
initial conditions such that there is no initial parallel rotation of the plasma, i.e. fi1(0) =
fz1(0) = 0, to yield

〈
−
∫
Iv‖
B

(
miĝi0 +mz ĝz0 −

Iv‖
B
φ̂′(p)

(
m2
i

Ti
fi0 +

m2
z

Tz
fz0

))
d3v

+
(mini +mznz)|∇ψ|2

B2
φ̂′(p)

〉
=

1
p

〈
(mini +mznz)|∇ψ|2

B2

〉
φ(0),

or, using

I2

B2
ma

∫
ma

Ta
v2
‖fa0d

3v = mana
I2

B2
,

〈
(mini +mznz)R2

〉
φ̂′(p)−

〈∫
Iv‖
B

(mz ĝz0 +miĝi0)d3v

〉
=

1
p

〈
(mini +mznz)|∇ψ|2

B2

〉
φ(0).

Laplace transformed quantities are denoted by a hat. Thus, if defining the neoclassical polari-
sation P̂ as

P̂ =
∑
a=i,z

〈
I

B

∫
mav‖ĝa0d

3v

〉/∑
a=i,z

〈
manaR

2
〉
φ̂′,

one can represent the potential response as

φ̂′(p) =
1
p
φ′(0)

〈 |∇ψ|2
B2

〉
〈R2〉 (1− P̂ )

.

Note that ĝa0(p) was anticipated to be proportional to φ̂′(p) and the initial condition on the
distribution function was taken to be fa1(t = 0) = 0. The main remaining task is now to
calculate the polarisation P̂ , which requires calculating the distribution functions of all the
different particle species.
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3.1.5 Collisionless response

For the simplest case of a collisionless plasma, (3.4) can easily be integrated without Laplace
transforming to yield the circulating part of the distribution

ga0 = Iv
ma

Ta

〈
B

ξ

〉−1

φ′fa0 . (3.7)

Thus, eq. (3.6) reads

∂φ′
∂t

∑
a=i,z

〈
mana

|∇ψ|2

B2
− I2m

2
a

Ta

∫
v‖
B
fa0

(〈
B

v‖

〉−1

H

(
1− λ B

B0

)
−
v‖
B

)
d3v

〉
,

where the Heaviside step function H accounts for the fact that ga0 must vanish in the trapped
region, and, with the same initial condition as before, namely fa0(0) = 0, the ratio between
the potential at time t and the initial potential becomes

φ′(t)
φ′(0)

=

∑
a=i,z

〈
mana

|∇ψ|2
B2

〉
∑
a=i,z

(〈
mana

|∇ψ|2
B2

〉
− I2m

2
a

Ta

〈∫ v‖
B fa0

(〈
B
v‖

〉−1
H
(

1− λ B
B0

)
− v‖/B

)
d3v

〉).

For a large-aspect-ratio tokamak with circular flux surfaces one can calculate the integrals in
the denominator by expressing them through elliptic functions:〈∫

v‖
B

ma

Ta

(〈
B

v‖

〉−1

H

(
1− λ B

B0

)
−
v‖
B

)
fa0d

3v

〉

=

∞∫
0

2π
mav

2

Ta
fa0v

2dv

〈∫ (〈
B

ξ

〉−1

H

(
1− λ B

B0

)
− ξ

B

)
dλ

〉

=
3na
2B0


λc∫

0

(〈
B

ξ

〉−1

−
〈
ξ

B

〉)
dλ

︸ ︷︷ ︸
I1

−

〈 B0
B∫

λc

ξ

B
dλ

〉
︸ ︷︷ ︸

I2

 ,

where λc ≡ B0/Bmax.
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Note that the first term vanishes in the trapped region as it is odd in σ. Starting with the
second integral and using the cylinder approximation B ·∇θ ≈ Bp/r, which holds approxi-
mately in a large-aspect-ratio tokamak and where Bp denotes the poloidal magnetic field, one
gets

I2 =
∮

dθ

B ·∇θ

B0/B(θ)∫
λc

ξ

B
dλ
/∮ dθ

B ·∇θ

≈ 1
2πB0

B0/Bmin∫
λc

dλ

θb∫
−θb

√
1− λ(1− εcosθ) dθ

=
1
πB0

B0/Bmin∫
λc

dλ

θb/2∫
−θb/2

√
2ε

2εk2 + 1

√
k2 − sin2ϑ dϑ

where ϑ = θ/2, k2 ≡ sin2θb/2 = (1 − λ(1 − ε))/(2ελ) is the so-called trapping parameter
and the change in the order of integration has been accounted for by taking the second integral
between the bounce points θb and−θb only. Changing again the integration variable according
to sinϑ = ksinx, one can rewrite this expression as

I2 =
2
πB0

B0/Bmin∫
λc

dλ

√
2ε

2εk2 + 1
[
(k2 − 1)K(k) + E(k)

]
,

where E and K are the complete elliptic integrals of first and second kind, respectively, de-
fined as

E(k) ≡
π/2∫
0

√
1− k2sin2x dx and K(k) ≡

π/2∫
0

dx√
1− k2sin2x

,
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and, finally, as

4(2ε)3/2

πB0

1∫
0

[(k2 − 1)K(k) + E(k)]kdk

=
4(2ε)3/2

πB0

1∫
0

k3K(k) + k2 d

dk
E(k)dk

where E(k)−K(k) = kd/dk E(k) was used. These integrals can be found in tables, and

I2 =
8

9π
(2ε)3/2

B0
+O(ε2).

For the calculation of I1, one needs〈
ξ

B

〉
=

∮
ξ

B

dθ

B ·∇θ

/∮ dθ

B ·∇θ

≈ 1
2πB0

2π∫
0

√
1− λ(1− εcosθ)dθ

=
2
πB0

√
2ε

2ε+ k2
E(k),

where now k2 = 2ελ/(1− λ(1− ε)), and

〈
B

ξ

〉−1

≈ 2π∮
B/ξdθ

=
π

2B0

√
2ε

2ε+ k2

1
K(k)

.

Thus,

I1 ≈ (2ε)3/2

B0

1∫
0

[
π

2K(k)
− 2E(k)

π

]
dk2

k5
,
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which can be calculated numerically to yield

I1 ≈ −0.1028
(2ε)3/2

B0
+O(ε2).

Consequently, the full integral equals

3
2B0

na(I1 − I2) ≈ −1.64na
ε3/2

B2
0

+O(ε2),

a value which appears repeatedly in neoclassical transport theory. Inserting this value into the
formula for the potential response, one gets

φ̂′(p) =

∑
a

〈
mana

|∇ψ|2
B2

〉
∑
a
〈manaR2〉(1− P̂ )

φ′(0)
p

≈

∑
a
manaR

2B
2
p

B2∑
a
mana

r2

q2

(
1 + 1.64 q2√

ε

) φ′(0)
p

=
1

1 + 1.64 q2√
ε

φ′(0)
p

,

which is the classical Rosenbluth-Hinton result [29] for the collisionless potential response
and the same result as in a pure plasma.

In the next sections, the potential response is calculated for the case where collisions are
included.

3.1.6 Collisional potential response

In order to obtain the collisional potential response, it is necessary to solve the drift kinetic
equations for both particle species. It is slightly easier to do so for the impurities, as impurity-
ion collisions are less frequent than impurity self collisions by a factor of 1/

√
Z and can

therefore be neglected. Thus, the impurity problem is analogous to the problem in a pure
plasma. The solution can afterwards be used to solve for the ion distribution.
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Impurities

Self collisions are included in the model derived in section 3.1.3 using the linearised model
operator introduced in section 2.4,

Czz(fz1) = νzzD

(
L (fz1) +

mz

Tz
v‖uz‖fz0

)
,

where the term containing uz‖ has been added to restore momentum conservation and can be
calculated from the constraint∫

v‖Czz(fz1)d3v = 0.

In order to solve eq. (3.4), an eigenfunction expansion technique [35] is used for the Lorentz
operator, which can be expressed in terms of the pitch angle variable λ as

L =
2ξB0

B

∂

∂λ
λξ

∂

∂λ
,

and the distribution function is expanded in eigenfunctions Λn(ψ, λ), determined by the eigen-
value problem〈

B

ξ
L (Λn)

〉
= 2B0

∂

∂λ
λ〈ξ〉∂Λn

∂λ
= −χn

〈
B

ξ

〉
Λn

in the domain 0 < λ < λc. The boundary conditions are chosen such that the transition at
the trapped-passing boundary is continuous, and thus Λn (λ = λc) = 0. Note that the equation
has a regular singular point at λ = 0 and it is therefore necessary to demand Λn(λ = 0)
to stay finite as a natural boundary condition. As the Lorentz operator is self-adjoint and the
weight 〈B/ξ〉 ≥ 0, Sturm-Liouville theory applies and the eigenfunctions form a complete
and orthogonal set in the sense that

λc∫
0

ΛmΛn

〈
B

ξ

〉
dλ = 0 if m 6= n.

This can easily be seen from the following relation, using self-adjointness of the Lorentz
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operator and integration by parts:

λc∫
0

ΛmΛn

〈
B

ξ

〉
dλ = − 1

χn

λc∫
0

Λm

〈
B

ξ
L(Λn)

〉
dλ

= −2B0

χn

λc∫
0

Λm
∂

∂λ
λ〈ξ〉∂Λn

∂λ
dλ

= −2B0

χn

λc∫
0

Λn
∂

∂λ
λ〈ξ〉∂Λm

∂λ
dλ

=
χm
χn

λc∫
0

ΛmΛn

〈
B

ξ

〉
dλ.

For m 6= n, this relation can only hold if the integral vanishes. For convenience, the normali-
sation

λc∫
0

Λndλ =
2
3

is chosen. The functions ga0 can be expanded in an eigenfunction series as

ga0 = σ
∞∑
n=1

ban(ψ, v)Λn(ψ, λ).

In principle, the eigenfunctions can be calculated numerically by expanding them in a serious
of Legendre polynomials, which are exact solutions in a circular flux-surface geometry when ε
vanishes, albeit the result is rather poor when it does not, even in a large aspect ratio tokamak,
as Hsu, Catto and Sigmar noted [35]. The idea is to express the Lorentz operator in terms of
the variable η ≡

√
1− λ/λc, yielding

∂

∂η
(1− η2)

〈ξ〉
η

∂

∂η
Λn = −2χn

∂〈ξ〉
∂η

Λn

with the boundary conditions Λn(η = 0) = 0 in order to guarantee the proper behaviour at
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the untrapped boundary, and then expand according to

Λn(η) =
η

〈ξ〉

∞∑
m=1

anmP2m−1(η)

where Pi denotes the i’th Legendre polynomial. Employing numerical values for 〈ξ〉, 〈B/ξ〉
and 〈B2/ξ3〉, one can calculate the eigenfunctions and eigenvalues for different geometries.
Fortunately, in the long-time limit, it is not necessary to employ these inaccurate values, as
will become clear later on, and therefore the numerical values are not given here.

Eq. (3.4) is now solved for the impurities. Inserting the model collision operator yields〈
B

ξ

〉
∂gz0
∂t
− νzzD

〈
B

ξ
L (fz1)

〉
=
mz

Tz
vfz0

(
I
∂φ′

∂t
+ νzzD

〈
Buz‖

〉)
,

and, after using the eigenfunction expansion and Laplace transforming,

pb̂zn − bzn(t� τa) + χnν
zz
D b̂zn = βn

mz

Tz
vfz0

(
Ipφ̂′ − Iφ′(t� τa)

+ Iφ̂′νzzD + νzzD 〈Bûz‖〉
)

with

βn ≡
σB0

λc∫
0

Λndλ

λc∫
0

〈
B
ξ

〉
Λ2
ndλ

=
2σB0

3
λc∫
0

〈
B
ξ

〉
Λ2
ndλ

.

As ga0 changes rapidly on the bounce time scale but afterwards relaxes much more slowly on
the collision time scale, it is not possible to use the initial condition fa1 = 0 at t = 0 used
in section 3.1.4 for studying the effect on the slower time scale as this initial condition would
violate the condition (3.2) due to the expansion in ωb. Therefore, the initial condition is taken
at t � τa, which shall express a time later than a few bounce times but much earlier than the
collision time, to be consistent with the employed ordering. This initial condition for ga0 can
be obtained from the collisionless limit (3.7), which gives

ga0(t� τa) =
ma

Ta
fa0

〈
B

v‖

〉−1

Iφ′(t� τa),
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where τa denotes the collision time. Thus, the two terms in eq. (3.8) containing the initial
conditions cancel each other.

The distribution function f̂z1 is then given by the following expression

f̂z1 =
mz

Tz
fz0

[
σv

∞∑
n=1

βnΛn
B0(p+ χnνzzD )

(Iφ̂′(p+ νzzD ) + νzzD 〈Bûz‖〉)−
Iv‖
B
φ̂′
]
.

To conserve momentum in like-particle collisions, ûz‖ is calculated from

∫
v‖Czz(f̂z)d3v

!= 0.

Exploiting the self-adjointness of the Lorentz operator and the relation
L (v‖) = −v‖, one arrives at the following expression [3]

ûz‖ =
∫
v‖ν

zz
D f̂z1d

3v

nz{νzzD }
,

with the velocity-space average defined as

{F (v)}a ≡
∫
F (v)

mav
2
‖

naTa
fa0d

3v =
8

3
√
π

∞∫
0

e−x
2
ax4

aF (xa)dxa.

The index a at the curly brackets will be dropped when there is no risk of ambiguity. Using

∫
v‖νzzD f̂z1d

3v =
∫
v‖νzzD

(
ĝz0 −

mzv‖
Tz

Iφ̂′
B
fz0

)
d3v

=
∫
v‖νzzD ĝz0d

3v − Iφ̂′
B
nz{νzzD }

and

∫
v‖νzzD ĝz0d

3v =
∞∑
n=1

∫
v‖b̂znΛnσfz0ν

zz
D d

3v

=
B

B2
0

nz

∞∑
n=1

βn

{
νzzD

pIφ̂′+ νzzD (Iφ̂′+ 〈Bûz‖〉)
p+ χnνzzD

}
,
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one can multiply by B and take the flux surface average to find

〈Bûz‖〉 = −Iφ̂′+ 1
{νzzD }

∞∑
n=1

βn

{
νzzD

pIφ̂′+ νzzD (Iφ̂′+ 〈Bûz‖〉)
p+ χnνzzD

}

= −Iφ̂′

1−

p
{νzzD }

∞∑
n=1

βn{
νzzD

p+χnνzzD
}

1− 1
{νzzD }

∞∑
n=1

βn{
(νzzD )2

p+χnνzzD
}

 ,

which, in the long-time limit (small p), simplifies to

〈Bûz‖〉 = −Iφ̂′(1− pτ0 +O(p2))

where

τ−1
0 ≡ {νzzD }

( ∞∑
n=1

βn
χn

)−1

− 1

 . (3.8)

To ensure the well-definedness of τ0, one can show
∑∞

n=1 βn/χn to equal the “effective”
fraction of circulating particles introduced in [36], and thus always to be smaller than one by
the following argument: consider the problem〈

B

ξ
L (h)

〉
= −B0, h(λc) = 0, h(0) <∞. (3.9)

Inserting the expansion h(λ) = σ
∞∑
n=1

hnΛn(λ) in eq. (3.9) yields

σ

∞∑
n=1

χnhnΛn = B0

〈
B

ξ

〉−1

=
∞∑
n=1

βnΛn,

and thus

h(λ) = σ
∞∑
n=1

βn
χn

Λn.
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Consequently,

λc∫
0

h(λ)dλ = σ
∞∑
n=1

βn
χn

λc∫
0

Λndλ =
2
3
σ
∞∑
n=1

βn
χn
.

On the other hand, straight-forward integration of (3.9) leads to

h(λ) =
σ

2

λc∫
λ

dλ′〈√
1− λ′ BB0

〉 ,
and combining both equations yields

∞∑
n=1

βn
χn

=
3σ
2

λc∫
0

h(λ)dλ =
3
4

λc∫
0

λdλ〈√
1− λ B

B0

〉
≡ fc

where fc is the “effective” fraction of circulating particles and is obviously always smaller
than or equal to 1 since, due to Hölder’s inequality,

fc ≡
3
4

λc∫
0

λ
dλ〈√

1− λ B
B0

〉
≤ 3

4

λc∫
0

λ

〈
1√

1− λ B
B0

〉
dλ =

3
4
b2

〈 1∫
0

xdx√
1− xb

〉

with λc = b ≡ B0/Bmax ≤ 1. But

1 =
3
4

1∫
0

xdx√
1− x

,
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and as

b2√
1− xb

≤ 1√
1− x

,

it follows that

fc = 1− 3
4

〈 1∫
0

(
1√

1− x
− b2√

1− xb

)
xdx

〉
≥ 0

with equality if and only if B = Bmax = const, which is not the case in a toroidal device.
Thus, τ0 and therefore the momentum restoring term 〈Bûi‖〉 are both well-defined. For a large
aspect-ratio tokamak with circular flux surfaces, fc ∼= 1− 1.46

√
ε.

Bulk ions

In this section, the slightly more challenging task of calculating the distribution function of the
bulk ions is addressed. Decomposing the collision operator into a self collision part, for which
the same operator as in the previous section is used, and an operator describing ion-impurity
collisions, which can be approximated with the operator for disparate mass ratio from section
2.4, one finds the bulk ion collision operator

Ci(fi1) = (νiiD + νizD )L (fi1) +
mi

Ti
v‖fi0

(
νiiDui‖ + νizDVz‖

)
.

Note that, within the ordering applied, νiiD and νizD are of the same order of magnitude as
ν̂izD/ν̂

ii
D ∼ Z2nz/ni ∼ 1. The differential equation (3.4) then becomes

〈
B

ξ

〉
∂gi0
∂t
− (νiiD + νizD )

〈
B

ξ
L (fi1)

〉
=

mi

Ti
vfi0

(
I
∂φ′

∂t
+ νiiD〈Bui‖〉+ νizD

〈
BVz‖

〉)
.
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After the same steps as in the calculation for the impurities, one arrives at

f̂i1 =
mi

Ti
fi0

[
σv

∞∑
n=1

βnΛn
B0(p+ χn(νiiD + νizD ))

(
Ipφ̂′ + νiiD(Iφ̂′ + 〈Bûi‖〉)

+νizD
(
Iφ̂′ +

〈
BVz‖

〉))
− Iv‖

B
φ̂′
]
.

The two terms on the right that remain to be calculated are the momentum restoring coefficient
ui‖ and additionally the term containing the impurity flow speed Vz‖ . As this second term is
needed for the calculation of ui‖ , it is convenient to start by multiplying this term by B/v‖
and take the flux surface average, yielding

〈
BVz‖

〉
=

〈
B

nz

∫
v‖f̂z1d

3v

〉
=

∞∑
n=1

βn

{
pIφ̂′ + νzzD (Iφ̂′ + 〈Bûz‖〉)

p+ χnνzzD

}
− Iφ̂′

which, in the long-time limit, becomes

〈
B

nz

∫
v‖f̂z1d

3v

〉
= −Iφ̂′

(
1−

∞∑
n=1

βnp

{
1 + νzzD τ0

p+ χnνzzD

})
= −Iφ̂′

(
1− pτ1 +O(p2)

)
where

τ1 ≡ fc
({

1
νzzD

}
+ τ0

)
and τ0 was already defined in (3.8). To calculate

ûi‖ =
∫
v‖ν

ii
Df̂i1d

3v

ni{νiiD}
,
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one can use

∫
v‖νiiDf̂i1d

3v =
B

B2
0

ni

∞∑
n=1

βn

νiiD pIφ̂′+ νiiD

(
Iφ̂′+ 〈Bûi‖〉

)
+ νizD

(
Iφ̂′+

〈
BVz‖

〉)
p+ χn(νiiD + νizD )


−Iφ̂′
B
ni{νiiD}

to obtain

〈
Bûi‖

〉
= −Iφ̂′ +

∞∑
n=1

βn

({
νiiD

pIφ̂′+νizD

“
Iφ̂′+

D
BVz‖

E”
p+χn(νiiD+νizD )

})
{νiiD} −

∞∑
n=1

βn

{
(νiiD)2

p+χn(νiiD+νizD )

} (3.10)

and in the approximation pτii � 1〈
Bûi‖

〉
= −Iφ̂′(1− pτ2 +O(p2))

with

τ2 =
fc

{
νiiD(1+νizD τ1)

νiiD+νizD

}
{νiiD} − fc

{
(νiiD)2

νiiD+νizD

} .
Note that, as

1
{νiiD}

{
(νiiD)2

νiiD + νizD

}
≤ 1
{νiiD}

{
(νiiD)2

νiiD

}
= 1,

the denominator of this expression is larger than the fraction of trapped particles, i.e. non-zero,
and the momentum restoring term is again well-defined. Before finally calculating the plasma
polarisation, one should note that the impurity and bulk ion distribution functions, eqs. (3.8)
and (3.10), respectively, adjust to the radial electric field on very different time scales. The
impurity ions adjust on the time scale τ0 ∼ τ1 ∼ 1/νzzD but the bulk ions do so only on the
time scale τ2 ∼ 1/νiiD, which is a factor Z3/2(Zeff − 1) � 1 longer. Exploiting this property
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and the fact that mznz ∼ mini/Z in the large-Z approximation, one finds that

〈∫
Iv‖
B

(miĝi0 +mz ĝz0)d3v

〉
=

〈
I

B2
0

∞∑
n=1

βnmini

{
pIφ̂′(1 + τ2ν

ii
D)

p+ χn(νiiD + νizD )

}〉
,

which can, in the long-time limit, be simplified to yield

〈∫
Iv‖
B

(miĝi0 +mz ĝz0)d3v

〉
=

〈
I2

B2
0

pφ̂′fcmini

{
1 + τ2ν

ii
D

νiiD + νizD

}〉
.

Thus, in leading order, the expression for the polarisation P̂ becomes

P̂ =
I2

〈R2〉B2
0

fcp

{ 1
νiiD + νizD

}
+

fc

{
νiiD

νiiD+νizD

}2

{νiiD} − fc
{

(νiiD)2

νiiD+νizD

}
+O(Z−1/2) +O(p2).

In a large-aspect-ratio equilibrium, I2/(R2B2
0) ≈ 1.

3.1.7 Long-time limit

The results from the previous section show that the detailed geometry of the flux surfaces mat-
ters little to the zonal flow response in the long-time limit (small p), since the only information
from the eigenfunction expansion that survives this limit is the quantity fc =

∑∞
n=1 βn/χn.

This suggests that the response on time scales longer than the bulk ion collision time can be
obtained more easily. To this end, eq. (3.3) is reconsidered but the small term containing the
time derivative (in this limit, ∂ga/∂t ∼ pga � νaaD ga) is neglected. Thus, instead of having
to solve a partial differential equation depending on time, one arrives at the much simpler
equation

v‖∇‖ga −
eaEav‖
Ta

fa0 = Ca(fa)

with

Ea =
I

Ωa

∂φ′

∂t
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regarded as given. This resembles a neoclassical Spitzer problem, except that the “electric
field” Ea is different for different species, and one can solve straightforwardly for both impu-
rities and ions to find

ĝz0 =
1

2B0

mz

Tz
σvfz0

(
Iφ̂′(1 +

p

νzzD
) +

〈
Bûz‖

〉) λc∫
λ

dλ′

〈
√

1− λ′ BB0
〉

+O(p2)

and

ĝi0 =
1

2B0

mi

Ti
σvfi0

(
Iφ̂′

p

νiiD + νizD
+
(
Iφ̂′ + 〈Bûi‖〉

) νiiD
νiiD + νizD

+
(
Iφ̂′ +

〈
BVz‖

〉) νizD
νiiD + νizD

) λc∫
λ

dλ′

〈
√

1− λ′ BB0
〉

+O(p2).

Thus,

P̂ =
I2

〈R2〉B2
0

fcp

{ 1
νiiD + νizD

}
+

fc

{
νiiD

νiiD+νizD

}2

{νiiD} − fc
{

(νiiD)2

νiiD+νizD

}


+O(Z−1/2) +O(p2),

which is the same result as with the eigenfunction expansion method.

As the inverse Laplace transform involves not only small p, it is not possible to formally
transform the expression for the long-time limit back to t-space. Nonetheless, one can extract
important information about the zonal flow damping time by considering how the potential
approaches its final value. In the long-time limit, when p → 0, the neoclassical polarisation
vanishes, and as 1/p transforms back to t-space as a constant, one can conclude

lim
t→∞φ

′(t) =

〈 |∇ψ|2
B2

〉
〈R2〉

φ′(0) ≡ φ′∞.

A suitable measure for the time scale on which φ′(t) approaches φ′∞ is

τp ≡
∞∫

0

φ′(t)− φ′∞
φ′∞

dt. (3.11)
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Using (3.7), one find

τp = lim
p→0

∞∫
0

φ′(t)− φ′∞
φ′∞

e−ptdt

= lim
p→0

(
φ̂(p)
φ′∞
− 1

)
= lim

p→0

(
1

p(1− P (p))
− 1
p

)
= lim

p→0

P (p)
p(1− P (p))

=
dP̂

dp
(0).

The effective zonal-flow damping time, τp, thus corresponds exactly to the term that was
calculated explicitly in the polarisation (3.11). This expression is a simple function of fc but
depends in a complicated way on Zeff, as it involves velocity-space averages {...} of νiiD and
νizD . In order to further simplify eq. (3.11), consider the limits of Zeff → 1 and Zeff →∞: in
a pure plasma, the damping time becomes

τp|Zeff=1 =
I2

〈R2〉B2
0

fc
ν̂ie

{ x3
a

Erf(xa)−G(xa)

}
+

fc
1− fc

1

{Erf(xa)−G(xa)
x3
a

}

 ,

whereas for Zeff →∞

τp|Zeff→∞ ≈
I2

〈R2〉B2
0

fc
{x3

a}
ν̂ie

1
Zeff

,

where the relation that ν̂ie ≈ ν̂ii for large Z was used and [3]

νizD ≈ ν̂iz
x3
a

=
Z2nz
ni

ν̂ii
x3
a

=
Zeff − 1

1− 1
ZZeff

ν̂ii
x3
a

≈ (Zeff − 1)
ν̂ie
x3
a

,

where Zeff =
∑
j

(Z2
j nj)/

∑
j

(Zjnj) and the sum is taken over all ion species j. The normali-

sation to ν̂ie is chosen to account for the electron density being the quantity typically measured
in experiment, and, furthermore, this normalisation is also used for the numerical simulations
in the next chapter in order to avoid singular behaviour when Z is close to Zeff , as it would
be when normalising with respect to ν̂ii while keeping ne, Z and Zeff fixed. With the help of
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these values, one can construct the following interpolation formula for the damping time

τp =
I2

〈R2〉B2
0

fc
ν̂ie

{x3
a}

Zeff
+

{ x3
a

Erf(xa)−G(xa)

}
+

fc
1− fc

1

{Erf(xa)−G(xa)
x3
A

}
− {x3

a}

 1
Z4

eff


≈ I2

〈R2〉B2
0

fc
ν̂ie

[
4.51
Zeff

+
(

0.87 + 2.49
fc

1− fc

)
1
Z4

eff

]
,

which is exact in the limits and sufficiently accurate for intermediate values of Zeff . Fig. 3.2
shows the interpolation formula, together with the exact solution, for different values of fc.
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FIGURE 3.2 Damping time: interpolation formula and exact solution.

3.1.8 Comparison with numerical simulation

Since the calculation of τp only requires solving a standard equation from neoclassical trans-
port theory, a number of existing codes can be used for this purpose. In this section, the
obtained analytical results are compared with the results of the NEO code [15]. In standard
form, NEO solves the multi-species, steady-state first-order drift-kinetic equation using an
Eulerian numerical scheme. Here it was modified to solve the Laplace-transformed eq. (3.11)
for fa1, i.e. the usual neoclassical driver source term was set to zero in the drift-kinetic equa-
tion and the term −I(ea/Ta)v‖f0aφ̂

′[−p/Ωa +∇‖(v‖/Ωa)] was added as the new right-hand
side source term. Given as input φ̂′ and p, the discretised kinetic equation is solved as a
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matrix problem for fa1 and the polarisation P̂ is computed from eq. (3.7). For these simu-
lations, a deuterium species and a carbon species are considered in a tokamak plasma with
s-α geometry and the parameters α = q2R0dβ/dr = 0, R0/a =3, q=2, T0i = T0c (s-α
geometry refers to unshifted circular flux surfaces with R = R0 + r cos θ, magnetic field
variation B = B0/(1 + r cos θ/R0), and constant flux function I(ψ) = R0B0). The electron
parameters are assumed to be fixed, with τ−1

ee /(cs/a) = 10−2, where cs =
√
Te/mi and

τ−1
ee = (

√
2πe4nelnΛ)/(m1/2

e T
3/2
e ). For given ne, Z and Zeff , the ion and impurity densities

are determined from quasi-neutrality and the relative ion and impurity collision frequencies
are varied accordingly. To be consistent with the theory, in the NEO calculations the kinetic
electron dynamics are neglected, which are small. With NEO, the zonal-flow damping time
τp has been calculated using various collision operators, namely the Connor operator used in
section 3.1.7, and the more advanced full Hirshman-Sigmar operator [37]. Unlike the Connor
operator, which consists of just a Lorentz scattering operator and simple momentum-restoring
term, the full Hirshman-Sigmar operator also includes energy diffusion and models for heating
friction effects and for the deceleration effect arising from dynamic friction, which has been
shown to be important for modelling the neoclassical transport of multi-ion plasmas [15].
Fig. 3.3 shows the damping time versus effective charge at ε = 0.3 for both theory and simu-
lation. In order to emphasise the role of the impurities, the ratio of the damping time to that in
a pure plasma has been plotted. It is clearly visible that the use of different collision operators
does not have any significant influence on the damping time as the curves hardly deviate from
each other. This suggests that the form of the momentum correction term is not playing a large
role in the dynamics. Moreover, one finds, for regimes in which the theory is valid, numer-
ical simulation and analytical theory to be in fairly good agreement. The larger discrepancy
for larger Zeff is due to the fact that the effective charge approaches the impurity charge, i.e.
violation of the ordering assumptions as the impurities stop being a minority. The agreement
improves for smaller ε; however, it is not possible to reasonably compare simulation and the-
ory for much smaller ε as the simulation is carried out keeping the collision frequency fixed,
which leads to a failure of the banana regime assumption of small effective collision frequency
compared with the bounce frequency. In order to further illustrate for which parameters the
theory is valid, fig. 3.4 shows the dependence of τp on ν∗i ≡ νi/(εωb). Obviously, ε = 0.1 or
smaller would require going to much smaller collision frequencies than done here in order to
keep the theory valid, which is difficult numerically. In figs. 3.5, the damping time has been
plotted versus ε for different values of Z, where in fig. 3.5(b) the aspect ratio has been changed
to R/a0 = 1.5 to allow for higher values of ε. Clearly visible is the asymptotic behaviour for
Z →∞, which was assumed in the theory, and again the theory fails for small ε as the plasma
leaves the banana regime.
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3.1.9 Arbitrary source term

In a plasma with electrostatic turbulence, the actual problem of interest is not (3.1), but rather

∂fa
∂t

+ (v‖ + vd + ṽE) ·∇fa + ẇ
∂fa
∂w

= Ca(fa),

where ṽE = b×∇φ̃/B denotes the fluctuating E ×B velocity, averaged over gyromotion.
Following Hinton and Rosenbluth [33], one can take an average over the toroidal angle to
isolate the axisymmetric component, f̄a, and obtain

∂f̄a
∂t

+ (v‖ + vd) ·∇f̄a + ẇ
∂f̄a
∂w
− Ca(f̄a) = Sa, (3.12)

where the source term

Sa = − 1
2πB

∮
(b×∇φ̃) ·∇fa dϕ

only has relatively weak contributions from the axisymmetric components of either φ̃ or fa.
The point is that the axisymmetric components only contribute through the term

(b×∇φ̄) ·∇f̄a = I

(
∂f̄a
∂ψ
∇‖φ̄−

∂φ̄

∂ψ
∇‖f̄a

)
,

involving parallel gradients, whilst the non-axisymmetric components of φ̃ and fa also con-
tribute through their perpendicular gradients, which are much larger in gyrokinetic theory.
Hinton and Rosenbluth therefore took Sa to be given when calculating the axisymmetric com-
ponents. Since the resulting equation (3.12) is linear, it can be solved as an initial value
problem. If one calculates the response to an initial perturbation, the general solution can
be obtained by convoluting the solution of the initial-value problem with the source term Sa
(see appendix). The latter can be arbitrary, and it does not matter, for instance, whether its
auto-correlation time is long or short compared with the collision time.

The problem (3.12) with an arbitrary source term amounts to finding the functions Ga and
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Φ′, which satisfy

Ma[Ĝa] = Ŝa

Φ′(t) =
∑
a

〈
I

B

∫
mav‖Gad

3v

〉/∑
a

〈manaR
2〉 (3.13)

Ga(0) = 0, Φ′(0) = 0

where the operator Ma is defined as

Ma[h] ≡ ph+ v‖∇‖h−
Iv‖
Ωa

ea
Ta
fa0p

∑
a

〈
I

B

∫
mav‖hd

3v

〉/∑
a

〈manaR
2〉.

The solutions ĝa and φ̂′ to

M [ga] = k
Imav‖
B

fa0 = La[ga]

φ′(t) =
∑
a

〈
mana|∇ψ|2

B2
φ′(0) +

I

B

∫
mav‖gad

3v

〉/∑
a

〈manaR
2〉

ga(0) =
Iv‖
Ωa

ea
Ta
φ′(0)fa0 , φ′(0) = φ′0

are already known, where

La[h] ≡ ph− v‖∇‖h−
Iv‖
Ωa

ea
Ta
fa0p

∑
a

〈
I

B

∫
mav‖hd

3v

〉/∑
a

〈manaR
2〉

only differs from Ma in the reversed sign in front of the term containing the parallel gradient.
As ga was found to be odd in σ, it is also a solution to the problem including the operator La.
When all ion temperatures are equilibrated, the constant

k ≡ 1
Ta

∑
a

〈
mana|∇ψ|2

B2

〉
φ′(0)∑

a
〈manaR2〉

is independent of the particle species.

70



3.1. EFFECT OF IMPURITIES ON COLLISIONAL ZONAL-FLOW DAMPING IN
TOKAMAKS

Since, for the unlike-species collision operator, the relation

∑
a,b

∫
d3v

ga
fa0

Cab(fa, fb) =
∑
a,b

∫
d3v

fa
fa0

Cab(ga, gb)

holds for any pair of distributions ga, fa [38], the operators Ma and La are adjoint in sense
that

∑
a

〈∫
Ĝa
fa0

La[ĝa]d3v

〉
=

∑
a

〈∫
ĝa
fa0

Ma[Ĝa]d3v

〉
.

Thus, to calculate the potential response (3.13), one can use

∑
a

〈
I

B

∫
mav‖Ĝad

3v

〉
=

1
k

∑
a

〈∫
Ĝa
fa0

La[ĝa]d3v

〉

=
1
k

∑
a

〈∫
ĝa
fa0

Ma[ĝa]d3v

〉

=
1
k

∑
a

〈∫
ĝaŜa
fa0

d3v

〉
.

As mentioned as well in [33], the response to a source is thus obtained by convoluting this
source with the solution of the initial value problem.

However, in practice the source term Sa is not known and does contain contributions from
the axisymmetric part f̄a. One might then ask the question whether the turbulent transport may
carry particles across a radial wavelength of the zonal flow in a time shorter than the collision
time. The zonal flow would then be damped by diffusion caused by the fluctuating E × B
drift (turbulent viscosity) rather than collisions. If the global confinement time is denoted by
τE , then the time required for diffusion across a fraction ∆r/a of the cross section is

τD ∼ τE
(

∆r
a

)2

,

and collisional damping is only important for zonal flows with a radial wavelength longer than

∆r
a

>

(
τp
τE

)1/2

,
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where τp is the neoclassical polarisation time (3.11) due to collisions. Depending on plasma
parameters, this condition may or may not be satisfied – a limitation that seems not to have
been pointed out in literature on collisional damping of zonal flows.

It should perhaps be mentioned that there is another application of these results, which has
to do with the question of how the plasma responds to a sudden change of the pressure profile.
Conventional neoclassical theory predicts the level of poloidal plasma rotation in steady state.
In the LH-transition, the pressure gradient changes very rapidly, and one may ask the question
of how quickly a new steady state is attained. This is of interest when trying to resolve the
“chicken-and-egg” problem of whether sheared rotation causes the H-mode or is merely a
consequence of the increased gradients in the pedestal. Since the pressure gradient in fa0

enters in exactly the same way as the radial electric field in the kinetic equation (3.2), this
problem is identical to the zonal flow damping problem, and it can be concluded that the new
equilibrium is established on the time scale (3.11).

3.1.10 Physical interpretation and conclusions of section 3.1

The effect of heavy, highly charged impurity ions on zonal-flow damping in tokamaks was
considered. Although such impurities do not affect the first, collisionless stage of the damping,
they do accelerate the collisional damping since they increase the effective collisionality of the
bulk ions roughly by a factor Zeff . It is possible to calculate the time history of the damping
by expanding the pitch-angle dependence of the distribution function in eigenfunctions of
the orbit-averaged pitch-angle-scattering operator. However, in the long-time limit, i.e. at
late times during the damping process, the problem can be reduced to solving a neoclassical
Spitzer problem, and this is also sufficient to calculate the overall damping time defined by
eq. (3.11).

Collisional damping of zonal flows occurs as a result of friction between the circulating and
trapped particles. The latter are locked in the magnetic well on the outboard side of the torus
and are therefore unable to rotate poloidally. The circulating ions experience friction against
this stationary, trapped population, which damps the rotation. The damping time (3.11) there-
fore increases with the effective fraction of circulating particles. In the limit of very tight
aspect ratio (the edge region in a spherical tokamak), where the circulating particle fraction is
small, fc → 0, the damping becomes instantaneous, independently of whether impurities are
present in the plasma. In the opposite limit of very few trapped particles, fc → 1, the damping
occurs much more quickly if impurity ions are present than otherwise. This has to do with the
fact that the time it takes for the trapped and passing populations to reach a mutual collisional
equilibrium is much shorter for the impurities than for the bulk ions, because of the shorter
collision time of the former. Therefore, as soon as the poloidal impurity rotation has been
damped, the bulk ions experience friction against the entire impurity population, not just the
trapped impurities. This is much more effective than the friction against just the trapped bulk
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ions when fc is close to unity. Mathematically, this is reflected by the fact that the denomina-
tor of eq. (3.11) does not vanish in the limit fc → 1. Physically, it has the effect that the zonal
flow damping is enhanced by more than a factor Zeff when the aspect ratio is large.

These analytical predictions, which are made using a simple pitch-angle-scattering collision
operator with a momentum-restoring term, seem largely insensitive to the choice of collision
operator. Indeed, because the zonal flow damping time can be reduced to a neoclassical Spitzer
problem, it can be calculated by neoclassical transport codes, which makes it possible to use
still more accurate collision operators and to treat cases of finite collisionality. As long as the
particles are in the low-collisionality banana regime, the results are in very good agreement.

It is clear from these results that, when a realistic amount of impurities are present in a toka-
mak plasma, the collisional damping of zonal flows occurs significantly faster than otherwise.
Insofar as this damping mechanism is important, this would suggest that impurities inhibit
zonal flows and could have a deleterious effect on confinement.

3.1.11 Appendix: Expression for the drift velocity

It is to show that

vd ·∇ψ =
(
b×∇φ

B
+
(
v2
⊥
2

+ v2
‖

)
b×∇lnB

Ω

)
·∇ψ

!= v‖∇‖
(
Iv‖
Ω

)
.

Starting from the right-hand side, one finds

v‖∇‖
(
Iv‖
Ω

)
= v‖

Ima

ea
∇‖
(v‖
B

)
= − I

Ω
v2
‖∇‖(lnB) +

I

Ω
v‖∇‖

(
σv
√

1− λB
)

= − I
Ω
v2
‖∇‖(lnB) +

I

Ω
v‖∇‖

(
−σvλ∇‖B
2
√

1− λB

)
= − I

Ω

(
v2
‖ +

v2
⊥
2

)
∇‖lnB.

But

b×∇φ

Ω
·∇ψ = 0
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as φ ≈ φ(ψ), and

B ×∇ψ ·∇lnB =
1
B

I(ψ)∇ϕ×∇ψ + ∇ϕ×∇θ ×∇ψ︸ ︷︷ ︸
=0

 ·∇lnB

=
I

B
∇ϕ×∇ψ ·∇θ

∂

∂θ
(lnB) = ∇‖lnB.

�
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3.2. EFFECT OF IMPURITIES ON ITG DRIVEN MICROINSTABILITIES

3.2 Effect of impurities on ITG driven microinstabilities

The work presented in this chapter has been carried out in collaboration with Dr Tünde Fülöp
and Istvan Pusztai, Chalmers University of Technology, Gothenburg, Sweden. The results can
be found in [39].

Turbulent fluctuations are the main source of particle and heat transport in present-day toka-
mak experiments. Of special importance is the question of the direction of the impurity flux.
If impurities are transported from outside into the core of the plasma, they can harm plasma
performance. However, if they instead can be brought to reside at the edge in a stable steady
state, they may help protect the divertor from the strong heat fluxes by creating a radiation
belt. Although various models for microinstability-driven impurity transport exist [40–46],
there are still many open questions regarding the sign and magnitude of the flux and its para-
metric dependences. The basic problem is that the process is highly nonlinear, thereby making
it necessary to resort to complicated gyrokinetic simulations or to use simplified, but contro-
versial, models. However, the plasma density and temperature profiles usually adjust to be
close to the threshold predicted by linear theory [6], and quasilinear electrostatic approxima-
tions have been proven to retain much of the relevant physics and reproduce the results of
nonlinear simulations satisfactorily for a wide range of parameters [47]. The simplified treat-
ment makes it easier to identify and interpret the connections between different drives and
sources. In this section, a quasilinear semi-analytical model for impurity transport driven by
ion-temperature-gradient (ITG) modes based on a boundary layer solution of the gyrokinetic
equation is derived. Analytical expressions for the perturbed densities of the electrons, ions
and impurities are obtained by employing a model electrostatic potential, motivated by gy-
rokinetic simulations, and used in the quasi-neutrality equation, which is solved numerically
for the frequencies and growth rates of the unstable modes. The results are compared with
quasilinear simulations using the GYRO code [48]. The remainder of the section is organised
as follows: in section 3.2.1, the perturbed density responses are calculated, and the result-
ing quasilinear fluxes are derived in section 3.2.2. Section 3.2.3 addresses the stability of the
modes, and scalings of the growth rates and eigenfrequencies with various parameters, such
as charge number, impurity density scale length and the fraction of impurities, are shown. The
results of section 3.2 are summarised in section 3.2.4.

3.2.1 Perturbed density responses

In this section, an axisymmetric, large aspect-ratio torus with circular flux surfaces is consid-
ered. The plasma consists of electrons, ions and a single species of impurities with arbitrary
chargeZ, where the electrons are assumed to be in the low collisional (banana) regime, i.e. the
collisionality νe∗ ≡ νe/(εωbe) is a small parameter, ε being the inverse aspect ratio, νe the total
electron collision frequency and ωba the bounce frequency of particle species a. The frequency
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ω of the ITG mode considered is assumed to obey the ordering constraint ωbi � ω � ωbe.
In order to calculate the distribution functions of the different particle species, the linearised
gyrokinetic equation

v‖
qR

∂ga
∂θ
− i(ω − ωDa)ga − Ca(ga) = −ieafa0

Ta

(
ω − ωT∗a

)
φJ0(za), (3.14)

introduced in section 2.3.4 has to be solved. As usual, q denotes the safety factor andR the ma-
jor radius of the torus. ga is the nonadiabatic part of fa1 , whereas fa0 denotes the equilibrium
Maxwellian distribution, and θ the poloidal angle in ballooning space. The magnetic drift fre-
quency ωDa = −kθ(v2

⊥/2+v2
‖) (cos θ + sθ sin θ) /(ΩaR), kθ being the poloidal wave number

and s the magnetic shear, and ωT∗a = ω∗a
[
1 +

(
x2
a − 3/2

)
ηa
]
, written in terms of the diamag-

netic frequency ω∗a = −kθTa/(eaBLna) where ηa = Lna/LTa, Lna = −[∂(lnna)/∂r]−1

and LTa = −[∂(lnTa)/∂r]−1 being the radial density and temperature scale lengths, respec-
tively. J0 denotes the zeroth-order Bessel function, and the argument za = k⊥v⊥/Ωa with k⊥
the perpendicular wave number and Ωa the cyclotron frequency of species a. za represents
the finite Larmor radius (FLR) effects which have to be kept in the gyrokinetic equation. It is
difficult to solve this equation self-consistently for both the perturbed electrostatic potential φ
and the distribution functions, and thus φ is assumed to be given externally and then fed into
the equation for the distribution functions. It has proven convenient [49] to use

φ(θ) = φ0

(
1 + cos θ

2
+ ifs sin2 θ

)
[H(θ + π)−H(θ − π)] ,

where H is the Heaviside function, φ0 the overall amplitude of the electrostatic potential and
fs can be approximated by fs = −0.6s+ s2 − 0.3s3. This ansatz is based on the experience
from GYRO simulations and is satisfactorily accurate in the moderate shear region but breaks
down outside the region 0.2 . s . 1.7. In the subsequent sections, (3.14) is solved for the
different species.

Electron response

The electron response in a pure plasma has been calculated in [49], where the circulating
electrons were assumed to be adiabatic. Including impurities affects the collision operator as
electron-impurity collisions have to be taken into account. Due to their small mass compared
with the other species, it is justifiable to approximate the electron collision operator with a
pitch-angle scattering operator,

Ce(fe) = νe(v)L (fe)
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whereL is the Lorentz operator introduced in section 2.4, and thus including impurities only
alters the collision frequency,

νe = (ν̂ee + ν̂ei + ν̂ez)/x3
e = (1 + ni/ne + Z2nz/ne)ν̂ee/x3

e

= (1 + Zeff)ν̂ee/x3
e,

with ν̂ee = 4πnee4lnΛ/(m2
ev

3
Te), but does not affect the structure of the collision operator.

Therefore, it is possible to follow closely the derivation in [49], and only a rough sketch of the
basic ideas is given here. Expanding the trapped part of the nonadiabatic electron distribution
ge in the smallness of ω/ωbe and the smallness of the collisionality νe∗ yields in lowest order

∂ge0
∂θ

= 0,

and therefore bounce averaging (3.14) between the reflection points leads to the constraint

(ω − 〈ωDe〉b)ge0 −
iνe

εK(κ)
∂

∂κ
Ĵ(κ)

∂ge0
∂κ

= −e〈φ〉b
Te

(ω − ωT∗e)fe0, (3.15)

where the bounce average is defined as

〈A〉b =
1
τb

∮
Adθ

v‖b ·∇θ
.

Here, the Lorentz operator, rewritten in terms of the trapping parameter

κ =
1− λB0(1− ε)

2ελB0
,

where B0 is defined via
〈
B2
〉

= B2
0 as usual, can conveniently be expressed with elliptic

functions using Ĵ = E(κ) + (κ− 1)K(κ) and

K(κ) = =

π/2∫
0

dθ√
1− κsin2θ
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and

E(κ) =

π/2∫
0

√
1− κsin2θ dθ

are the complete elliptic integrals of the first and second kind, respectively. Note that κ differs
from the trapping parameter k2 used in section 3.1 by some normalisation constants. The
bounce-averaged potential and the orbit-averaged precession frequency are given by

〈φ〉b = φ0

{
E(κ)
K(κ)

+ i
4fs
3

[
(2κ− 1)

E(κ)
K(κ)

+ 1− κ
]}

and

〈ωDe〉b = ωD0

[
E(κ)
K(κ)

− 1
2

+ 2s
(
E(κ)
K(κ)

+ κ− 1
)]

, (3.16)

where ωD0 = −kθv2/(ΩeR). Introducing the parameter ν̂ ≡ νe/(ω0ε), ω0 is the absolute
value of the real part of the eigenfrequency, so that ω = σω0 + iγ = (σ + iγ̂)ω0 ≡ yω0,
σ = sign(<{ω}) denotes the sign of the real part of the eigenfrequency and γ̂ = γ/ω0

is the normalised growth rate, one can solve eq. (3.15) analytically in the limit of small
collisionality, i.e., ν̂ � 1. It should be noted that the smallness of ν̂ depends strongly on the
plasma parameters, and for typical experimental values it is not always very small and can
even become larger than unity. The analysis presented here is therefore limited to parameter
regions where it is indeed small. Contrary to the procedure in [49], which uses WKB analysis
with the drawback of having to employ a non-rigorous expansion in the trapping parameter κ
in order to have tractable results, the method presented here is based on the construction of a
boundary layer solution, which avoids this drawback. The result differs only insignificantly
by a factor 4/π. Denoting a derivative with respect to κ with a prime and multiplying eq.
(3.15) with iK(κ)/(ω0Ĵ(κ)) yields

ν̂
(
g′′e0 + (ln Ĵ)′g′e0

)
+ i

K(κ)
Ĵω0

(ω − 〈ωDe〉b) ge0 = i
K(κ)e〈φ〉b
Ĵω0Te

(
ωT∗e − ω

)
fe0.

The outer region outside the boundary coincides with the region far away from the trapped-
passing boundary, where collisions can be neglected, and the solution becomes

gouter =
e〈φ〉b(ωT∗e − ω)fe0
Te(ω − 〈ωDe〉b)

.
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In the inner region, the particles are close to the trapped-passing boundary at κ = 1, and
therefore the elliptic functions can be approximated by their asymptotic limit for κ → 1,
yielding Ĵ(κ→ 1) ' 1. Assuming for this region that g′′e0 � (ln Ĵ)′g′e0, the validity of which
has been checked a posteriori, and changing variables to t = (1− κ)/

√
ν̂ gives

∂2ginner
∂t2

+ i
K(κ)
ω0

(ω − 〈ωDe〉b) ginner = i
e〈φ〉bK(κ)(ωT∗e − ω)fe0

ω0Te
,

with the solution

ginner = gouter + ĉ1 exp
[
−(1− κ)

√
ûK(κ)/ν̂

]
+ ĉ2 exp

[
(1− κ)

√
ûK(κ)/ν̂

]
,

where û = −i(y−〈ωDe〉b/ω0). The constants c1 and c2 can be determined from the boundary
condition ge0(κ = 1) = 0 and the condition that the inner and outer solution must match,
ĉ2 = 0, in a region where both solutions must be valid. The global solution becomes

ge0 = gouter

(
1− exp

[
−(1− κ)

√
ûK(κ)/ν̂

])
,

which has been shown to agree very well with the numerical solution of eq. (3.15). In order to
calculate the quasilinear fluxes, one needs the flux-surface average of the perturbed electron
density, given by

〈∫
ge0d

3v

〉
= 4
√

2ε

∞∫
0

v2dv

1∫
0

K(κ)ge0dκ,

where the κ-integral can be approximated using the identity

1∫
0

{
E(κ) + i

4fs
3

[(2κ− 1)E(κ) + (1− κ)K(κ)]
}
dκ =

4
3

(
1 + i

4fs
5

)
.

As the equation is still rather complicated to solve analytically, it is necessary to make further
approximations. A numerical comparison shows that it is justified to approximate the elliptic
integral in the exponent of ge0 with a constant, i.e., K(κ) '

∫ 1
0 K(κ)dκ = 2. Furthermore,

with the approximation 〈ωDe〉b ' ωD0/2 and

1∫
0

K(κ)〈φ〉b exp
[
(κ− 1)/

√
n
]
dκ '

1∫
0

K(κ)〈φ〉bdκ
1∫

0

exp
[
(κ− 1)/

√
n
]
dκ

= 4/3 (1 + i4fs/5)
√
n,
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where n = iν̂/(2y − ω̃D) , the κ-integral becomes

1∫
0

K(κ)ge0dκ '
4
3

(
1 + i

4fs
5

)(
1−

√
iν̂

2y − ω̃D

)
,

where ω̃D = ωD0/ω denotes the normalised magnetic drift frequency. Again, the approxima-
tions have been compared with a full numerical solution and shown good agreement. Inserting
these terms in the expression for the perturbed electron response yields

n̂e
ne
/
eφ

Te
= 1− φ̃

{√
2ε
[
ω̂η∗e −

3
2

(
ηeω̃∗e −

ω̃Dt
2
ω̂η∗e

)
F1

5/2

(
ω̃Dt
2

)]
(3.17)

−
Γ(3

4)
√
εν̂t√

−iπy

[
2ω̂η∗eF3/2

3/4

(
ω̃Dt
2

)
− 3ηeω̃∗e

2
F3/2

7/4

(
ω̃Dt
2

)]}
.

In this notation, φ̃ = (1 + 4ifs/5)4φ0/(3πφ), ω̃Dt = ωD0/(ωx2
e), ν̂t = ν̂x3

e, ω̃∗a = ω∗a/ω,
ω̂η∗a = 1 − (1 − 3ηa/2)ω̃∗a and Fab (z) = 2F0 (a, b; ; z), where 2F0 denotes the generalised
hypergeometric function.

Perturbed ion response

In the ion version of eq. (3.14), collisions can be neglected, and thus the impurities do not
influence the solution. Therefore, the pure-plasma solution of [49] can be used, which was
derived assuming that k‖vT i � ω and consequently neglecting the parallel dynamics. The
solution is

n̂i
ni
/
eφ

Ti
= −ω̃∗i +

(
3ω̃Dsi

2
− bi

)[
ω̂η∗i −

5
2

(ηiω̃∗i − ω̃Dsiω̂η∗i)F1
7/2 (ω̃Dsi)

]
,

where ba = ba0

[
1 + s2(2π2 − 12 + ifs(2π2 − 3))/(6(1 + ifs))

]
, ba0 = (kθρsa)2, ρsa =

vth,a/(
√

2Ωa) and

ω̃Dsa =
6 + (9 + 16ifs)s

12(1 + ifs)
ωDa0

ω
,

with ωDa0 = −2kθv2
th,a/(3ΩaR). As small-wavelength (comparable to the ion gyroradius)

perturbations were not included and only terms linear in bi0 were kept, the solution is limited
to the fastest growing ITG modes (kθρsi ∼ 0.2), where these approximations are valid.
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Perturbed impurity response

In the impurity version of eq. (3.14), collisions can be neglected as well if the condition

(Z3me/mi)1/2(nzZ2/ni)εν∗e � 1

is satisfied. As ε and ν∗e are ordered small and Z2nz/ni = O(Zeff) = O(1), this is well
satisfied as long as (Z3me/mi)1/2 = O(1), which is true for Z . 10. For higher impu-
rity charges, it depends strongly on how small the collisionality really is; in a typical JET
discharge with parameters q = 1.5, R = 3, n ≈ 1020/m3, Te ≈ 3keV and ε = 0.1, the
assumption breaks down around Z ' 20, where the product approaches unity. For higher
temperatures, where the collisionality becomes smaller, values up to Z ' 20 − 25 might be
allowed, but for higher charges collisions have to be included. Thus, the analysis presented
here is limited to the low and moderate Z region, but thereby nonetheless including some of
the most prominent impurities in a fusion reactor, e.g. carbon (C6) and Helium (He2). If col-
lisions can be neglected, the impurity density response has exactly the same structure as the
ion response (FLR effects which have been neglected in the derivation of the ion equation are
even smaller for the impurities, scaling with some fractions of 1/Z), and thus

n̂z
nz
/
Zeφ

Tz
= −ω̃∗z+

(
3ω̃Dsz

2
− bz

)[
ω̂η∗z −

5
2

(ηzω̃∗z − ω̃Dszω̂η∗z)F1
7/2 (ω̃Dsz)

]
. (3.18)

3.2.2 Quasilinear impurity flux

Using the linear solutions for the perturbed density responses from the previous sections,
one can calculate the quasilinear particle fluxes arising from a potential perturbation φ̂. The
corresponding perturbed drift velocity vÊ×B drives an ambipolar particle flow, averaged over
the flux surface,

Γa =
〈∫

vÊ×B ·∇ψfa1d
3v

〉
= R

〈
n̂av

∗
Ê×B ·∇ψ

〉
,

where an asterisk denotes the complex conjugate. The flux is non-zero only if the potential and
density perturbations are out of phase as in-phase contributions cancel during the averaging
procedure. Therefore, only the non-adiabatic part of the electron distribution can drive a flow.
Noticing that

(b×∇φ∗) ·∇ψ = ikθφ̂
∗,
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FIGURE 3.6 Left: Normalised impurity flux vs. impurity charge for Zeff = 1.5
(blue) and Zeff = 1.5 (purple). Right: Normalised impurity flux vs. effective
charge for Z = 6 (solid), Z = 10 (dashed). The dots and squares are the corre-
sponding GYRO results.

one can rewrite the expression for the quasilinear particle fluxes as

Γa = −kθpa
eB

∣∣∣∣ea 〈φ〉Ta

∣∣∣∣2=( 〈n̂a〉 /naea 〈φ〉 /Ta

)
,

where 〈φ〉 = (1 + ifs)φ0/2 and n̂a/na is the nonadiabatic perturbed density response. Fig.
3.6 shows the quasilinear impurity flux obtained from the perturbed impurity density (3.18),
together with the results of quasilinear GYRO simulations [48], versus Z and Zeff for a stan-
dard case typically used in GYRO simulations (“GA standard case”), a/LTe = a/LT i = 3,
s = 1, q = 2, a/R = 1/3, r/a = 1/2 and a/Lne = 1. The flux is normalised to
kθpz/(eB) |e 〈φ〉 /Te|2. The results for a different scenario can be found in [39], although
with different normalisation. For the given input parameters, the figures show that the impu-
rity flux is expected to be outwards. If the other parameters are kept constant, the flux changes
sign for R/Lnz . 2. With increasing impurity charge, the resulting flux decreases, and it is
higher for higher Zeff . In fig. 3.6, it is obvious that the flux increases nearly linearly with
Zeff . The effect is more pronounced for low impurity charge. When the charge gets higher,
the increase is only moderate. Fig. 3.7 shows the dependence of the impurity flux on the
inverse radial impurity density scale length a/Lnz . Interestingly, the crossover point at which
the impurity flux changes from inward to outward is nearly independent of Z and Zeff . Sim-
ilar results have been obtained previously in fluid simulations of ITG turbulence dominated
transport [50].
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results.

3.2.3 Stability

As quasi-neutrality has to be satisfied in every order, i.e. both for the equilibrium densities
and for the perturbed densities, the following relation is obtained

n̂e
ne

= (1− Zfz)
n̂i
ni

+ Zfz
n̂z
nz
, (3.19)

where fz ≡ nz/ne is the fraction of impurities. To simplify the analysis, only the flux-
surface averages of the perturbed densities are considered. The dispersion relation was solved
numerically for the mode frequency ω and the growth rate γ of ITG modes propagating in
the ion diamagnetic direction (σ = −1) employing the expressions for the perturbed densities
from section 3.2.1. Trapped-electron modes (TEM) propagating in the electron diamagnetic
direction (σ = 1) can also be described by (3.19) but will not be addressed here. In the limit
of very large aspect ratio, ε→ 0, it is possible to derive an approximate analytical expression
for the condition of marginal stability, where γ vanishes, by neglecting the contribution from
the trapped part of the perturbed electron density, which is small in this limit. Consequently,
the dispersion relation simplifies to

τ∗i (Zfz − 1)
{
ω̃∗i −

(
3ω̃Dsi

2
− b
)[

ω̂η∗i −
5
2

(ηiω̃∗i − ω̃Dsiω̂η∗i)F1
7/2 (ω̃Dsi)

]}
− Z2fzτ

∗
z

{
ω̃∗z−

(
3ω̃Dsz

2
− bz

)[
ω̂η∗z −

5
2

(ηzω̃∗z − ω̃Dszω̂η∗z)F1
7/2 (ω̃Dsz)

]}
= 1 (3.20)
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where τ∗a = Te/Ta. As pointed out in [49], the imaginary parts of ω̃Dsa and ba are much
smaller than their real parts if fs � 1, which is the case for a broad range of the considered
shear region. Then, for γ = 0, the only terms containing an imaginary part in eq. (3.20) are
those containing the functions F1

7/2(ω̃Dsi) and F1
7/2(ω̃Dsz), which have imaginary parts for

all values except ω̃Dsi = ω̃Dsz = 0. Considering the imaginary parts of the ion and impu-
rity hypergeometric functions, one finds that, for moderately high charge numbers and above
(Z & 10), the impurity one peaks outside the considered shear region and nearly vanishes
compared with the ion one everywhere else. Therefore, an approximate stability boundary
for high impurity charge can be obtained from the condition that the coefficient in front of
F1

7/2(ω̃Dsi) must vanish. As this coefficient is only dependent on the bulk ion quantities, the
eigenfrequency and stability boundary are very weakly affected by the increasing impurity
charge, even for a significant fraction of impurities, and approximately equal the correspond-
ing pure-plasma expressions [49],

ω0c

ω∗e
=

bi − 1
τ∗i bi + 1

+
(

1 +
1
τ∗i

)
(2 + 3s)Lni

(τ∗i bi + 1)2R
, (3.21)

and

a

LT ic
=

(
1 + τ∗−1

i

)
(2 + 3s)a

3R(1− bi)
. (3.22)

Fig. 3.8 shows the mode frequency ω0 in the case of marginal stability (normalised to cs/a,
where cs =

√
Te/mi is the ion sound speed) and the critical temperature gradient a/LT ic

computed from the full dispersion relation as a function of the impurity charge Z and Zeff ,
together with the expressions given in eqs. (3.21) and (3.22). The parameters used in the
calculations were s = 1, q = 2, a/R = 1/3, a/R = 2 and a/Lne = 1. For the regions
of high impurity charge, where the analytically derived expressions are valid, the agreement
with the numerical simulation is very good. There is, as expected, a large discrepancy for
lower charges as then the imaginary part of the impurity hypergeometric function becomes
comparable to the ion one and thus the impurities can significantly influence the stability
condition, especially for impurities like helium or carbon, which have very low Z. In fig. 3.9,
the full solutions for the mode frequency and growth rate as obtained from the dispersion
relation (3.19) are shown, again together with quasilinear GYRO results, for the standard and
hybrid case. Although the absolute values of both quantities decrease with increasing Zeff ,
reflecting the fact that the impurity terms in the dispersion relation start to play a larger role
when the impurity density is increased, which has a stabilising effect, the influence of the
charge Z on the frequency and growth rate of the mode is only marginal, except, again, for
very small values of Z.
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FIGURE 3.8 Upper figures (a, b): Normalised mode frequency (in units of cs/a)
vs. impurity charge (a) and effective charge (b). Lower figures (c, d): Critical ion
temperature gradient vs. impurity charge (c) and effective charge (d). Dashed:
analytical expression from eqs. (3.21)–(3.22). Left figures (a, c): dots: Zeff =
1.5; squares: Zeff = 2. Right figures (b, d): dots: Z = 10; squares: Z = 20. The
impurity charge and density do not affect the mode frequency and the critical ion
temperature gradient significantly for Z > 10.

3.2.4 Conclusions of section 3.2

A semi-analytical model for impurity transport driven by ITG turbulence in a large aspect-
ratio, weakly collisional tokamak plasma with unshifted circular flux surfaces has been de-
rived and compared with quasilinear simulation results with the GYRO code. A numerically
motivated model was employed for the electrostatic potential, but no approximations were
made of the magnetic drift frequencies, and collisions were included using a Lorentz operator.
The dispersion relation for the mode frequency and growth rate was solved numerically, em-
ploying analytical expressions for the perturbed particle densities, which have also been used
to derive analytical expressions for the quasilinear fluxes and, in case of high-Z impurities,
an approximate stability condition. The quasilinear impurity flux has been found to decrease
with increasing impurity charge. It increases with increasing Zeff , and the increase is stronger
pronounced for low impurity charge. Depending on the inverse radial impurity density scale
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FIGURE 3.9 Left figures (a, c): Normalised mode frequency (solid) and growth
rate (dashed) (in units of cs/a) vs. impurity charge for Zeff = 1.5. Right figures
(b, d): Normalised mode frequency (solid) and growth rate (dashed) vs. effective
charge for Z = 6. The dots and squares are the corresponding GYRO results.
Upper figures (a, b): GA standard case, lower figures (c, d): hybrid case.

length, the impurity flux changes sign from inward to outward at a/Lnz ≈ 0.7 for the given
simulation parameters. Interestingly, this value is not influenced much by Z or Zeff . For
high impurity charge (Z & 10), the impurities hardly influence the stability boundary (char-
acterised by the condition that the growth rate vanishes), and the corresponding values for
the critical inverse temperature gradient and the mode frequency coincide more or less with
the pure-plasma results derived in [49]. However, if the charge is smaller, the impurities do
significantly influence these quantities, manifested in a decrease of the mode frequency by up
to a factor two and an increase in the critical inverse radial temperature gradient of approx-
imately the same order. Far from marginal stability, the impurity charge hardly influences
the mode frequency and growth rate, whereas an increase in the impurity density (increased
Zeff at constant Z) leads to a decrease of the absolute values of both quantities, thereby ex-
erting a stabilising effect on the mode. The analytical and semi-analytical results are in good
agreement with quasilinear GYRO simulations.
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4 Aspects of impurity transport in
Stellarators

This chapter is concerned with neoclassical transport of impurities in stellarators. Aston-
ishingly, less research has been performed on this topic than on the corresponding tokamak
problems, although neoclassical transport poses a much greater problem in stellarators. Due
to the existence of helically trapped particles1 and other complicated particle orbits, not all
of which are intrinsically confined, particles can escape much faster and in greater number
from stellarator plasmas than from tokamak plasmas, where all particle orbits stay close to
one flux surface to lowest order in δa. Consequently, understanding neoclassical stellarator
transport is an important issue regarding stellarator optimisation, i.e., the attempt to adjust
the magnetic configuration so as to improve the neoclassical confinement, a need which does
not occur in tokamaks. The complicated geometry makes both analytical calculations and
numerical simulations demanding. Especially in the regimes of low and intermediate colli-
sionality, where effects of particle orbits matter, the variety of different complicated particle
trajectories renders any attempt to derive an exact analytic theory taking care of these effects
more or less hopeless. There is, however, a possibility to derive analytic equations even in
stellarators, and that is in the collisional Pfirsch-Schlüter regime, where particle orbits are per-
manently interrupted by collisions and thus, effectively, no trapped particles exist. Therefore,
a fluid approach can be used (see section 2.5), which disregards particle orbit effects but oth-
erwise keeps the 3D-geometry of the stellarator, and the results can be expressed in terms of
the magnetic field strength and various other geometric quantities. Although the applicability
is limited to cold edge plasmas, where the plasma is collisional enough to allow for a fluid
treatment, analytical theory is nonetheless an important tool for the understanding of basic
mechanisms and scalings of the transport. Furthermore, it can provide a useful benchmark for
numerical codes and cast light on the accuracy of different approximations on the collision
operator usually made in the codes.

Stellarator impurity transport has been considered in the literature before, mainly in the
framework of the Hirshman-Sigmar moment formalism [51, 52]. The present calculation,
which is based on the direct expansion of the drift kinetic equation by Hazeltine and Hinton
[53], retains some terms of geometrical nature that are otherwise neglected, see, e.g., [54], and
is used here to calculate explicit transport coefficients.

1particles trapped in the helical magnetic field ripple
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In section 4.1, the impurity transport in arbitrary stellarator geometry is derived in the con-
ventional transport ordering described in section 2.3.3. In the subsequent section 4.2, the
transport ordering is modified to allow for large radial gradients that can occur in the plasma
edge region. This new ordering leads to various effects, among others to a redistribution of
impurities on flux surfaces, which affects the neoclassical transport of the bulk ions, since the
friction force is affected by this redistribution.

4.1 Impurity Pfirsch-Schlüter transport in Stellarators

As mentioned in the introduction, impurity accumulation in the centre of fusion plasmas poses
a potential threat to fusion performance through radiation losses. As stellarators lack the in-
trinsic ambipolarity that tokamaks are characterised by, the problem is much more pronounced
since the radial electric field plays a major role in the transport. The point is that neoclassical
transport is driven by the thermodynamic forces

Aa1 ≡ dlnpa
dψ

+
ea
Ta

dφ

dψ
,

Aa2 ≡ dlnTa
dψ

.

Specifically, in the case of a highly charged impurity (Z � 1), there is a term in the transport
proportional to

Az1 =
dlnpz
dψ

+
Ze

Tz

dφ

dψ
.

In order to maintain ambipolarity of the transport, the radial electric field adjusts accordingly.
In the usual operation scenario (ion-root operation, see section 2.6), it points inwards, and
since this term is multiplied by the large factor Z it will cause large inward transport. Interest-
ingly, unlike in a tokamak, two different drives of transport occur in tokamaks, one, in analogy
with the tokamak, being friction, and the other one being pressure anisotropy. The latter is
multiplied by a geometric factor that vanishes in axisymmetric systems and does not cause
any transport in the tokamak. Although, as shown later in this chapter, the friction term dom-
inates at high collisionality, the pressure anisotropy term is nonetheless important as it is the
term responsible for setting the radial electric field. The remainder of this section is organised
as follows. In section 4.1.1, the drift kinetic equation is solved for both the bulk ions and an
impurity species. The corresponding particle and heat fluxes are calculated in sections 4.1.2
and 4.1.4, respectively, while section 4.1.3 deals with the consequences for ambipolarity. The
results of this chapter are summarised in section 4.1.5.
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4.1.1 Expansion of the kinetic equation

In this section, a plasma in the collisional (Pfirsch-Schlüter) regime is considered consisting
of electrons, hydrogenic bulk ions and a single species of highly charged impurities, i.e. the
assumption Z � 1 is made. In order to account for the stellarator geometry and to avoid
employing a specific coordinate system, one can express geometry-related quantities in terms
of a variable u, defined in the following: Consider the equilibrium current j0 satisfying j0 ×
B = ∇p0, where p0 is the equilibrium pressure. Let u be defined via

h ≡ j0
p′0

=
1
p′0

(
b×∇p0

B
+ j0‖b

)
≡ b×∇ψ

B
+ uB,

where b is the unit vector along the magnetic field and a prime denotes derivation with respect
to the radial spatial coordinate ψ. As the divergence of the equilibrium current must vanish,
∇ ·h = 0, and therefore u must satisfy

∇‖u =
1
p′0
∇‖
(
j0‖
B

)
=

2
B2

(b×∇ψ) ·∇lnB. (4.1)

This notation will be employed frequently in the following.

In order to calculate the radial transport of impurities, which is given by [3]

〈Γz ·∇ψ〉 =
〈∫

fzvd ·∇ψd3v

〉
, (4.2)

where the drift velocity vd is

vd =
b×∇φ

B
·∇ψ +

(
v2
⊥
2

+ v2
‖

)
b×∇lnB

Ω
·∇ψ, (4.3)

and 〈...〉 denotes the flux surface average defined in section 2.3.2, one needs to solve the drift
kinetic equation for the impurities. Specifically, it is necessary to calculate the friction force
and the pressure anisotropy, as the transport term can be rewritten as

〈Γz ·∇ψ〉 =
1
ez

(〈
uBRz‖

〉
+
〈(

B

2
∇‖u+ u∇‖B

)
(pz‖ − pz⊥)

〉)
, (4.4)
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as will be shown in section 4.1.2. Here, Rz‖ is the impurity-ion friction force and terms of
second order in δi ≡ ρi/L have been neglected. The perpendicular and parallel pressures p⊥
and p‖, respectively, are defined as

(
p‖
p⊥

)
=

∫
m

(
v2
‖

v2
⊥/2

)
fd3v.

The flow velocities are, as usual in neoclassical theory, assumed to be one order smaller than
the thermal velocities, Va ∼ δavth,a, which is the only possibility in most stellarator configu-
rations [55], where large flows are prohibited. The drift kinetic equation is ordered as usual in
δa to yield in lowest order

Ca(fa0) = v‖∇‖fa0 ,

the solution to which is a stationary Maxwellian as shown in section 2.3.3, and in first order

Ca(fa1) = v‖ · ∇‖fa1 + vd ·∇fa0 +
ea
Ta
v‖fa0∇‖φ. (4.5)

The independent coordinates in velocity space are ε∗a = mav
2/2+eaφ and µa = mav

2
⊥/(2B),

contrary to the notation introduced in section 2.3.3 where the kinetic energy was used as an
independent variable. As this equation is still too complicated to be solved analytically, it
is further simplified exploiting the condition that the mean-free path is short in the Pfirsch-
Schlüter regime to make a subsidiary expansion in ∆aa ≡ λaa/L� 1, where λaa is the mean
free path [3, 56]. Superscript indices correspond to this expansion whereas subscript indices
express the ordering in δa. In lowest order in this expansion, collisions are dominant, and thus

Ca(f (−1)
a1

) = 0. (4.6)

Note that the expansion starts with −1 as the collision term in lowest order is proportional to
∆−1
aa . The homogeneous solution for the general linearised collision operator yields for the
−1st order distribution function the shifted Maxwellian

f (−1)
a1

=

(
p

(−1)
a1

pa
+
ma

Ta
v‖V

(−1)
a‖

+
(
x2
a −

5
2

)
T

(−1)
a1

Ta

)
fa0 ,

with equal flow velocities V (−1)
i‖

= V
(−1)
z‖ and temperatures T (−1)

i1
= T

(−1)
z1 . More specifi-

cally, the −1st order flow velocities must vanish due to the following argument: Integrating
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4.1. IMPURITY PFIRSCH-SCHLÜTER TRANSPORT IN STELLARATORS

the zeroth order equation, which becomes

Ca(f (0)
a1

) = v‖fa0

(
ea
Ta
∇‖φ(−1)

1 +
∇‖p(−1)

a1

pa
+
(
x2
a −

5
2

)
∇‖T (−1)

a1

Ta
+
ma

Ta
∇‖
(
v‖V

(−1)
a‖

))
.

(4.7)

over velocity space yields

0 =
∫
Ca(fa0)d3v

=
∫
v‖∇‖

(
ma

Ta
v‖V

(−1)
‖

)
d3v

=
1
3
ma

Ta

(
∇‖V (−1)

‖ − V (−1)
‖ ∇‖lnB

)∫
v2fa0d

3v︸ ︷︷ ︸
6=0

where particle conservation was employed and the other terms vanish as they are odd in v‖.
Thus, it follows that V (−1)

‖ = K−1(ψ)B, where K−1 is an arbitrary function of ψ which is
constant on a flux surface. Now multiply (4.7) by Bv‖, integrate over velocity space and take
the flux surface average to find

∑
a

〈
B

∫
mav‖Ca(f (0)

a1
)d3v

〉
= −

∑
a

〈
B

∫
maP2(ξ)v2f (−1)

a1
d3v∇‖lnB

〉
=
∑
a

〈(
p(−1)
a‖
− p(−1)

a⊥

)
∇‖B

〉
= 0. (4.8)

This term must vanish as momentum is conserved in particle collisions. Defining the Spitzer
problem

Ca(P2(ξ)fa0ha) = x2P2(ξ)fa0

makes it possible to write the solution f (−1)
a1 in terms of ha,

f (−1)
a1
|P2 =

ma

Ta
K−1(ψ)P2(ξ)fa0ha∇‖B.
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Thus,

∑
a

〈(
p(−1)
a‖
− p(−1)

a⊥

)
∇‖B

〉
=

3
5
K−1(ψ)

〈
(∇‖B)2

〉∑
a

mana{ha}︸ ︷︷ ︸
6=0

,

and it follows that K−1 vanishes, and therefore also V (−1)
i‖

and V (−1)
z‖ .

In order to rewrite eq. (4.7) in a more compact way, the parallel thermodynamic forces are
defined as

A(−1)
a1‖
≡ ∇‖p

(−1)
a1

pa
+
ea
Ta
∇‖φ(−1)

1 , A(−1)
a2‖
≡ ∇‖T

(−1)
a1

Ta
,

and then

Ca

(
f (0)
a1

)
= v‖fa0

(
A(−1)
a1‖

+
(
x2
a −

5
2

)
A(−1)
a2‖

)
. (4.9)

This Spitzer problem, which requires the knowledge of how the collision operator affects
the distribution function, can be solved via a moment ansatz decomposing the distribution
functions in Sonine polynomials (generalised Laguerre polynomials)

L
(m)
j (x) ≡ 1

j!
ex

xm
dj

dxj
(
xj+me−x

)
as

f (0)
z1 =

mz

Tz
v‖fz0

∑
k

azkL
(3/2)
k (x2

z)

f
(0)
i1

=
mi

Ti
v‖fi0

∑
k

aikL
(3/2)
k (x2

i ).

As further steps involve taking different moments of the collision operator, it has proven useful
to define the following matrix elements

M jk
ab =

τab
na

∫
v‖L

(3/2)
j (x2

a)Cab

[
ma

Ta
v‖L

(3/2)
k (xa)fa0 , fb0

]
d3v,

N jk
ab =

τab
na

∫
v‖L

(3/2)
j (x2

a)Cab

[
fa0 ,

mb

Tb
v‖L

(3/2)
k (x2

b)fb0

]
d3v.
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Analytical expressions for these matrix elements can be found in Braginskii’s famous review
article [57], and in the explicit form used here in [3]. The Spitzer problem (4.9) can then be
rewritten as a matrix problem

∑
b,k

ma

Taτab

(
M jk
ab aak +N jk

ab abk

)
= A(−1)

a1‖
δj0 −

5
2
A(−1)
a2‖

δj1

where τab = 3
√
π/(4ν̂ab) = 3π3/2ε20mav

3
th,a/(nbe

2
ae

2
b lnΛ) and lnΛ is the Coulomb loga-

rithm. As the Sonine polynomial expansion is well-suited for transport problems and con-
verges quickly, the series is usually truncated after the L2 component, and this will be done
here; note, however, that this is not a full solution of the fluid equations and reflects the
problem of the fluid closure addressed in section 2.5, here done by an asymptotic expansion.
Solving the matrix problem, one finds that, due to the symmetry properties of the matrix ele-
ments, the matrix does not have full rank, and thus a solubility condition exists for the values
of the parallel thermodynamic forces on the right-hand side. As the j = 0 equations for ions
and impurities are linearly dependent, the same must hold for the forces on the right-hand side
if a solution is to exist, and therefore the condition∑

a

paA
(−1)
a1‖

= 0

must hold. This condition follows directly from momentum conservation by multiplying (4.9)
by v‖, integrating over velocity space and summing over all species. Thus, the problem is
always soluble, and A(−1)

z1‖ can be expressed as −pi/pz A(−1)
i1‖

. The electron contribution is
small and can safely be neglected. Assuming equal equilibrium temperatures, Ti0 = Tz0 ,
which is realistic for usual values of Z, and using eq. (4.6), from which follows that the −1st

order temperatures in the ∆ expansion must be equal as well, one can conclude directly that
A

(−1)
z2‖ = A

(−1)
i2‖

, which leaves only two unknowns on the right-hand side of the system of
equations. The coefficients can then be written as functions of the bulk ion quantities in the
form

ai0 − az0 =
Ti

miν̂ii

(
α0A

(−1)
i1‖

+ β0A
(−1)
2‖

)
aaj =

Ti
miν̂ii

(
αajA

(−1)
i1‖

+ βajA
(−1)
2‖

)
, j ≥ 1.

Note that, as the six-dimensional matrix has only rank five, one of the quantities remains
unknown, and therefore V (0)

i‖
can only be expressed through V (0)

z‖ (reflecting Galilean invari-
ance). In the limit of large Z, solving the matrix problem becomes especially easy since the
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impurity-ion collision operator can be approximated by

Czi(f
(0)
z1 ) = − Rzi

mznz
· ∂f

(0)
z1

∂v
+

mini
mznzτiz

∂

∂v
·

(
(v − V (0)

z )f (0)
z1 +

Ti
mz

∂f
(0)
z1

∂v

)
.

Multiplying by v‖ and integrating over velocity space yields

∫
mzv‖Czi(f (0)

z1 )d3v =
Riz‖
nz

∫
v‖
∂f

(0)
z1

∂v‖
= −Riz‖

= ∇‖p(−1)
z1 + ez∇‖φ(−1)

1 .

Thus,

Czi(f (0)
z1 ) = v‖fz0A

(−1)
z1‖

,

which cancels the first expression on the right-hand side of eq. (4.9), and the remaining
equation

Czz(f (0)
z1 ) = v‖fz0

(
x2
z −

5
2

)
A

(−1)
2‖

depends only on the impurity parameters. It can be solved analytically for two of the three
unknowns, az1 and az2 to yield

az1 =
75
32

√
π

2
A(−1)
z2‖

Tz
mz ν̂zz

az2 = −5
8

√
π

2
A(−1)
z2‖

Tz
mz ν̂zz

.

The third coefficient, az0 , equals the parallel impurity flow velocity V
(0)
z‖ , as will become

clear presently. The ion problem can then be solved with the impurity coefficients given.
In the Lorentz limit of high Z and Zeff (see section 4.1.3), ion self collisions do not matter
and the ion collision operator can be approximated with the disparate-mass-ratio ion-impurity
collision operator (see section 2.4, which makes it easy to solve the problem analytically. The
results for the ion coefficients are given in the appendix of this section. Again, the parallel
ion flow velocity is only given in terms of the parallel impurity flow velocity. The Sonine
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polynomials are orthogonal in the sense that

{
x2k−3
a Lnk(x2

a)L
k
m(x2

a)
}

= δmn
Γ(n+ k + 1)
n!Γ(5/2)

.

Exploiting this property, one can find some useful relations between the coefficients of the
distribution functions and the parallel flow velocities V (0)

a‖ and heat fluxes q(0)
a‖ , namely

aa0 =
1
na

∫
v‖f

(0)
a1
d3v = V (0)

a‖

aa1 =
1
na

∫
v‖L

(3/2)
1 f (0)

a1
d3v = −2

5
q

(0)
a‖

pa
.

These expressions can now be used to calculate the parallel thermodynamic forces in terms of
the radial gradients, yielding in a first step

A
(−1)
i1‖

= −miν̂ii
Ti

(2/5)β0
∑
a
q

(0)
a‖ /Ta + βi1ni

(
V

(0)
i‖
− V (0)

z‖

)
(αi1β0 − α0βi1)ni

A
(−1)
2‖ =

miν̂ii
Ti

(2/5)α0
∑
a
q

(0)
a‖ /Ta + αi1ni

(
V

(0)
i‖
− V (0)

z‖

)
(αi1β0 − α0βi1)ni

,

where terms proportional to nz/ni have been neglected as impurities are usually rare enough
to make this quantity quite small.

The remaining problem is now to relate the flow velocities and heat fluxes to the radial
gradients, which can be achieved by taking different moments of the kinetic equation and
using conservation properties such as particle and energy conservation. From the particle
moment of (4.5), one obtains

0 =
∫
Ca(f (1)

a1
)d3v =

∫
v‖∇‖f (0)

a1
d3v +

∫
vd ·∇fa0d

3v.
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With

∫
v‖∇‖f (0)

a1
d3 = B∇‖

(∫ ∑
σ

πv3

B0
f (0)
a1
dvdλ

)

= B∇‖

(
naV

(0)
a‖

B

)

and ∫
vd ·∇fa0d

3v =
∫
vd ·∇ψ

∂fa0

∂ψ
d3v

=
∫ (

b×∇φ0

B
·∇ψ︸ ︷︷ ︸

=0

+
(
v2
⊥
2

+ v2
‖

)
b×∇lnB

Ωa
·∇ψ

)
∂fa0

∂ψ
d3v

= −pa
ea
B∇‖uAa1 ,

where(
∂fa0

∂ψ

) ∣∣∣∣
ε∗a

= fa0

(
dlnpa
dψ

+
ea
Ta

dφ

dψ
+
(
x2
a −

5
2

)
dlnTa
dψ

)
= fa0

(
Aa1 +

(
x2
a −

5
2

)
Aa2

)
,

this yields

B∇‖

(
naV

(0)
a‖

B
− pa
ea
Aa1u

)
= 0.

Analogously, from the energy moment,

∑
a

B∇‖

(
q

(0)
a‖

TaB
− 5

2
pa
ea
Aa2u

)
= 0.
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as

0 =
∑
a

∫ (
x2
a −

5
2

)
Ca(f (1)

a1
)d3v

=
∑
a

[∫ (
x2
a −

5
2

)
v‖∇‖f (0)

a1
d3v

−ma

ea
B∇‖u

∫
v2
‖

(
x2
a −

5
2

)
fa0

(
Aa1 +

(
x2
a −

5
2

)
Aa2

)
d3v

]
=

∑
a

(
B∇‖

(
q

(0)
a‖

BTa

)
− pa
ea
B∇‖u

5
2
Aa2

)
.

Due to the assumption of equal equilibrium temperatures, Ai2 ≈ Az2 , and thus

V (0)
a‖

=
Ta
ea
Aa1uB +Ka(ψ)B,

∑
a

q
(0)
a‖

Ta
=

5
2

∑
a

pa
ea
A2uB + L(ψ)B,

where Ka(ψ) and L(ψ) are integration constants. Kz and L can be obtained from the con-
straints〈

B
∑
a

q
(0)
a‖

Ta

〉
= 0,

〈
B
(
V

(0)
i‖
− V (0)

z‖

)〉
= 0, (4.10)

as 〈B∇‖M〉 must vanish for all scalars M . Obtaining a third constraint for Ki is a bit more
complicated (and unfortunately involves quite some algebra), but is possible from the condi-
tion that

∑
a

〈
∇‖B

(
pa‖ − pa⊥

)〉
=

∑
a

〈
∇‖B

∫
mav

2P2(ξ)f (1)
a1
d3v

〉
= 0, (4.11)

where P2(ξ) is the second Legendre polynomial and ξ = v‖/v. This condition can be found
from taking the flux surface average ofB times the velocity moment of the first-order equation,
which reads

Ca(f (1)
a1

) = v‖∇‖f (0)
a1

+ vd ·∇fa0 +
ea
Ta
v‖fa0∇‖φ

(0)
1 , (4.12)

97



4. ASPECTS OF IMPURITY TRANSPORT IN STELLARATORS

as in the calculation for obtaining (4.8). Given the fact that the pressure anisotropy of each
species is proportional to pa/ν̂aa, a factor which is smaller for the impurities than for the
bulk ions by a factor Z−7/2 (if Zeff − 1 = O(1)), the impurity contribution to (4.11) can
be neglected, so that only the ion pressure anisotropy has to be calculated. As the Legendre
polynomials are orthogonal in the sense that

1∫
−1

Pm(ξ)Pn(ξ)dξ =
2

2n+ 1
δmn,

only the P2 components of the distribution function contribute in this equation. These first
occur in first order in the mean-free path expansion, so eq. (4.12) has to be solved. Unlike the
problem of solving the zeroth order equation, where the right-hand side was proportional to
P1 (v‖/v), in this case Spitzer problems proportional to P2 must be solved, which involve a
different kind of matrix elements than used before. Defining the functions gij via

Ci(P2(ξ)fi0gij ) = (−1)jP2(ξ)x2fi0L
(3/2)
j (x2),

one can express the solution through these functions, which can be determined independently.
Conveniently, the pressure anisotropy can be expressed in terms of the velocity space average
of the P2 components of the distribution functions in the following way:

pi‖ − pi⊥ =
∫
miv

2P2(ξ)f (1)
i1
d3v

=
4pi√
π

1∫
−1

P 2
2 (ξ)dξ

∞∫
0

e−x
2
x4

f
(1)
i1
|P2

P2(ξ)fi0
dx

=
3
5
pi

{
f

(1)
i1
|P2

P2(ξ)fi0

}
,

and therefore it is convenient to define

{
gij
}
≡ 5

2
γij
ν̂ii
. (4.13)

The part of the first order ion distribution function which is proportional to P2 reads

f
(1)
i1
|P2 = − 1

3νiz

(
v‖∇‖f (0)

i1
+ vd ·∇fi0

)
|P2 ,
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where

vd ·∇fi0 |P2 = −ma

3ea
v2P2(ξ)fi0

(
Ai1 − L

(3/2)
1 (x2

i )Ai2
) B

2
∇‖u

and from the zeroth order contribution of the ion distribution, which is proportional to v‖, one
finds the expressions

v‖∇‖v‖|P2 =
v2

3
∇‖lnBP2(ξ)

and

v2
‖ |P2 =

2v2

3
P2(ξ).

Then,

f
(1)
i1
|P2 =

2
3
P2(ξ)fi0 [(∇‖lnB + 2∇‖) (ai0gi0 − ai1gi1 + ai2gi2)

−B
2
∇‖u

Ti
ei

(Ai1gi0 +Ai2gi1)
]
,

and the bulk ion pressure anisotropy becomes

pi‖ − pi⊥=
pi
ν̂ii

[
(∇‖lnB + 2∇‖) (ai0γi0 − ai1γi1 + ai2γi2)− B

2
∇‖u

Ti
ei

(Ai1γi0 +Ai2γi1)
]
.

Using (4.10) and (4.11), one finds the three integration constants to read

L(ψ) = −5
2

∑
a

pa
ea
Aa2

〈uB2〉
〈B2〉

,

Kz(ψ) =
(
Ti
ei
Ai1 −

Tz
ez
Az1

)
〈uB2〉
〈B2〉

+Ki(ψ),

Ki(ψ) = −
(
Ti
ei
Ai1G1(ψ) +

Ti
ei
Ai2

γi1
γi0

(
G1(ψ)− 〈uB

2〉
〈B2〉

)
+
γi2
γi0

((
Ti
ei
Ai1−

Tz
ez
Az1

)
η2 +

Ti
ei
Ai2η1

)(
G1(ψ)−

〈
uB2

〉
〈B2〉

+
1
3

〈
B
2∇‖u∇‖B

〉
〈(∇‖B)2〉

))
,
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where G1(ψ) ≡ 〈∇‖B(u∇‖B +B∇‖u/2)〉/〈(∇‖B)2〉 and

η1 =
α0βi2 − β0αi2
αi1β0 − α0βi1

,

η2 =
αi1βi2 − βi1αi2
αi1β0 − α0βi1

.

4.1.2 Radial particle transport

In this section, the radial particle flux of the impurities is calculated. Inserting the expression
for the drift velocity in (4.2), one obtains

〈Γz ·∇ψ〉 =
〈∫

fz

(
b×∇φ

B
·∇ψ +

(
v2
⊥
2

+ v2
‖

)
b×∇lnB

Ωz
·∇ψ

)
d3v

〉
= −

〈
nz
b×∇ψ

B
·∇φ

〉
−
〈

1
ez
b×∇ψ ·∇B

B2

∫
mzfz

(
v2
⊥
2

+ v2
‖

)
d3v

〉
= 〈nz(uB − h) ·∇φ〉 − 1

ez

〈(
pz⊥ + pz‖

) B
2
∇‖u

〉
.

On the other hand, substituting ez/Tz v‖fz0∇‖φ yields

〈eznz0uB∇‖φ〉 =
〈
ezuB

∫
mz

Tz
v2
‖fz0d

3v∇‖φ
〉

= −
〈
ezuB

∫
v2
‖∇‖fzd3v

〉
+
〈
uBRz‖

〉
=

〈
uBRz‖

〉
+
〈
ezpz‖B∇‖u

〉
+
〈
ezuB(pz‖ − pz⊥)∇‖lnB

〉
,

and thus

〈Γz ·∇ψ〉 =
1
ez

(〈
uBRz‖

〉
+
〈(

B

2
∇‖u+ u∇‖B

)
(pz‖ − pz⊥)

〉)
as stated in section 4.1.1. Calculating the impurity pressure anisotropy is extremely tedious,
and the result is lengthy and not very enlightening (and therefore not shown here); the most
important feature of the result is that, as the pressure anisotropy is inversely proportional to
the collision frequency whereas the friction force is proportional to it, the following estimate
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holds:

pressure anisotropy term
friction term

∼ ∆2
ii

Z4
� 1.

The friction term thus dominates, and not only in the ∆ expansion, as expected from the order
in which friction and pressure anisotropy occur, but also by a factor Z4, which becomes large
even for relatively small values of the impurity charge Z, and thus the exact structure of the
impurity pressure anisotropy does not matter.

The friction part can be calculated to be〈
uBRz‖

〉
= −

〈
uBRi‖

〉
= −

〈
uBpiA

(−1)
i1‖

〉
= − miniν̂ii

αi1β0 − α0βi1

(〈
u2B2

〉
−
〈
uB2

〉2

〈B2〉

)(
βi1

(
Ti
ei
Ai1 −

Tz
ez
Az1

)
+ β0

Ti
ei
A2

)
.

The entire effect of the magnetic field geometry is contained in the factor(〈
u2B2

〉
−
〈
uB2

〉2

〈B2〉

)
,

which is always positive by the Schwartz inequality. In the limit of large Z and for Zeff = 2,
the coefficients can be calculated analytically, and one obtains

〈
uBRz‖

〉
= −miniν̂ii

(〈
u2B2

〉
−
〈
uB2

〉2

〈B2〉

)(
0.50

(
Ti
ei
Ai1 −

Tz
ez
Az1

)
− 0.41

Ti
ei
A2

)
.

4.1.3 Ambipolarity

Although not contributing much to the radial transport, the pressure anisotropy is nonetheless
important as the radial electric field is set by the condition that the transport must be ambipolar.
Because the transport due to friction is intrinsically ambipolar, the pressure anisotropy term
is the relevant one in this process. Again, the impurity pressure anisotropy contributes only
as a small correction to the ion pressure anisotropy and will not be calculated here, but the
impurities influence the balance by changing the ion pressure anisotropy in comparison with
a pure plasma through ion-impurity collisions. In a pure plasma, the ion pressure anisotropy
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has been calculated by Simakov and Helander [54] and is, in the notation adopted here,〈(
B

2
∇‖u+ u∇‖B

)
(pi‖ − pi⊥)

〉
= −3pi

ν̂ii

[(
1.80

Ti
ei
Ai1 + 3.21

Ti
ei
Ai2

)
(G2(ψ)−G1(ψ)) + 0.10

Ti
ei
Ai2G3(ψ)

]
. (4.14)

In an impure plasma, both the P1 and the P2 Spitzer problems have to be modified so as to
include collisions with impurities. Whereas the results for the P1 problem have been shown in
section 4.1.1, where Braginskii’s matrix elements could be used in the calculation, such matrix
elements are not as easily available for the P2 components, and it is tedious to calculate them
analytically for arbitrary mass ratio and effective charge. If they are known, the coefficients
γij defined in (4.13) can easily be determined. However, though the full calculation is lengthy,
it is possible to calculate these coefficients analytically without too much effort in the limit
of large Z and Zeff , the so-called Lorentz limit. Although this limit is not a situation which
would occur during usual operation of a machine as impurities are assumed to be so numerous
that a burning plasma with a positive energy balance is rendered impossible, it contains useful
information when combined with the results of the trace impurity limit, in which Zeff � 1.
In this limit, the impurities are too rare to influence the radial electric field, and therefore
the pressure anisotropy corresponds to that in a pure plasma given by eq. (4.14). Having
calculated both the limit of very small and very large Zeff , where the realistic value for Zeff in
experiments is expected to lie somewhere in between, one obtains an impression of the effect
of the impurities on the radial electric field. For the calculation of the P2 matrix elements, the
ion-impurity collision operator is approximated by pitch-angle scattering and a momentum
restoring term (see section 2.4), noting that pitch-angle scattering is the dominant process
when the mass ratio is very disparate. As Zeff is assumed to be large, ion self collisions can
be neglected compared with ion-impurity collisions, and thus the entire ion collision operator
is

Ci(f
(1)
i1

) ≈ Ciz(f (1)
i1

) = νiz

(
L (f (1)

i1
) +

mi

Ti
v‖Vz‖fi0

)
.

Expanding the functions gij as

gij = x2
i

∑
k

bjkL
(5/2)
k (x2

i ),
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one finds, as the Legendre polynomials are eigenfunctions of the Lorentz operator,

Ci(gij ) = −3νizP2(ξ)fi0x
2
i

∑
k

bjkL
(5/2)
k (x2

i ).

With the help of this relation, the coefficients γij can be calculated using the orthogonality
properties of the Sonine polynomials with respect to the velocity space average; the values
are given in the appendix of this chapter. The pressure anisotropy contribution to the radial
transport then becomes〈(

B

2
∇‖u+ u∇‖B

)
(pi‖ − pi⊥)

〉
= − 3pi

(Zeff − 1)ν̂ii

[(
0.47

Ti
ei
Ai1 + 1.93

Tz
ez
Az1 + 9.90

Ti
ei
Ai2

)
· (G2(ψ)−G1(ψ))

+
(

1.29
Ti
ei
Ai2 − 0.65

(
Ti
ei
Ai1 −

Tz
ez
Az1

))
·G3(ψ)

]
,

where

G2(ψ) =

〈(
B

2
∇‖u+ u∇‖B

)2
〉
,

G3(ψ) =
〈
B

2
∇‖u

(
B

2
∇‖u+ u∇‖B

)〉
−
〈
B

2
∇‖u∇‖B

〉
G1(ψ)

and G1(ψ) has already been defined in section 4.1.1. Except for the quantitative change
in the magnitude of the coefficients, there is no great qualitative change when impurities are
present, as the contribution fromAz1 is proportional to 1/Z and thus relatively small. The only
qualitative difference is the additional contribution from Ai1 in front of G3. The magnitude
of the two geometric terms G2 − G1 and G3 is strongly dependent on the exact geometry of
the device, but the latter term tends to be slightly smaller than or comparable to the first one.
Although the magnitude of the ion distribution function coefficients increases when impurities
are present, the overall contribution to the pressure anisotropy decreases due to the large factor
Zeff − 1 in the denominator.
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4.1.4 Heat flux

The radial heat fluxes are also influenced by the presence of impurities, and are given by

〈qa ·∇ψ〉 = Ta

〈∫
fa

(
x2
a +

eaφ

Ta
− 5

2

)
vd ·∇ψd3v

〉
= Ta 〈Γa ·∇ψ〉 − ma

ea

〈
B

2
∇‖u

∫
fa1

(
v2
‖ +

v2
⊥
2

)(
x2
a +

eaφ1

Ta
− 3

2

)
d3v

〉
.

The particle flux has already been calculated in the last section, and the second term can be
rewritten, using the orthogonality properties of the Sonine and the Legendre polynomials and
neglecting components proportional to P2, which first occur in first order in the ∆ii expansion
and are thus two orders smaller than the other terms, as

ma

ea

〈
B

2
∇‖u

∫
fa1

(
v2
‖ +

v2
⊥
2

)(
x2
a +

eaφ1

Ta
− 3

2

)
d3v

〉

=
ma

ea


〈
B

2
∇‖u

∫
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(
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⊥
2
− v2

‖

)(
x2
a −

3
2

+
ea
Ta
φ1

)
d3v

〉
︸ ︷︷ ︸

∼P2(ξ)

+
〈
B∇‖u

∫
fa1v

2
‖

(
x2
a −

5
2

+ 1 +
ea
Ta
φ1

)
d3v

〉]
=
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ea

[〈
B∇‖u

∫
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Ta0
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‖

(
x2
a −

5
2

)2

fa0d
3v

〉
+
〈
B∇‖u

∫
v2
‖
pa1

pa0

fa0d
3v

〉
+
〈
B∇‖u

∫
fa0v

2
‖
ea
Ta
φ1d

3v

〉]
= −pa

ea

〈
uB

(
5
2
A

(−1)
2‖

+A(−1)
a1‖

)〉
.

Combining this term with the expression for the particle flux, the total heat flux becomes

〈q ·∇ψ〉 =
5
2

∑
a

Ta
ea
pa0

〈
uBA

(−1)
2‖

〉

=
5
2

∑
a

Ta
ea
pa0

miν̂ii
Ti

(〈
u2B2

〉
−
〈
uB2

〉2

〈B2〉

)
αi1

(
Ti
ei
Ai1− Tz

ez
Az1

)
+ α0

Ti
ei
Ai2

αi1β0 − α0βi1
.
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4.1.5 Conclusions of section 4.1

The Pfirsch-Schlüter impurity particle and heat fluxes in a stellarator have been calculated.
Compared with the axisymmetric case, the particle transport is qualitatively different and
consists of two separate terms, one tokamak-like term that is proportional to the friction force,
and one term related to the difference between parallel and perpendicular pressures, which
is multiplied by a geometric factor that vanishes in axisymmetric systems. The first term is
proportional to the collision frequency and the second one is inversely proportional to it. When
comparing the magnitude of their contributions in the Pfirsch-Schlüter regime, one therefore
finds that the friction term is considerably larger than the pressure anisotropy term, both with
respect to the ordering in the shortness of the mean free path and to the ordering of the impurity
charge Z � 1. Since the two terms differ by a factor of Z4, even for relatively small impurity
charges the friction term will dominate. As the friction term is intrinsically ambipolar, the
small pressure anisotropy term, which does not have this property, is nonetheless important for
determining the radial electric field. The main contribution comes from the bulk ion pressure
anisotropy, which is affected quantitatively by the presence of impurities, but the qualitative
effect of the impurities is minor.

The circumstance that the neoclassical pressure anisotropy becomes small at high colli-
sionality may have implications for the conclusion drawn in [27, 58] and [59] that the radial
electric field is usually set by neoclassical rather than turbulent transport in stellarators, even
if the turbulent fluxes exceed the neoclassical ones. This result was based on the observation
that the particle flux produced by gyrokinetic turbulence is intrinsically ambipolar (in lead-
ing order) whereas the neoclassical transport is not. Since the neoclassical non-ambipolarity
decreases with increasing collisionality, however, one would expect that turbulence could af-
fect the electric field in cool edge plasmas if the small non-ambipolarity of the turbulence can
compete with the similarly small one of the neoclassical transport.

The Pfirsch-Schlüter heat flux is unremarkable. The direct contribution from the impurities
is smaller than that from the bulk ions, but the latter is affected by the presence of impuri-
ties. In a pure plasma, the heat flux exceeds the particle flux by a large factor, but they are
comparable when impurities are present.

4.1.6 Appendix: Coefficients of the distribution functions

For fixed Z,Zeff , the coefficients of the distribution functions can easily be calculated nu-
merically. Here, some values are given for different impurity charge and effective charge,
assuming equal equilibrium temperatures. The values for Zeff � 1 are analytical limits.
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TABLE 4.1 Coefficients of f (0)
i1

Z = 6, Zeff = 2 large Z, Zeff = 2 large Z, Zeff � 1

α0 -1.618 -2.591 -4.51/(Zeff -1)
αi1 0.520 0.738 2.71/(Zeff -1)
αi2 -0.005 0.084 -0.39/(Zeff -1)
β0 -1.301 -1.843 -6.77/(Zeff -1)
βi1 1.673 2.205 11.28/(Zeff -1)
βi2 -0.613 -0.781 -6.77/(Zeff -1)

TABLE 4.2 Coefficients of f (0)
z1

Z = 6, Zeff = 2 large Z, Zeff = 2

α0 -1.618 -2.591
αz1 0.006 0.000
αz2 0.000 0.000
β0 -1.301 -1.843
βz1 0.029 0.000
βz2 -0.006 0.000

TABLE 4.3 Coefficients γij

large Z, Zeff � 1

γi0 -2.41/(Zeff -1)
γi1 -6.02 /(Zeff -1)
γi2 -4.51 / (Zeff -1)
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4.2 Pfirsch-Schlüter transport in the presence of large gradients

Toroidal edge plasmas are often characterised by large radial gradients of the bulk ion density
and temperature. In fusion relevant experiments, these gradients can easily become larger
than allowed for by conventional neoclassical theory based on a small-gyroradius expansion,
δa ≡ ρaθ/L⊥ � 1, of the kinetic equation, which was treated in the section 4.1 (hereafter
referred to as “conventional theory”) and where ρaθ is the poloidal gyroradius and L⊥ the
radial scale length of the density and temperature gradients. Note that, as soon as large gra-
dients are involved, the parallel and perpendicular scale lengths have to be treated separately,
which leads to the refinement in the definition of δa involving L⊥ and ρaθ . This problem may
be of particular interest in the context of the H-mode (see section 1.2.4), one characteristic
of which is the formation of sharp edge pedestals acting as a transport barrier. Although it is
fundamentally difficult to construct a rigorous neoclassical transport theory if δa is not a small
parameter, it is possible to extend conventional theory to include the cases of larger gradients.
In this new ordering, δi is still treated as small, though not as the smallest expansion parameter
any more, as is implicitly assumed in conventional theory. The other particle species’ quan-
tities are then expressed in terms of δi. Products of δi with large parameters, such as, in the
Pfirsch-Schlüter regime, the collisionality ν̄ii ≡ λii/L‖, where λii is the ion mean free path
and L‖ the connection length, and the impurity charge Z, e.g. ∆i ≡ δiν̄iiZ

2, can easily be of
order unity in the plasma edge, and this is taken into account in the new ordering. The con-
sequence is that in this new ordering the lowest order impurity distribution function is only
locally Maxwellian, contrary to the conventional case where all lowest order quantities are
flux functions. In practice, as a consequence of the large gradients, the impurities start devel-
oping density variations within the flux surface, which, depending on the plasma conditions,
can lead to an accumulation of impurities at certain points on the flux surface. In tokamaks,
this redistribution has previously been predicted to lead to impurity accumulation of the order
of up to 30% of the total density at the high-field side of the torus [60, 61], a result which is in
qualitative agreement with experimental results of present machines such as Alcator C-mod
or MAST. However, there has been no work at all on how this effect is affected by stellarator
geometry, and the calculations presented in this section are aiming at calculating this effect.
As a stellarator plasma, contrary to the tokamak case, cannot rotate freely [27] but instead has
a radial electric field which adjusts itself so as to make the radial transport ambipolar (see sec-
tion 2.6), the effect of the impurity redistribution is fundamentally different in a stellarator due
to effects from the radial electric field which cancel in axisymmetric systems. The remainder
of this section is organised as follows. In section 4.2.1, the kinetic theory is described and a
differential equation for the impurity density variation is derived. This equation is solved, first
in different analytical limits in section 4.2.2, and then fully with the help of numerical tools in
section 4.2.3. The results are discussed and summarised in sections 4.2.4 and 4.2.5.
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4.2.1 Kinetic equations

As in the previous section, we consider a stellarator plasma in the collisional regime consisting
of hydrogenic bulk ions and a single species of heavy, highly charged impurities with charge
Z � 1. The effect of electron collisions on the other species is small and therefore neglected,
and the impurities are assumed to be not too numerous, so that the assumption Z2nz/ni � 1
holds (trace impurities). The drift kinetic equation for each species,

Ca(fa) = v‖∇‖fa + vd ·∇fa +
ea
Ta
v‖∇‖φfa, (4.15)

where vd is given by (4.3), is now solved employing the ordering mentioned above, namely
δi � 1,∆i = O(1). As the impurity charge Z does not enter the ion equation except in
the collision term, where it does not alter the magnitude because Ciz is smaller than Cii by a
factor Zeff , the ion problem is not affected by the new ordering, and thus the solution for the
ion distribution function is the same as in the previous section. This implies in particular that
all lowest-order ion quantities are flux functions and thus do not vary on the flux surface. In the
impurity equation, however, the new ordering implies that collisions dominate the dynamics,
whereas the term containing the parallel derivative of fa drops to next order, and therefore the
lowest order impurity equation becomes

Cz(f (0)
z ) = 0. (4.16)

The solution to this homogeneous collision operator problem is a perturbed Maxwellian,

f (0)
z =

(
p

(0)
z

pz0
+
mz

Tz
v‖V

(1)
z‖

+
(
x2
z −

5
2

)
T

(1)
z

Tz0

)
fz0 , (4.17)

leaving the lowest order density n(0)
z , temperature T (0)

z and parallel flow velocity V (0)
z‖ free to

vary on the flux surface as they are functions of θ and φ as well as ψ. Perturbed quantities
are indicated by superscript indices whereas subscript indices symbolise the expansion in the
conventional ordering δi � 1,∆i � 1. Quantities with a subscript 0 are always flux func-
tions. However, (4.16) implies equal temperatures and flow velocities of all involved particle
species, thereby making the lowest order impurity temperature a flux function, T (0)

z ≈ Ti0(ψ),
and the lowest order flow velocity vanishes since this has been shown in the previous section
to hold for the ion flow velocity. Therefore, the first quantity to vary on the flux surface when
the gradients get larger is the impurity density nz . The variations of the impurity temperature
and flow velocity are therefore one order smaller in δi than the density variation (without loss
of generality or changing the structure of eq. (4.17), f (0)

z and n(0)
z can be understood to include
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the first order variations as well such as to formally keep the ordering valid in this notation).
In next order in the impurity equation, parallel dynamics have to be included,

Cz(f (1)
z ) = v‖∇‖f (0)

z +
ez
Tz
v‖∇‖φ(0)f (0)

z .

Due to the trace impurity assumption Zeff−1� 1, the electrostatic potential is not influenced
much by the varying impurity density and is therefore constant on flux surfaces to lowest
order, so that the last term vanishes. In a theory where the impurity ions are more numerous,
or the plasma is not in the high-collisional regime any more, the contributions from this term
cannot be neglected and may lead to substantial changes in the solution, especially as the term
contains the large factor Z. Again, for convenience, the quantity u defined by (4.1),

∇‖u ≡ 1
p′0
∇‖
(
j0‖
B

)
=

2
B2

(b×∇ψ) ·∇lnB,

is used frequently in the calculation.

Taking the particle moment of the impurity version of (4.15), one can exploit particle con-
servation to find

B∇‖

(
n

(0)
z V

(1)
z‖

B

)
= −dφ

dψ

(
b×∇ψ

B
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z −B∇‖un(0)
z

)
,

where

∫
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z d3v = B∇‖
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z V
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)

as in the previous section and

∫
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·∇n(0)
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,
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were used, keeping only the terms of leading order in Z. This equation contains the two
unknown quantities n(0)

z and V (1)
z , so another equation is needed. As these are the leading

order contributions, the superscripts will be suppressed in the following, and the impurity
density will be normalised to its flux-surface averaged value, i.e. nz ≡ n

(0)
z /〈n(0)

z 〉. The
second condition can be obtained from the v‖-moment of (4.15), which shows that the friction
force is related to the impurity density variation via∫

mzv‖Cz(f (1)
z ) = Rzi‖ =

∫
mzv

2
‖∇‖f (0)

z = ∇‖p(0)
z

⇒ ∇‖nz = − 1
Ti
Riz‖ ,

where momentum conservation was employed for the last equation as it is easier to solve
for the ion-impurity friction. In the trace impurity limit, the impurities do not affect the ion
distribution function, and the resulting equation

Cii(fi1) = v‖fi0

(
Ai1‖ +

(
x2
i −

5
2

)
Ai2‖

)
has been solved before [54] and has the solution

fi1 = −2
5
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piTi
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15
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pi0

+
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Ti
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(
x2
i −

5
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))
fi0 .

This corresponds to the pure plasma solution of the problem treated in the previous section,
leading to the following expressions for the ion flow velocity and heat flux,

niVi‖ = ni
Ti
ei
Ai1uB +Ki(ψ)B

qi‖
pi

=
5
2
Ti
ei
Ai2

(
uB −

B
〈
uB2

〉
〈B2〉

)
,

where the integration constant Ki(ψ) has been determined to be

Ki(ψ) = −Tini
ei

(
(Ai1 + 1.82Ai2)

〈
u(∇‖B)2 + 1/4∇‖u∇‖B2

〉
〈(∇‖B)2〉

− 0.05Ai2

〈
u(∇‖B)2

〉
〈(∇‖B)2〉

−1.77Ai2

〈
uB2

〉
〈B2〉

)
.
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As highly charged impurities are considered, the ion-impurity collision operator can be ap-
proximated by the disparate mass ratio operator from section 2.4,

Ciz(fi1) = νiz

(
L (fi1) +

mi

Ti
v‖Vz‖fi0

)
.

Inserting the solution for fi1 yields

Rzi‖ = −
∫
miv‖Ciz(fi1)d3v =

4
3
√
π
miniν̂iz

(
Vi‖ − Vz‖ −

2
5
qi‖
pi

)
=

4
3
√
π
mini

〈
ν̂iz
nz

〉[
Ti
ei

(
dlnpi
dψ

+
ei
Ti

dφ

dψ
− dlnTi

dψ

)
uBnz

+

(
Ki(ψ)
ni

+
dlnTi
dψ

〈
uB2

〉
〈B2〉

)
Bnz − Vz‖nz

]
.

Here, νiz = ν̂iz/x
3. Introducing the notation

ṽ(ψ) ≡ 4
3
√
π

mini
ei

〈
ν̂iz
nz

〉
K∗i (ψ) ≡ Ki(ψ)

ni
+
dlnTi
dψ

〈
uB2

〉
〈B2〉

γ ≡ u+ (Ai1 −Ai2)−1K∗i (ψ),

one obtains the two equations

∇‖nz = ṽ
(

(Ai1 −Ai2)γBnz − nzVz‖
)

(4.18)

and

B∇‖
(
nzVz‖
B

)
= −dφ

dψ

(
b×∇ψ

B
·∇nz −Bnz∇‖γ

)
. (4.19)

Depending on the exact situation, it can be easier to solve a combination of these two first-
order nonlinear (in nz and Vz‖) partial differential equations, resulting in the following second-
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order linear equation

B∇‖
(

(Ai1 −Ai2)γnz −
1
ṽ

∇‖nz
B

)
= −dφ

dψ

(
b×∇ψ

B
·∇nz −Bnz∇‖γ

)
. (4.20)

Remark:

If the impurities are more numerous, they influence the ion solution as in the
problem treated in the previous section; however, as the impurity density is no
longer a flux function, it cannot be taken out of the flux surface average any
more, and then the integration constant Ki becomes dependent on nz via various
flux surface averages of nz with other functions. Consequently, the two-variable
problem treated here has to be extended by a third nonlinear equation for Ki,
and the problem becomes extremely complicated, far too complicated for any
analytical solution.

4.2.2 Analytical limits

In general, it is not possible to solve eqs. (4.18) and (4.19), or alternatively (4.20), analytically,
as they form a set of partial differential equations and the functions B and γ, although known
in principle, do not have an analytical representation but are only available in numerical form.
However, it is possible to gain some useful information on how the different terms affect the
impurity redistribution by considering different limits, i.e. strong or weak radial gradients or
radial electric field, which will be done in the subsequent sections.

Weak radial gradients

In the case of weak radial gradients, i.e. dφ/dψ � 1 and Ai1 −Ai2 � 1, eq. (4.19) yields

B∇‖
(
nzVz‖
B

)
�

nzVz‖
L‖

,

which can easily be integrated up and leads to

Vz‖ ≈
B

nz
Kz(ψ).

The constant Kz(ψ) can be determined from the constraint that 〈B∇‖nz〉 must vanish, and
reads Kz(ψ) = (Ai1 − Ai2)〈γB2nz〉/〈B2〉. The right-hand side of the remaining equation
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for nz ,

∇‖nz = ν̃(Ai1 −Ai2)
(
γnzB −B

〈γB2nz〉
〈B2〉

)
, (4.21)

is small as well, and thus

∇‖nz �
nz
L‖

with the solution nz ≈ nz(ψ). Thus, the conventional limit of weak gradients, leading to the
densities being constant on flux surfaces, is correctly reproduced.

Large radial gradients, vanishing radial electric field

In the opposite limit of large gradients, (4.20) is still too complicated for an analytical treat-
ment, but a very interesting and analytically tractable limit is the case of small radial electric
field, ei/Tidφ/dψ � dlnni/dψ, in which the terms containing the perpendicular derivative
become negligible and the partial differential equation simplifies to an ordinary one. Although
this case would not occur in a realistic experimental equilibrium, where density gradient and
radial electric potential tend to cancel each other (ion root operation) and are thus of compara-
ble magnitude, it is nonetheless enlightening to study this case as it has the appealing property
of mathematically resembling the tokamak case and giving some fundamental insight into the
different mechanisms involved in the redistribution process. In this limit, the right-hand side
of (4.19) is approximately equal to zero, and thus the impurity flow velocity can be calculated
in terms of the impurity density, leading to eq. (4.21) as in the opposite limit. The solution to
this equation depends fundamentally on the properties of the function γ, especially on whether
γ has any zeroes. If this is not the case, the left-hand side of (4.21) is negligible due to the
large multiplier Ai1 −Ai2 on the right-hand side. The solution then becomes rather easy,

nz ≈
〈

1
γ

〉−1 1
γ
.

Employing the value for γ in the axisymmetric limit,

γ|axisym = − I(ψ)
B2(1 + 2.77dlnTi/dψ)

,

where I(ψ) is the toroidal current, reproduces the tokamak result found in [60] correctly.
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However, if γ does have zeros, the problem is fundamentally different. As there are points
at which the left-hand side vanishes whereas the right-hand side does not, it is not possible
to neglect the parallel gradient in these regions, in which a boundary layer forms. The calcu-
lation for this case, based on the method of integrating factors and an expansion around the
points where γ vanishes, is given in the following. The result is that, in the limit of very large
gradients, the impurities become strongly localised around these zeros, an effect which can
physically be understood by noticing that the friction force, which is the drive for the redistri-
bution, is proportional to γ and thus vanishes as well at these points. Due to periodicity, there
must exist points from where all impurity ions are carried away, but also points at which they
accumulate. In the limit Ai1 −Ai2 →∞, the impurity density becomes a delta distribution at
the accumulation points.

This situation can in principle also occur in a tokamak, but parametric dependencies of
γ|axisym show that this is only possible if the radial temperature and density gradients have
opposite signs, which is not the case for usual operation scenarios.

In Boozer coordinates (ψ, α, ϕ), where the magnetic field can be represented as B =
β∇ψ+ I∇θ+J∇ϕ = ∇ψ×∇α for some functions β, I, J (see section 2.7.2), the parallel
gradient becomes

∇‖ =
B
√
g

∂

∂ϕ
,

where 1/
√
g is the Jacobian, and (4.21) can be represented as

∂nz
∂ϕ

= h

(
γnz −

〈
γB2nz

〉
〈B2〉

)

with

h(ψ) ≡ ṽ(Ai1 −Ai2)
√
g/B2 � 1.

Using the method of integrating factors, this can be solved to yield

nz(ϕ) = ehf(ϕ)

c− h〈γB2nz
〉

〈B2〉

ϕ∫
0

e−hf(ϕ)dϕ



where c is an integration constant and f(ϕ) ≡
ϕ∫
0

γ(ϕ′)dϕ′. Suppose f ′(ϕ) = γ(ϕ) has
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2k zeros in ϕ ∈ [0, 2π), whereof k maxima and k minima at ϕ0, ..., ϕ2k−1. As, due to the
exponential decay, most of the contribution to the integral comes from the area around the
zeros, we can approximate

ϕ∫
0

e−hf(ϕ′) ≈


k
ϕ0+ε(k)∫
ϕ0−ε(k)

e−hf(ϕ′)dϕ′ for h < 0

k
ϕ1+ε(k)∫
ϕ1−ε(k)

e−hf(ϕ′)dϕ′ for h > 0
,

where, without loss of generality, ϕ0 (ϕ1) has been shifted to the origin. Replacing f(ϕ) with
its Taylor expansion around ϕi, i ∈ {0, 1}, and extending the range of integration again to
ϕ ∈ [0, 2π) leads to an expression involving an error function with the expansion parameter
in the argument, and can therefore be approximated with its asymptotic limit for small values.
Note that the integral always exists as always hf ′′(ϕi) > 0. The final result is

nz(ϕ) = c∗e
R ϕ
0 γdϕ′ − hk

〈
γB2nz

〉
〈B2〉

√
π

2hγ′(ϕ)
e
R ϕ
ϕi
γdϕ′

,

where c∗ can be determined from the normalisation constraint 〈nz〉 = 1.

4.2.3 Numerical solution of the full problem

To study realistic scenarios, in which the pressure gradient and the radial electric field are of
comparable magnitude and approximately cancel each other, one has to resort to a numerical
solution of (4.20). This has been done via a Fourier decomposition using the MConf library,
which has been developed for transport analyses in stellarators [62]. MConf uses Boozer
coordinates, which have been introduced in section 2.7.2. In this set of coordinates, the parallel
and radial derivatives can be represented as

B ·∇ =
B2

ιI + J

(
ι
∂

∂θ
+

∂

∂ϕ

)
and

B ×∇ψ ·∇ =
B2

ιI + J

(
J
∂

∂θ
− I ∂

∂ϕ

)
.
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For numerical reasons, it is convenient to usew = n/B2 as a variable instead of n ≡ nz/ 〈nz〉,
for then ∫ ∫

wdϕdθ∫ ∫
1/B2dϕdθ

= 〈n〉 = 1.

In order to relate the magnitude of the radial electric field to the magnitude of the radial density
gradient, the quantity

µ ≡ ei
Ti

dφ/dψ

Ai1 −Ai2

is used as a control parameter for the radial electric field instead of dφ/dψ itself. Eq. (4.20)
can then be rewritten in Boozer coordinates as(

ι
∂

∂θ
+

∂

∂ϕ

)2

w + g(θ, ϕ, ψ)
∂w

∂θ
+ h(θ, ϕ, ψ)

∂w

∂ϕ
+ f(θ, ϕ, ψ)w = 0, (4.22)

where

g(θ, ϕ, ψ) = 4ι
∂lnB
∂α

− ṽ(ιI + J)(Ai1 −Ai2)
(
ιγ + µ

J

B2

)
h(θ, ϕ, ψ) = 4

∂lnB
∂α

− ṽ(ιI + J)(Ai1 −Ai2)
(
γ − µ I

B2

)
f(θ, ϕ, ψ) = 2

((
∂lnB
∂α

)2

+
1
B

∂2B

∂α2

)
− ṽ(ιI + J)(Ai1 −Ai2)

(
2γ
B

∂B

∂α
+
∂γ

∂α

)

and ∂/∂α ≡ ι∂/∂θ + ∂/∂ϕ. Note that

g = ιh− µ

B2
(ιI + J)2ṽ(Ai1 −Ai2)︸ ︷︷ ︸

normally 6=0

,

and therefore, away from rational flux surfaces (i.e., surfaces on which ι has a rational value),
it cannot happen that the coefficients g and h vanish simultaneously. After a decomposition in
Fourier components, eq. (4.22) has the form

−(ιk + l)2wkl +
∑
m′,n′

(
i(k −m′)gm′n′ + (l − n′)hm′n′ + fm′n′

)
wk−m′,l−n′ = 0.
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If a solution to this problem is to exist, the resulting matrix must be (and is) singular; one
obtains a unique solution by adding the normalisation constraint

w00 − (ιk + l)2wkl +
∑
m′n′

(
i(k −m′)gm′n′ + (l − n′)hm′n′ + fm′n′

)
wk−m′,l−n′ = b00,

where bmn are the Fourier coefficients of 1/B2. The matrix problem was implemented with
two different matrix solvers, one direct one and one iterative one, yielding the same results.
In the simulations, the Fourier series was typically truncated after 54 components. With the
numerical data provided by a configuration data bank created for use in international col-
laborations (IEA Implementing Agreement for Cooperation in Development of the Stellarator
Concept), it is possible to study the redistribution process in different devices. Fig. 4.1 shows
the results for W7-AS for different values of ṽ(Ai1 − Ai2)a2, where a is the average minor
radius. The values for the plasma parameters were chosen to match experimental values found
in W7-AS during H-mode operation. For a bulk ion density of 5 · 1019 − 1 · 1020, a bulk ion
temperature of 100 eV and a radial density scale length of 2cm in the pedestal, realistic values
for ṽ(Ai1 − Ai2)a2 lie between 0.01, corresponding to weak gradients, and 10 for very large
gradients and high impurity charge. As an upper limit and to show what happens qualitatively
in the limit of very large gradients and very high impurity charge, values of up to 100 have
been included in the simulation. The ratio between the radial temperature and density gradi-
ents was set T ′/n′ = 2, and µwas chosen accordingly to makeAi1 vanish, which corresponds
to ion-root operation. The flux surface was chosen to be s = 0.9, where s is the magnetic flux
normalised to the flux at the separatrix. As visible from fig. 4.1, for weak radial gradients
the impurity density is nearly constant on the flux surface, and thus the limit of conventional
theory is correctly recovered. A slight in-out asymmetry shows, with the impurities accumu-
lating at the inboard side of the torus, but the overall density variation is moderate with only
5% variation. When the gradients get larger, the impurities accumulate at a certain toroidal
angle, the more the larger the gradients get. In the limit of very large gradients, the distribu-
tion function approaches a delta distribution at these points. When looking at the pattern of
the function γ for these plasma parameters, one finds that γ crosses zero, and thus points of
vanishing friction force exist, which explains the very strong accumulation of the impurities
(hereafter referred to as “strong localisation”). In fig. 4.2, the corresponding radial impurity
flux is plotted as a function of the largeness of the gradients. It is easy to show that, in leading
order, the particle flux across the field is still given by

〈Γz ·∇ψ〉 =
1
ez

〈
uBRz‖

〉
,

even when the impurity density is no longer a flux function. In comparison with a conventional
calculation, where the flux increases linearly with increasing gradients, it is reduced due to
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FIGURE 4.1 Normalised impurity density in W7-AS for different magnitude of
the radial gradients.

the redistribution. However, even for extreme values of ṽ(Ai1 − Ai2)a2, the flux is still a
monotonically increasing function of the gradients.

Qualitatively different results are obtained for W7-X and LHD. Since the order of magni-
tude of the radial gradients in these devices can be expected to be comparable to that found
in W7-AS, the same range of simulation parameters should be appropriate. In this parameter
regime, one finds that in both devices γ does not have any zeros. The impurity accumulation
is thus not as strong as in W7-AS, leading to up to 15% density variation in W7-X and to up to
30% in LHD as shown in figs. 4.3 and 4.4, again for different radial gradients. The patterns of
the redistribution show some similarity, with two regions of accumulation separated by elon-
gated regions with reduced density. The corresponding impurity fluxes are shown in fig. 4.5.
Interestingly, although the density variation is much smaller than in W7-AS, the effect on the
radial transport is much more pronounced, leading to a considerable reduction of the impurity
flux and thus making it a non-monotonic function of the magnitude of the radial gradients. In
LHD, the flux is reversed from inward to outward for very large gradients.
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FIGURE 4.2 Impurity flux in W7-AS for T ′/n′ = 2, µ = 1.5.
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FIGURE 4.3 Normalised impurity density in W7-X for different magnitude of
the radial gradients.
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FIGURE 4.5 Impurity fluxes for T ′/n′ = 2, µ = 1.5; left: W7-X, right: LHD.
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Running the code for tokamak devices leads to the results found previously of impurity
density peaking on the high-field side of the torus [60], with an overall variation between
10–30%, depending mainly on the aspect ratio of the device.

From both simulations and the analytic formulas, it is obvious that the drive of the redis-
tribution is parallel friction between the bulk ions and the impurities, as in a tokamak. How-
ever, the way in which the impurities are redistributed is qualitatively influenced by, on the
one hand, the radial ion temperature gradient, and, on the other hand, the radial electric field,
which does not play a role in axisymmetric configurations. The effect of the radial temperature
gradient comes from its entering the constant K∗i (ψ). Thereby, it influences the magnitude
and possibly even the sign of the friction force, which has a large impact on the redistribution
if γ is modified from being entirely positive (negative) to a state where both signs occur. The
radial electric field influences the redistribution in two different ways. Since it also enters the
constant K∗i (ψ), it can directly influence the friction force in this way. Additionally, it drives
an E × B rotation, which varies on the flux surface and thereby changes the pattern of the
redistribution. Therefore, the dependence of the impurity density on the radial electric field is
rather complicated and analytically not tractable.

However, the numerical results suggest that, even when a radial electric field is included,
the impurity redistribution and consequently also the radial particle transport are strongly
affected by whether or not γ, which is proportional to the friction force, has zeros. If this
in not the case, the density variations are moderate. The exact redistribution pattern depends
on the magnetic geometry of the device. Regarding the radial impurity transport, as long
as the gradients are weak, the relation between the gradients and the radial impurity flux is
approximately linear. When the gradients get larger, the impurities are redistributed in such
a way that they experience less friction. Therefore, the radial flux is reduced and becomes
very small for large gradients. Mathematically, this is manifested by the fact that the left-hand
side of (4.21), which is proportional to the friction force and thus to the particle flux, becomes
negligible when the gradients are large enough.

If γ has zeros, the friction force vanishes at certain points and drives the impurity distribu-
tion function towards a delta distribution at “half" the zeros, namely, at those towards which
the friction force is directed. If the radial electric field is strong, this process can be counter-
acted by the E ×B rotation, which carries the impurities away from these points. However,
in the simulation for W7-AS, the ambipolar electric field seems to be too weak so that friction
is the dominant process and strong accumulation occurs. Although the redistribution slightly
reduces the friction force, since the impurity flux now increases less rapidly than linear with
increasing magnitude of the radial gradients, it is still a monotonic function. Unlike the case
when γ does not have any zeros, there exist regions where the left-hand side of (4.21) is not
negligible (namely, where γ vanishes). Thus, the radial flux cannot become as small as in the
cases when γ does not have any zeros. Again, whether or not this is the case depends on the
magnetic geometry.
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4.2.4 Discussion

A possible objection against the applicability of the theory is that both particle species were
assumed to be in the Pfirsch-Schlüter regime, which, at least for the bulk ions, is not real-
istic in a fusion plasma. Unfortunately, in a stellarator, this regime is the only one where
a completely analytic theory is possible. However, for the main aspects of the theory to be
valid, only the impurities need be collisional, which is a much more realistic assumption. The
ion distribution function enters the calculation only through the friction force, and could in
principle be calculated numerically in a less collisional regime and then substituted into the
equation for the friction. Whether this affects the redistribution in a qualitative way remains to
be seen. In principle, it should not be difficult to detect the redistribution experimentally with
the appropriate diagnostics. In the tokamak case, impurity accumulation at the high-field side
was found experimentally in various devices, with even higher absolute density variation than
predicted by the theory. During the operation of W7-AS, no such redistribution was found, but
one has to keep in mind that there was no attempt to find such an effect, and there might also
be some question as to whether the diagnostics available would have been sensitive enough
to resolve density variations within a flux surface. Currently operating smaller experiments,
such as WEGA or TJ-K, have the intrinsic problem that the achieved maximum temperatures
are far too low to get a high enough ionisation level of the impurities (they cannot achieve
much more than Z = 2 or Z = 3). At LHD, no attempts in this direction appear to have been
performed, either.

4.2.5 Conclusions & Summary of section 4.2

The presence of large gradients in the plasma edge region has a significant influence on heavy
impurity ions. Their density develops variations within the flux surface of the order of up to
10–100%, depending on the device. The effect is qualitatively different from that previously
found in tokamaks as the radial electric plays a major role in the redistribution process, on the
one hand by driving a non-constant (on the flux surface) E ×B flow, which may carry parti-
cles away from regions of accumulation, and on the other hand by influencing the magnitude
and even the sign of the friction force, which is the driving mechanism for the redistribution.
The exact pattern of the impurity density on the flux surface depends sensitively on the exact
geometry of the device. A crucial aspect for the redistribution process is whether there exist
points at which the friction force vanishes. If this is the case, the redistribution can become
much more strongly pronounced than otherwise. The radial impurity transport is greatly af-
fected by the redistribution. Whereas it becomes very small when the gradients are large
if there are no such points, it might still be a monotonically increasing function of the radial
gradients when such points do exist, as in W7-AS, although the flux is still reduced in compar-
ison with a situation without impurity redistribution. Apart from the effects due to the radial
electric field, the main difference between tokamaks and stellarators with respect to impurity

122



4.2. PFIRSCH-SCHLÜTER TRANSPORT IN THE PRESENCE OF LARGE
GRADIENTS

redistribution is the occurrence of strong localisation and the corresponding consequences for
the transport. In tokamaks, this is in principle also possible, but only if the radial density
and temperature gradients have opposite signs, which is usually not the case. The numeri-
cal solution of the full impurity density differential equation reproduces the analytical limits
correctly, but a comparison with experimental results is lacking, due to reasons discussed in
section 4.2.4.
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5 Summary & Outlook

Several problems arising in the context of impurities in fusion plasmas have been studied in
this thesis. The first one, described in section 3.1, concerns the effect of highly charged im-
purities on collisional zonal-flow damping. It is shown that the presence of such impurities
speeds up the damping of the flows by a factor exceeding Zeff due to an enhancement of the
effective bulk ion collision frequency in combination with a more subtle geometric effect.
Because the damping is caused by friction between trapped and passing particles, it is depen-
dent on the fraction of trapped particles and thereby on the geometric properties of the device.
However, since the impurities collide on a much faster time scale than the bulk ions do, impu-
rity self-collisions effectively slow down the passing impurity population very quickly on the
ion collision time scale, and therefore the ions experience friction against the whole - trapped
and passing - impurity population once this has come to rest. This mechanism explains the
enhancement of the damping when heavy impurities are present, which is more pronounced
in large-aspect-ratio devices where the fraction of trapped particles is generally lower than
at tighter aspect ratio. Another application of these results is related to the question of how
quickly the plasma reacts to sudden changes of the pressure profile, which is of particular in-
terest in connection with the LH-transition. Since the mathematical structure of the resulting
equations is exactly the same as in the problem studied in connection with the zonal flows, the
time scale on which a new equilibrium is established corresponds to the zonal flow damping
time (3.11).

In section 3.2, the effect of impurities on ITG-mode turbulence is studied. The resulting
quasilinear impurity flux is found to decrease with increasing impurity charge and to increase
with increasing Zeff . Depending on the radial impurity density scale length, the flux changes
sign from inward to outward at a critical a/Lnz , which is dependent on the simulation pa-
rameters but rather insensitive to Z and Zeff . Regarding the stability of the underlying ITG
mode, an increase of the impurity density tends to have a stabilising effect by reducing both
the growth rate and the frequency of the mode. The impurity charge plays only a minor role in
this process. However, the impurity charge does have an influence on the stability boundary,
where the growth rate vanishes. For heavier impurities (Z & 10), the impurity contribution to
the dispersion relation becomes negligible compared with the bulk ion one, and the resulting
stability boundary is similar to that in a pure plasma. For lighter species, such as, e.g., carbon
or helium, the situation is different as the bulk ion and impurity contributions become com-
parable, and the critical value of a/Lnz is shifted upward considerably with rising impurity
charge.
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5. SUMMARY & OUTLOOK

The subsequent two stellarator problems addressed in chapter 4 are concerned with neo-
classical impurity transport. In the first part (section 4.1), the Pfirsch-Schlüter transport of a
species of heavy, highly charged impurities is calculated. Stellarator neoclassical transport is
qualitatively different from tokamak transport due to the occurrence of a term related to pres-
sure anisotropy in addition to the friction term, which is also present in the tokamak. Although
the anisotropy term is found to be much smaller than the friction term, both in an ordering of
the smallness of the mean free path and an expansion in the impurity charge, it is nonetheless
important since it is not ambipolar, in contrast to the friction contribution. Therefore, it sets
the value of the ambipolar electric field. The impurity pressure anisotropy itself is negligible
in this context, but impurities influence this mechanism by changing the bulk ion pressure
anisotropy via ion-impurity collisions. The fact that the pressure anisotropy term becomes
small in the Pfirsch-Schlüter regime might be of importance for previous results showing that
the radial electric field is set by neoclassical effects rather than turbulence since the ensuing
flows are ambipolar to lowest order.

Finally, section 4.2 is based on these calculations and addresses the topic of impurity re-
distribution on the flux surface in the presence of large radial gradients. It is shown that the
redistribution is driven by parallel friction between the bulk ions and the impurities, and the
pattern of the redistribution is qualitatively influenced by the radial ion temperature gradient
and the radial electric field. The exact way in which they do so is rather complicated.
In principle, two different situations can occur, characterised by whether or not there are
points at which the friction force vanishes. If there are, the impurities start accumulating at
these friction-free points if the E × B rotation due to the radial electric field is not suffi-
ciently strong to counteract this mechanism. If no such points exist, the redistribution is less
pronounced and is typically of the order of 10–30% of the overall density in the magnetic
configurations studied here. In the cases where the friction force is non-zero everywhere, the
transport is strongly reduced in comparison with that from conventional neoclassical theory.
The impurity flux even becomes a non-monotonic function of the magnitude of the radial
gradients, initially increasing with increasing gradients but then falling again to very small
values. In the case where impurities accumulate at the zeros of the friction force, the transport
is also reduced compared with the predictions of conventional theory, but to a lesser extent.
Even for very large gradients, the transport is still a monotonically increasing function of the
radial gradients.

The main restriction of this theory is the assumption of both the impurities and the bulk
ions being in the collisional Pfirsch-Schlüter regime. Whereas this is often true for heavy im-
purities in the plasma edge region, the bulk ions are usually much less collisional. However,
the main points of the theory remain valid if only the impurities are collisional. The bulk
ion distribution must then be calculated by other means. Whereas analytical calculations of
the distribution functions are in stellarators restricted to the Pfirsch-Schlüter regime (hence
the assumption of collisional bulk ions), it is in principle not a problem to obtain them from
numerical simulations for much lower collisionality. Implementing such numerical ion dis-
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tribution functions in the theory, thereby making it applicable for a much broader range of
experimentally relevant parameters, may be the content of future work.
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qa . . . . . . . . . . . . . . heat flux of particle species a
R . . . . . . . . . . . . . . guiding-centre position
r . . . . . . . . . . . . . . . particle position
Ra . . . . . . . . . . . . . friction force of particle species a
Rab . . . . . . . . . . . . friction force between particle species a and b
v . . . . . . . . . . . . . . . particle velocity
vd . . . . . . . . . . . . . drift velocity
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vE . . . . . . . . . . . . . gyroaveraged E ×B velocity

v⊥ . . . . . . . . . . . . . velocity perpendicular to the magnetic field

z . . . . . . . . . . . . . . . phase-space variable

.̂.. . . . . . . . . . . . . . . ensemble average

ξ . . . . . . . . . . . . . . . ratio of the parallel velocity to the total velocity

{...} . . . . . . . . . . . . velocity-space average

a . . . . . . . . . . . . . . . minor radius of the device

A′ . . . . . . . . . . . . . . derivative of a quantity A with respect to the radial coordinate ψ

Aai . . . . . . . . . . . . thermodynamic forces

aaj . . . . . . . . . . . . . coefficient of the distribution function

Aai‖ . . . . . . . . . . . . parallel thermodynamic force

B0 . . . . . . . . . . . . . reference magnetic field strength

ba . . . . . . . . . . . . . . parameter in section 3.2

ba0 . . . . . . . . . . . . . parameter in section 3.2

baj . . . . . . . . . . . . . coefficient of the distribution function

Bmax . . . . . . . . . . . maximum magnetic field strength

Bmin . . . . . . . . . . . minimum magnetic field strength

c∗ . . . . . . . . . . . . . . integration constant

Ca(fa) . . . . . . . . . collision operator of particle species a

cs . . . . . . . . . . . . . . ion sound speed

Cab(fa, fb) . . . . . . collision operator for collisions between particles of species a and b

Dab . . . . . . . . . . . . diffusion coefficient for collisions between particles of species a and b

E(k) . . . . . . . . . . . complete elliptic integral of the first kind

ea . . . . . . . . . . . . . . charge of particle species a

Er . . . . . . . . . . . . . radial electric field

Fa . . . . . . . . . . . . . distribution function of particle species a

fa . . . . . . . . . . . . . . reduced distribution function of particle species a

fc . . . . . . . . . . . . . . effective fraction of circulating particles

fs . . . . . . . . . . . . . . constant used in model potential

fz . . . . . . . . . . . . . . fraction of impurities

Fmirror . . . . . . . . . mirror force

G(x) . . . . . . . . . . . Chandrasekhar function

ga . . . . . . . . . . . . . . nonadiabatic part of the perturbed distribution function of particle species
a
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Gi . . . . . . . . . . . . . geometric constant
gaj . . . . . . . . . . . . . part of the distribution function, defined by a Spitzer problem
H . . . . . . . . . . . . . . Heaviside function
h . . . . . . . . . . . . . . . parameter in section 4.2
ha . . . . . . . . . . . . . . part of the distribution function, defined by a Spitzer problem
I . . . . . . . . . . . . . . . toroidal current
J . . . . . . . . . . . . . . poloidal current
Jn . . . . . . . . . . . . . n’th Bessel function
K . . . . . . . . . . . . . . integration constant
k . . . . . . . . . . . . . . . trapping parameter
K(k) . . . . . . . . . . . complete elliptic integral of the second kind
K∗a . . . . . . . . . . . . . constant
k‖ . . . . . . . . . . . . . . parallel wavenumber
k⊥ . . . . . . . . . . . . . perpendicular wave number
kθ . . . . . . . . . . . . . . poloidal wave number
Ka . . . . . . . . . . . . . integration constant
L . . . . . . . . . . . . . . macroscopic scale length; angular momentum
La . . . . . . . . . . . . . operator in section 3.1

L
(m)
j . . . . . . . . . . . generalised Laguerre polynomial

L‖ . . . . . . . . . . . . . scale length parallel to the magnetic field
L⊥ . . . . . . . . . . . . . scale length perpendicular to the magnetic field
Lna . . . . . . . . . . . . inverse radial density scale length of particle species a
LTa . . . . . . . . . . . . inverse radial temperature scales length of particle species a
Ma . . . . . . . . . . . . . operator in section 3.1
ma . . . . . . . . . . . . . mass of particle species a
M jk
ab . . . . . . . . . . . . matrix element of the collision operator

Na . . . . . . . . . . . . . guiding-centre density
na . . . . . . . . . . . . . particle density of species a
N jk
ab . . . . . . . . . . . . matrix element of the collision operator

P . . . . . . . . . . . . . . neoclassical polarisation
p . . . . . . . . . . . . . . . Laplace transformation variable
p0 . . . . . . . . . . . . . . equilibrium pressure
pa . . . . . . . . . . . . . . pressure of particle species a
Pn . . . . . . . . . . . . . n’th Legendre polynomial
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Pheating . . . . . . . . . heating power
q . . . . . . . . . . . . . . . safety factor
R . . . . . . . . . . . . . . local major radius
r . . . . . . . . . . . . . . . local minor radius
R0 . . . . . . . . . . . . . major radius of the device
Ra . . . . . . . . . . . . . friction force of particle species a
S . . . . . . . . . . . . . . variable appearing in eikonal representation
s . . . . . . . . . . . . . . . magnetic shear
sa . . . . . . . . . . . . . . entropy density
t . . . . . . . . . . . . . . . time
Ta . . . . . . . . . . . . . . temperature of particle species a
u . . . . . . . . . . . . . . . geometric quantity
ua . . . . . . . . . . . . . . momentum-restoring quantity in the model collision operator
Ukl . . . . . . . . . . . . . tensor components appearing in the collision operator
V (ψ) . . . . . . . . . . . volume within the flux surface labelled with ψ
Va . . . . . . . . . . . . . . flow velocity of particle species a
v‖ . . . . . . . . . . . . . . velocity along the magnetic field
vth,a . . . . . . . . . . . . thermal velocity of particle species a
w . . . . . . . . . . . . . . impurity density, normalised to the square of the magnetic field strength
WPlasma . . . . . . . . . plasma energy
xa . . . . . . . . . . . . . . normalised velocity of particle species a
y . . . . . . . . . . . . . . . normalised eigenfrequency
Z . . . . . . . . . . . . . . impurity charge number
za . . . . . . . . . . . . . . FLR parameter
Zeff . . . . . . . . . . . . effective ion charge
Erf(x) . . . . . . . . . . error function
ln Λ . . . . . . . . . . . . Coulomb logarithm
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