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Abstract

The advanced adjoint approach for arbitrary collisionalities with momentum conservation in the like-

particle collision is considered. The results are generally applicable for the parallel conductivity as well

as for current-drive calculations. In addition, the weakly relativistic extension of the variational principle

for the Spitzer function with momentum conservation in the electron-electron collision is described. The

models developed are well suited to ray-tracing calculations.
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I. INTRODUCTION

The adjoint approach is commonly used for calculations of the current drive (CD) efficiency

in ray-tracing [1–3] as well as for the momentum correction of the parallel conductivity and boot-

strap current [4, 5]. The key point is the choice of the model for the corresponding Spitzer function.

The classical Spitzer problem in the collisional limit [6] with ν∗e À 1 can be analytically gener-

alized to the collisionless limit [7] with ν∗e ¿ 1 (here ν∗e = νeR/ῑv is the collisionality, νe is the

collision frequency, R and ῑ are the major radius and the rotational transform, respectively). The

first limit, without trapped particle effects, i.e. νe À τ−1
b (τb is the electron bounce-time), gives

the upper limit for CD efficiency, while the second one (collisionless, i.e. νe ¿ τ−1
b ) tends to

underestimate it. The intermediate collisional regime requires special attention, in particular for

stellarators.

Calculations of even mono-energetic transport coefficients are rather computationally ex-

pensive in the collisionless limit. The treatment of the linearized collision operator with momen-

tum conservation in like-particle collisions would require the solution of the drift-kinetic equation

(DKE) in 4D-phase space instead of the 3D mono-energetic solution. Consequently, momentum

correction techniques (e.g. in Refs. 4, 5) based on mono-energetic transport coefficients become

attractive. In the 3D DKE, the flux surface label and the velocity are only parameters and the

simple Lorentz pitch-angle collision term (without momentum conservation) is used, e.g. in the

DKES code [8]. To include collisionality effects in the Spitzer function, the solution of the 3D

DKE (2D for axisymmetric tokamaks) is mandatory. It is important to note, that the CD is much

more localized in momentum space than the (integral) parallel conductivity, and hence much more

sensitive to the model employed.

For ECRH/ECCD scenarios with high electron temperature, electrons interacting with the
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RF-field are largely in the lmfp-regime. For ECCD predictions, the “high-speed-limit” (see, e.g.

Ref. 3), below abbreviated as hsl-model, is typically applied, where the Spitzer function is calcu-

lated for v/vth À 1 (here, vth =
√

2Te/me). Since the influence of supra-thermal electrons on

momentum conservation is negligible, the DKE can be significantly simplified (in particular, the

integral part of the collision operator is omitted in this approach).

The Spitzer function with parallel momentum conservation in the like-particle collisions

(mc-model) is the direct solution of the Fokker-Planck equation. It is also convenient to obtain

a numerical fit derived from the variational principle based on the collisional entropy production

with momentum conservation in the electron-electron collision term [9, 10], which approximates

the solution of the corresponding Spitzer problem. This approximation is sufficiently accurate for

the range 0.5 . v/vth . 4, i.e. for electrons responsible for the main cyclotron absorption. So far,

this model has been developed only for the non-relativistic case. In the present work, the model of

Ref. 10 is extended to the weakly relativistic case.

II. DESCRIPTION OF THE MODEL

Within the adjoint approach [1–3], the electron current, j‖ = −ene

∫
du v‖fe, driven by the

RF-field, can be expressed as j‖ = enevth/(νe0b) ·
∫

du (g/FeM)QRF(FeM), where u = vγ/vth

with γ the Lorentz factor, FeM(u) = (π/2µ)1/2/K2(µ) · e−µγ is the relativistic Maxwellian with

µ = mec
2/Te and K2 the modified Bessel function of the second kind, νe0 = 4πnee

4 ln Λ/(m2
ev

3
th)

the collision frequency, and b = B/Bmax the normalized magnetic field, where Bmax is the maxi-

mal value of B on the given magnetic surface. The adjoint kinetic equation for the Green’s function

g can be formulated as

v‖b · ∇g + C lin(g) = νe0

v‖
vth

bFeM , (1)
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with C lin(g) = Cee(g; FeM) + Cee(FeM ; g) + Cei(g; FiM) the linearized collision operator. Since

only the 1st Legendre harmonic of g is necessary for current drive calculation, the collision oper-

ator C lin is approximated by neglecting all the n > 1 terms of the general Legendre series. To be

rigorous, the last assumption is exactly correct only for straight magnetic field lines (or in the col-

lisional limit), while for a toroidal plasma the equation for the 1st Legendre harmonic is coupled

with higher harmonics [11]. In practice, nevertheless, in the collisionless limit, accuracy of this ap-

proach with only the 1st Legendre harmonic is about 0.05
√

ε [11] for tokamaks with ε the inverse

aspect ratio, which is sufficient accuracy for the problem considered. The same can be argued for

the stellarators, since only the global maximum and minimum of B define the fraction circulat-

ing particles, and, consequently, the problem considered for stellarators with low collisionality is

qualitatively very similar to the tokamaks case.

Considering at the moment only the collisionless limit, the solution of Eq. (1) for the 1st

Legendre harmonic can be represented as [3, 7, 10]

g1(u, λ) = −sign(u‖) H(λ) K(u),

H(λ) =
1

2fc

Θ(1− λ)

1∫

λ

dλ〈√
1− λb

〉 ,
(2)

where λ = u2
⊥/u2b is the normalized magnetic moment, Θ(y) = 1 for y ≥ 0 (passing particles),

while Θ(y) = 0 for y < 0 (trapped particles), fc = 3
4
〈b2〉 ∫ 1

0
λdλ

〈√1−λb〉 is the fraction of circulating

(passing) particles, 〈...〉 denotes flux surface averaging, and K(u) is the Spitzer function (in this

paper, when it is appropriate, also the Spitzer function normalized to the Maxwellian, χ(u) =

K/FeM , is used). The equation for the Spitzer function can be formulated then as [7, 10]

Ce
1(K)− ftr

fc

(νee(u) + νei(u))K(u) = νe0
u

γ
FeM (3)

where Ce
1(K) is the 1st Legendre harmonic of the linearized collision operator, and ftr = 1 − fc

is the fraction of trapped particles.
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Formally, this model is applicable only for the collisionless and collisional limits (in the last

case, ftr = 0 and H(λ) = |u‖|/u). Below, the model based on Eq. (3) is extended i) for arbitrary

collisionalities, and ii) by modification of the variational principle [10] for the relativistic collision

operator [12].

A. Spitzer function for finite collisionalities

Let us consider the collisionless Spitzer function, K(x), defined by the 1D integro-

differential equation (3) in the non-relativistic case with γ = 1 and u = x ≡ v/vth. The DKES

code [8] (Drift-Kinetic Equation Solver) calculates the 3 mono-energetic transport coefficients; of

particular interest here is the dimensionless mono-energetic parallel electric conductivity, σme
‖ (x).

The collisional limit, which is equivalent to the straight magnetic field line case with fc = 1,

corresponds to the limit σme
‖ /ν∗ = 1 (here, ν∗ = ν(x)/x is the mono-energetic “collisionality”),

while in the collisionless limit σme
‖ /ν∗ is reduced to the passing (circulating) particle fraction, fc,

i.e. the trapped particles defined by ftr do not contribute to the parallel current. With electron-

electron momentum conservation, a stronger weighting of the trapped particles defined by ftr/fc

in Eq. (3) appears which reflects the passing-trapped electron friction adding to the friction with

ions and impurities. In a very natural extension, fc in Eq. (3) is replaced by the “effective” passing

particle fraction, f eff
c (x) = σme

‖ (x)/ν∗(x), from the DKES data thus allowing for a collisionality

dependence. A similar procedure was used in the fit representation of the normalized σ‖ in Ref. 13

where a 3D DKE (for tokamaks) with the full linearized collision operator was solved. This ap-

proach describes correctly both the collisional and collisionless limits. The current diffusion into

the trapped-particle domain is reflected by the ratio of the collision frequency to the bounce fre-

quency and depends on the specific magnetic configuration. This feature is well described by the

DKES solution for σme
‖ (x).
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In Fig.1, solutions of Eq. (3) with f eff
c (x) obtained from the DKES data for the “standard”

W7-X configuration are shown. Solutions are obtained for Zeff = 1 (left) and Zeff = 2 (right),

with fixed density, ne = 1 × 1020 m−3, and for different electron temperatures, that corresponds

to the different collisionalities (for collisional and collisionless limits, Te = 0 and Te = 100 keV,

respectively, are applied; please, note, that so high upper temperature is required just to cover the

collisionless limit, while the relativistic effects are omitted). As expected, the resulting Spitzer

functions lie in the range between the collisional and collisionless limits.

In order to benchmark the model, the (thermal) parallel electric conductivity is calculated for

a tokamak case. Fig.2 (left) shows the normalized conductivities calculated from the solution of

Eq. (3) with f eff
c (x) together with simple fit formulas for tokamaks with momentum conservation

taken into account. The collisionless limit as well as the transitions from the plateau- to the Pfirsch-

Schlüter and the banana-regime are given for reference. The Hinton-Hazeltine approximation [14]

(dot-dashed line) is valid only for large aspect ratios (εt ¿ 1) whereas the agreement with Ref. 13

(dashed line) is rather good even for larger εt. Consequently, this momentum correction technique

based on the (mono-energetic) f eff
c (x) from DKES can be expected to handle complex stellarator

configurations, as well.

Fig.2 (right) shows the comparison of σ‖(ν∗e ) for the “standard” W7-X configuration and the

equivalent axisymmetric configuration with the strong W7-X elongation taken into account. For

W7-X, the conductivity is dominated by both the helical (B11-Fourier component) and the toroidal

mirror term (B01 term); the toroidal curvature (B10 term) is rather small (high elongation). In

general, the functional dependence of σ‖(ν∗e ) for stellarators and tokamaks can be fairly different

which reflects the bounce frequencies of the different types of trapped particles.

At first consideration, introducing the concept of an “effective” passing particle fraction as

a function of energy into Eq. (3) is in some contradiction with the original formulation given in
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Eq. (2), where fc is strictly defined by the magnetic configuration alone. Nevertheless, despite the

fact that, formally, trapped particles are excluded from consideration in Eq. (2), their contribution

is included implicitly as an integral effect in the present Spitzer function, K(u), since the DKES

solution gives the mono-energetic parallel conductivity accounting for the (barely) trapped particle

contribution. In this approach, the shape of the Spitzer function is definitely determinated by the

total fraction of current driving particles dependent on energy.

B. Weakly relativistic Spitzer function

The Coulomb coefficients of the fully relativistic operator [12] have an additional parametric

dependence on µ = mc2/Te À 1. Since the exact fully relativistic Coulomb coefficients are rather

complex for calculations, we simplify the analytical expressions by an expansion of the collision

operator in a power series in µ−1,

Ce
1 = Ce

1,µ=∞ + µ−1Ce
1,1 + µ−2Ce

1,2 + O(µ−3). (4)

The main advantage of this representation is that the final formulas (see below) can be easily

expressed through the standard integrals.

With this expansion, the upper electron energy limit is introduced, u2
max/µ . 1 (for the

ITER conditions with µ ' 20 it gives umax . 4.5). Since the main cyclotron absorption happens

usually in the range u ∼ 1− 4, this expansion is quite sufficient.

Following Refs. 9, 10, the solution of Eq. (3) is found from the variational principle by min-

imization of the collisional entropy production. Approximating the solution by the test function of

Refs. 9, 10 modified by the factor 1/γ,

χ(u) ' χa(u) =
u

γ

4∑
i=1

diu
i, (5)
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the functional

S[χa] =

∫
d3u

[
χa

FeM

Ce
1(χaFeM)− ftr

fc

χa

FeM

νe(u)χa − 2νe0

u‖
γ

χa

−2ζ

(
u‖Ce

1(χaFeM)− ftr

fc

νe(u)χa − 2νe0

uu‖
γ

FeM

)]
,

(6)

is minimized with respect to di leading to the system of 4 + 1 equations for di and ζ ,

(Mij + Ωij) dj + (M0i + Ω0i) ζ = Gi,

(M0j + Ω0j) dj + 0 · ζ = G0,

(7)

(similar to Refs. 9, 10, the term proportional to ζ in Eqs. (6) and (7) is added to guarantee parallel

momentum conservation). Here, νe(u) ≡ νee(u) + νei(u). It is important to mention here, that

the test function Eq. (5) does not cover exactly the asymptotic for u À 1, especially for low

temperatures, when γ ' 1 and χa ∼ u5 instead of the high-speed-limit χhsl ∼ u4. Nevertheless,

its accuracy is sufficient for the most interesting range, u < 4.

The definitions for the matrix coefficients, Mij , Ωij and Gi, are very similar to the non-

relativistic formulation given in Ref. 10, with only the relativistic Coulomb operator taken in the

approximation of Eq. (4) instead of the non-relativistic one,

Mij = −2

∫
d3u

ui+1

Γi

pCe
1(

uj+1

γ
pFeM),

Ωij = 2

∫
d3u

ui+j+2

γΓi

p2FeM(u) νe(u)
ftr

fc

,

Gi = 2νe0

∫
d3u

ui+2

γΓi

p2FeM(u),

(8)

(here, p ≡ cos θ is the pitch, Γi = γ for i ≥ 1, and Γ0 = 1). Despite the fact that the final explicit

formulas for these coefficients (apart of Ωij) are rather lengthy, they can be directly integrated

(with help, for example, the Mathematica package). Please, find, that this formulation is suitable

for arbitrary collisionality, where the “effective” passing particle fraction, f eff
c (x), can be applied.

In the collisionless limit with f eff
c (x) = fc, the integration for Ωij can also be performed analyti-

cally. Since the relativistic effects in collisional plasma response are important only for very high
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electron temperatures, we consider here only the collisionless limit (see Fig.1)The final formulas

for the matrix coefficients Mij , Ωij and Gi in this limit are given in the Appendix.

In Fig.3, the weakly relativistic Spitzer function obtained with accuracy O(1/µ3) from the

variational principle for Te = 25 keV (full lines) together with the exact non-relativistic solution

(dots) for collisionless limits with ftr = 0.5 are shown. Even for such a high temperature, the

approximate solution coincides well with exact non-relativistic one for low energies (apart of not

so important u ¿ 1 range), u < 2 (Fig.3, left), but for higher energies the discrepancy becomes

significant. For comparison, also the fully relativistic high-speed-limit solution (Eq. (33) in Ref.3)

is shown (dash-dots). As expected, the discrepancy of high-speed-limit from momentum conserv-

ing solution for the bulk is large, and may lead to a significant underestimation of CD. As was

mentioned above, even for high obliqueness, the main contribution in CD is coming from the elec-

trons with velocities satisfying u < 4, and higher energies are not important due to their negligible

contribution in absorption.

The presented formulation for the weakly relativistic approach can be easily extended to the

finite collisionality case by introducing the mono-energetic “effective” fraction of passing parti-

cles, f eff
c (x). Since the corresponding functional S[χa] in this case is the same as Eq. (6), the

approach for solving the problem is equivalent, leading only to numerical calculations of the ma-

trix coefficients. Nevertheless, the relativistic effect becomes important mainly in the lmfp-regime,

and the present approach is quite sufficient.

III. CONCLUSIONS

It has been shown that the very simple “high-speed-limit” approach is in general not qualified

for the estimation of the ECCD efficiency. This approach is truly applicable only for scenarios with

sufficiently large launch angles in an optically thick plasma, where bulk electrons are surely not
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involved in the cyclotron interaction. Exact numerical solutions of the Spitzer problem as well as

rather good approximations derived from the variational principle based on the collisional entropy

production exist with momentum conservation in the electron-electron collision term. These ap-

proaches are valid also at lower velocities. A generalized formulation based on the non-relativistic

solution of the mono-energetic drift-kinetic equation allows for arbitrary collisionalities and re-

covers the analytical formulation both in the collisional and the collisionless limit. In addition, the

weakly relativistic extension of the variational principle for the collisionless Spitzer problem has

been obtained. The numerical fit by the variational principle approximates the solution quite ac-

curately in the main range of interest, u . 4. The weakly relativistic model has been successfully

implemented in the ray-tracing code TRAVIS [15, 16].
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APPENDIX A: MATRIX COEFFICIENTS FROM EQ. (8)

The linearized Coulomb operator for g1 = pFMχ1 with p ≡ cos θ, needed for the matrix

coefficients defined in Eqs. (8), can be represented as

Ce
1(pFMχ1)

pFM

=
1

u2

∂

∂u

(
u2Dee

uu,0

∂χ1

∂u

)
+ F ee

u,0

∂χ1

∂u
− 2

u2

(
Dee

θθ,0 + Dei
θθ,0

)
χ1 + Iee(FMχ1), (A1)

where the diffusion and friction Coulomb coefficients, Dee
uu,0, Dee

θθ,0 and F ee
u,0 (see Ref. 12) are

taken in the weakly relativistic approach with accuracy O(µ−3), while Dei
θθ,0 is taken in the stan-

dard Lorentz limit mi → ∞. The last term in Eq. (A1), Iee(FMχ1), is the integral term re-

sponsible for conservation of the parallel momentum in electron-electron collisions, which is

estimated here with the same accuracy. The collision frequency, i.e. the pitch scattering rate,

νe(u) =
2

u2

(
Dee

θθ,0 + Dei
θθ,0

)
, is taken in the same approach.

Since the analytical expressions for matrix coefficients defined in Eqs. (8) seem to be rather

cumbersome, we give here only the final practical formulas with accuracy O(1/µ2) (despite of the

fact, that the results shown in Fig.3 were obtained with accuracy O(1/µ3), in practise, nevertheless,

it is very sufficient to use only 1st relativistic correction). For convenience, the coefficients are

represented as

Mij = M
(0)
ij + 1

µ
M

(1)
ij + O( 1

µ2 ),

Ωij = Ω
(0)
ij + 1

µ
Ω

(1)
ij + O( 1

µ2 ),

Gi = G
(0)
i + 1

µ
G

(1)
i + O( 1

µ2 ).

(A2)

The symmetry relations are taken into account, Mij = Mji, Ωij = Ωji, and for i, j ≥ 1, Ωi+k,j+l =

11



Ωi+l,j+k. The complete expressions are collected below:

M
(0)
01 =

√
π

2
Zeff ; M

(1)
01 = − 3

2
√

π
+ 3

√
π

4
Zeff ;

M
(0)
02 = Zeff ; M

(1)
02 = − 105

64
√

2
+ 25

8
Zeff ;

M
(0)
03 = 3

√
π

4
Zeff ; M

(1)
03 = − 3√

π
+ 15

√
π

4
Zeff ;

M
(0)
04 = 2Zeff ; M

(1)
04 = − 945

256
√

2
+ 57

4
Zeff ;

M
(0)
11 = −104

15
+ 151

15
√

2
+ Zeff ; M

(1)
11 = 2071

105
− 197861

6720
√

2
+ 9

8
Zeff ;

M
(0)
12 = 4√

π
−√π + 3

√
π

4
Zeff ; M

(1)
12 = − 5√

π
+
√

π + 15
√

π
8

Zeff ;

M
(0)
13 = −102

5
+ 607

20
√

2
+ 2Zeff ; M

(1)
13 = −1437

140
− 131497

8960
√

2
+ 33

4
Zeff ;

M
(0)
14 = 26√

π
− 7

√
π + 15

√
π

8
Zeff ; M

(1)
14 = 52√

π
−

√
π

4
+ 45

√
π

4
Zeff ;

M
(0)
22 =

√
2 + 2 Zeff ; M

(1)
22 = − 1105

256
√

2
− 15

4
Zeff ;

M
(0)
23 = 6√

π
+ 15

√
π

8
Zeff ; M

(1)
23 = − 49

2
√

π
+ 69

√
π

8
− 15

√
π

8
Zeff ;

M
(0)
24 = 11√

2
+ 6 Zeff ; M

(1)
24 = − 30245

1024
√

2
+ 3

4
Zeff ;

M
(0)
33 = −228

5
+ 6147

80
√

2
+ 6Zeff ; M

(1)
33 = 1161

14
− 550017

7168
√

2
+ 3

4
Zeff ;

M
(0)
34 = 45√

π
− 9

√
π

4
+ 105

√
π

16
Zeff ; M

(1)
34 = 79

4
√

π
+ 255

√
π

4
+ 315

√
π

32
Zeff ;

M
(0)
44 = 157

2
√

2
+ 24Zeff ; M

(1)
44 = −2754977

4096
√

2
+ 75Zeff ;

(A3)

The final expressions for matrix coefficients Ωij are given here only for the collisionless
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limit, when ftr is not a function of energy anymore, and, consequently, Ωij = ftr

fc
ωij , with

ω
(0)
01 = 1√

π
+

√
π

2
Zeff ; ω

(1)
01 = − 9

4
√

π
+ 3

√
π

4
− 3

√
π

4
Zeff ;

ω
(0)
02 = 1√

2
+ Zeff ; ω

(1)
02 = 19

16
√

2
− 7

8
Zeff ;

ω
(0)
03 = 1√

π
+

√
π

4
+ 3

√
π

4
Zeff ; ω

(1)
03 = 7

4
√

π
+ 7

√
π

8
;

ω
(0)
04 = 9

4
√

2
+ 2Zeff ; ω

(1)
04 = 591

64
√

2
+ 9

4
Zeff ;

ω
(0)
11 = ω

(0)
02 ; ω

(1)
11 = − 17

16
√

2
− 23

8
Zeff ;

ω
(0)
12 = ω

(0)
03 ; ω

(1)
12 = − 3

4
√

π
+

√
π

8
− 15

√
π

8
Zeff ;

ω
(0)
13 = ω

(0)
04 ; ω

(1)
13 = 131

64
√

2
− 15

4
Zeff ;

ω
(0)
14 = 5

2
√

π
+ 3

√
π

4
+ 15

√
π

8
Zeff ; ω

(1)
14 = 41

8
√

π
+ 15

√
π

8
− 15

√
π

8
Zeff ;

ω
(0)
24 = 115

16
√

2
+ 6Zeff ; ω

(1)
24 = 7133

256
√

2
+ 3

4
Zeff ;

ω
(0)
34 = 9√

π
+ 45

√
π

16
+ 105

√
π

16
Zeff ; ω

(1)
34 = 203

4
√

π
+ 525

√
π

32
+ 315

√
π

32
Zeff ;

ω
(0)
44 = 1911

64
√

2
+ 24Zeff ; ω

(1)
44 = 239853

1024
√

2
+ 75Zeff .

(A4)

The final analytical expression for Gi is very compact,

G
(0)
i = Γ

(
5+i
2

)
; G

(1)
i = −15

8
Γ

(
5+i
2

)− 2Γ
(

7+i
2

)
+ 1

2
Γ

(
9+i
2

)
. (A5)

One can find, that the non-relativistic contributions (indexed above by zero) are the same as

defined in [9, 10] (see Eq.21 in [9] for M
(0)
ij , and Eq.A21 and Eq.A22 in [10] for ω

(0)
ij and G

(0)
ij ,

respectively).
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FIG. 1.

Spitzer functions, K̄(x) = χ(x)e−x2 , calculated for the “standard” W7-X configuration with

Zeff = 1 (left) and Zeff = 2 (right), for different temperatures. Solid and dotted lines correspond

to the collisionless limit with Te = 100 keV and collisional limit with Te → 0, respectively.

Dashed, dot-dashed and dot-dot-dashed lines correspond to 1 keV, 3 keV and 10 keV.

FIG. 2.

Left: parallel conductivity, σ‖, normalized to the collisional Spitzer value vs the thermal electron

collisionality for a tokamak with εt = 0.05 and Zeff = 1. Solid line: obtained from solution of

Eq. (3) with f eff
c = σme

‖ /ν∗ from DKES; dashed line: from Eq. (13) in Ref. 13; dash-dot line:

from Eq. (6.122) in Ref. 14. Right: the same for the W7-X “standard” configuration (full line)

and for the axisymmetric configuration (dot-dashed line) with identical toroidal curvature at half

the plasma radius.

FIG. 3.

The Spitzer functions for ftr = 0.5 and Zeff = 2 are shown: weakly relativistic variational princi-

ple mc-solution (full line) and fully relativistic hsl-solution (dash-dots) for Te = 25 keV, respec-

tively. As reference, the exact non-relativistic solution (dots) is shown. Both Spitzer functions are

shown, normalized by the Maxwellian, χ(u) (left), and K(u) = χ(u)FeM (right).
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