
1 
 

Article published in J. Nucl. Mater. 390-391 (2009) 701-704 
 

 
Gas-driven hydrogen isotopes permeation through different carbon 

materials 
 

A.V. Spitsyna, A.V. Golubevaa*, M. Mayerb, A.A. Skovorodaa 
 

a RRC ‘Kurchatov Institute’, Moscow, Russia 
b  Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany 

 
Abstract 

Hydrogen gas driven permeation through the fine-grain graphites MPG-8 and R5710, 

and through CFC NB31 in two main directions has been investigated for sample thicknesses 

of 1 – 7 mm and pressures from 10-2 -10 Pa. The gas driven permeation occurs through the 

carbon-base materials by the hydrogen molecular gas flow through the internal porosity 

network rather than hydrogen atom diffusion through the graphite lattice. The permeabilities 

of MPG-8 and Nb31 are of the same order, while the permeability of R5710 is two orders of 

magnitude less. The specific bulk conductivity is about 5×10
15 

molecules⋅s-1m-1Pa-1 for MPG-

8; 8×10
13 

molecules⋅s-1m-1Pa-1 for R5710; 1×10
16 

molecules⋅s-1m-1Pa-1 for Nb31 along ex-

pitch (x) fibers after taking into account the perforated surface layer and 0.8×10
16 

molecules⋅s-

1m-1Pa-1 for Nb31 along needled (z) fibers. 
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1. Introduction 

Carbon-based materials, such as fine-grain graphites and carbon fiber composites 

(CFCs) are used in fusion research devices as plasma-facing components (PFCs). CFC’s are 

also intended to be used as PFC in ITER. The accumulation of tritium is one of the key 

problems for ITER and future thermonuclear reactors: For safety reasons its inventory in 

PFCs must be strongly limited, and leakages (for example to the coolant) must be minimized. 

Tritium may be accumulated by co-deposition with eroded carbon or beryllium. A deep 

diffusion of hydrogen into CFC was observed in laboratory experiments [1], and this deep 

diffusion and trapping inside the material might be responsible for the high D inventory 

observed in Tore Supra [2], where large areas of CFC material are exposed to the plasma at 

the CIEL limiter. The mechanism of deep tritium permeation in carbon-based materials is 

thought to be migration through open porosity. The porous structure strongly influences the 

hydrogen gas permeation through PFCs.  

Interaction of hydrogen isotopes with graphites and carbon based materials has been 

actively investigated during the last decades. At the same time, only few publications were 

devoted to hydrogen permeation through isotropic graphites [3, 4, 5, 6] and not much is 

known about the permeability of CFCs. 

This work is devoted to experimental investigations of the gas driven permeation 

(GDP) through carbon-based materials. 

2.  Experimental 

2.1. Materials 

Three materials were investigated: fine-grain graphites MPG-8 and R5710, and 

carbon fiber composite Nb31.  

The fine-grain graphite MPG-8 was developed in Russia for thermonuclear 

applications and is used in most Russian tokamaks. It contains a relatively low amount of 
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impurities: Si < 3⋅10-5%, Fe, Mn, Mg, Al, Cu, Ti, B < 10-5 % [7]. Its density is 1.61 g/cm3, 

average grain size is 8 µm, porosity 23 vol. % (from which 17 vol. % is open porosity). 

R5710 is an ultra-pure  fine-grain graphite initially developed for fission applications. 

It is used for example in ASDEX Upgrade. Its density is 1.88 g/cm3, average grain size 3 µm, 

open porosity 10 vol. %, medium pore size 0.6 µm. The impurities contents are less than 

100 ppm. 

NB31 is a carbon fiber composite material, and initially foreseen as reference material 

for ITER. It is a three-directional CFC material, consisting of ex-pitch (x), ex-PAN (y) and 

needled fibers (z, ex-PAN) [8]. The density of the material is ρ=1.87-1.94 g/cm3, the open 

porosity is 7-9% [9]. As Nb31 is anisotropic, samples with different orientations were 

manufactured: along ex-pitch fibers (Nb31-x), and along needled fibers (Nb31-z). The photos 

of the samples (Fig. 4) and their surface profiles (Fig. 3) show more pronounced deep gaps at 

the surfaces of ex-pitch samples. 

The Nb31 and R5710 samples were manufactured by spark erosion. The MPG-8 

samples were mechanically cut without lubricant. No additional samples treatment was 

performed, except for the cases specially mentioned below. All samples had the shape of 

disks ∅ 27 mm. The thicknesses of the samples varied: for MPG-8 from 1 to 4.38 mm, for 

R5710 from 1 to 2.5 mm, for Nb31-x from 2 to 7 mm, for Nb31-z from 1 to 5.5 mm.  

2.2. Set-up 

The experimental investigation of the permeability was performed at the installation 

described in [6], but modified for the presented experiments. A scheme of the experimental 

unit is shown in Fig. 1.  

The sample separates two vacuum volumes (A and B) and is vacuum-sealed with two 

gaskets of vacuum rubber. The surface exposed to the gas loading is constrained by limiters 
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and has ∅ 20 mm. The side face of the sample is surrounded with a shield, used both for 

sample centering and suppressing gas leakages through the edge.  

In the experiments the hydrogen gas flux through the membrane was measured with a 

pressure gradient at the inlet and outlet surfaces. In the inlet chamber A a hydrogen pressure 

in the range of 10-2 - 10 Pa was established. Hydrogen flux permeating through the sample 

comes into the measuring chamber B, which has no own pumping. The permeating gas is 

pumped out from chamber B through a calibrated orifice between chambers B and C. Gas 

pressures in vacuum chambers A, B and C are controlled by high-pressure ionization gauges 

with filaments covered by yttrium oxide. The gas flux Q though the orifice is determined 

from the pressures before and after the diaphragm: 

Q[H2/sec]=s·(PB-PC),       (1) 

where s – orifice gas conductivity, s=0.74 l·s-1. , PB, C – pressures measured before and after 

the diaphragm. 

3. Results and discussion 

For all materials investigated the hydrogen permeating flux increases proportional to 

the pressure gradient at the membrane sides in the range of 10-2÷80 Pa (Fehler! 

Verweisquelle konnte nicht gefunden werden.), and is inversely proportional to the sample 

thickness. A set of additional experiments with argon GDP was performed and has 

demonstrated for all used materials that the permeating flux is inversely proportional to the 

square root of the molecular mass.  

Though being totally different types of materials (fine-grain graphite and CFC), the 

permeating fluxes through MPG-8 and Nb31 are of the same order, while the permeating flux 

through the fine-grain graphite R5710 is smaller by two orders of magnitude (Fehler! 

Verweisquelle konnte nicht gefunden werden.). The permeability of Nb31 depends on the 

direction (Fehler! Verweisquelle konnte nicht gefunden werden.). 



5 
 

3.1. Specific gas conductivity  

The experimentally observed permeation cannot be described by atomic hydrogen 

diffusion through the graphite lattice. Diffusion limited atomic permeation is characterized by 

a square root dependence of the permeation rate on the loading pressure, while we observe a 

linear dependence. The permeation of hydrogen through the samples of porous carbon 

materials (MPG-8, R5710 and Nb31) can be formally described as the gas flow in the 

molecular mode through curvilinear channels formed by the interconnected opened porosity 

in the bulk.  

The gas flow in a capillary is inversely proportional to the capillary length, inversely 

proportional to the square root of the molecular mass and proportional to pressure loading in 

the molecular regime of gas flow [10]. All these peculiarities were observed in our 

experiments. 

From the obtained pressure and thickness dependences one can write the permeation 

flux through a carbon (graphite or CFC) membrane as 

j= σ⋅ΔP⋅A/d,       (2) 

where σ is the specific gas conductivity of the membrane, ΔР is the pressure difference, A is 

the surface area and d the thickness of the membrane. The σ  here is the characteristics of the 

material rather than the properties of the sample (thickness, area). The σ  data obtained in the 

present work for the three carbon-based materials under investigation are summarized in 

Table 1. 

3.2. Structure dependence of permeability 

The observed difference of the permeating fluxes by two orders of magnitude between 

R5710 and MPG-8 fine-grain graphites has the only explanation in a different porosity and 

different typical void size. The open porosity is 10 vol. % for R5710 and 17 vol. % for MPG-

8. The mean grain sizes of R5710 and for MPG-8 are 3 µm and 8 µm, respectively. The void 
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size should follow the grain sizes. The dependence of the permeating flux on the typical void 

size is strongly nonlinear. The same situation was previously reported in [11], where an 

increase of the open porosity of MPG-8 from 17 vol. % to 19 vol. % resulted in an increase of 

the permeating flux by a factor of two. Such a strong influence of the structure on gas 

permeability of carbon-based materials should be taken into account when selecting materials 

for fusion reactors.  

3.3. Scatter of specific conductivity data 

For the fine-grain graphites the scatter of the data for different samples of the same 

thickness is less than 30% from the mean value.  

For Nb31 the permeability measurements for the same sample are repeatable, while 

for different samples with the same orientation the σ data scatter more strongly (Table 1): 

60% from the mean value for Nb31-x and 2-3 times for Nb31-z.  

A large scatter of the data for Nb31-z is explained by the pronounced laminated 

structure of Nb31 in this direction. Fig. 4.a shows sample cross-sections (y;z): along the axis z 

layers of carbon fibers and pitch take turns with a period of 1.4 mm. A 1 mm thick sample 

therefore can consist mainly of fiber or of pitch, and the permeating flux for these two cases 

should be different. This effect should decrease with increasing sample thickness, so the 

results for the thicker samples (0.8×1016 molecules⋅s-1m-1Pa-1 for Nb31-z) are more reliable in 

representing mean material properties. 

For Nb31-x a decrease of σ with increasing sample thickness was observed ( 

Fig. 5). The material is homogeneous in x direction, and the only reason for σ scatter 

is a different roughness of samples. For Nb31-x the surface relief is very pronounced in 

comparison with Nb31-z, as can be seen from profilometry data (Fig. 3). The origin of gaps is 

likely the detachment of the matrix when cutting the material. 
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The gas conductivity of a surface layer with multiple deep gaps is much higher than 

that of a smooth surface. To obtain results characterizing the bulk properties of the material it 

is necessary to subtract the typical thickness h of the perforated layer from the membrane 

thickness when calculating σ. Then the calculation should give the same results for samples 

of different thicknesses. From this we obtained h to be equal 0.9 mm. Correction of the σ 

calculations gave the same value of 1×1016 molecules⋅s-1m-1Pa-1 for all samples except the 

thinnest one (2 mm thick). 

4. Conclusion 

The hydrogen gas driven permeation through membranes of different carbon-based 

materials: fine grain graphites MPG-8 and R5710, and CFC NB31 in directions x and z was 

investigated. 

The mechanism of permeation through carbon-based materials is hydrogen gas flow 

through the interconnected porosity and channels in the molecular regime. For all 

investigated materials the specific gas conductivity σ was obtained, which can be used for 

characterization of the bulk material.  

The permeability of carbon-based materials strongly depends on its structure. For two 

fine-grain graphites investigated with a grain size of 3 and 8 µm the permeability differs by 

two orders of magnitude.  

The gas permeability of carbon materials probably explains the observed deep 

diffusion and deep trapping of deuterium in porous graphite materials [1]: Some hydrocarbon 

radicals and hydrogen molecules can penetrate deep into the material along the open porosity 

and then adsorb at the walls of the pore. 
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Table 1. Specific gas conductivity σ 

Material sample 
thickness, 
mm 

σ , 1016  
molecules⋅s-1m-1Pa-1 

MPG-8 1.65(*) 0.503±0.002 
R5710 1 – 2.5 0.008±0.002 
Nb31-x 2.0 

2.5 
2.5(*) 

3.0 
7.0 (*) 

4,1 
3,7 
3.7;  3.6 

2.8;  2.4;  2.8;  3.0 
1.35;  1.3 

Nb31-z 1.0 
1.5 
2.0 
2.5 
2.5(*) 

3.0 
5.5 

3.2;  1.8 
1.08 
1.2 
0.48;  1.04 
0.5;  0,5 

0.81;  1.15;  1.05 
0.81 

*Two values of σ in one line means two independent measurements with the same sample 
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Fig. 1.  Sample holder. 1 – sample; 2 – rubber limiter; 3 – rubber; 4 – measuring orifice; 5 - 
limiter & centering ring. 
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Fig. 2. Permeation flux through graphite materials as a function of gas pressure:  

a – fine grain graphite R5710, b - MPG-8, Nb31-x and Nb31-z samples. Area of the samples– 
3,15 cm2. 
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Fig. 3. Surface profiles of Nb31-x and Nb31-z samples. 
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Fig. 4. Photos of Nb31 samples ∅ 27 mm: а — Nb31-x, b — Nb31-z, cross section cut 
through fiber layer, c — Nb31-z cross section cut through pitch layer. Samples diameter 27 
mm. 
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Fig. 5. The specific σ conductivity of Nb31-z:  — experiment,  — after correction taking 
into account surface gappy layer (0,9 mm) 
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