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The effect of a resonant helical magnetic field on plasma rotation is investigated numerically

based on the two fluid equations.  It is found that, depending on the frequency and the direction of

the original  plasma rotation,  a  static  helical  field  of  a  small  amplitude can  either  increase  or

decrease the  rotation speed.  With increasing the field amplitude, the  plasma rotation  frequency

approaches the electron diamagnetic drift frequency but rotates in the ion drift direction.  These

results provide a new understanding of the recent experimental observations of TEXTOR [K.H.

Finken et al., Phys. Rev. Letts, 94, 015003(2005)].
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I.  Introduction 

The effect of resonant helical magnetic fields on plasma confinement is of great interest to

plasma physics research.  Three subtopics are of particular concern for a fusion reactor: 

(a) Helical field penetration: For the plasma being originally stable to tearing modes, an

applied resonant helical field (or error fields of experimental devices) can penetrate through the

resonant surface and generate a magnetic island there [1-9].  Recently it was shown on TEXTOR

that the relative frequency between the mode and the helical field is important in determining the

field penetration [5,6], being in agreement with theoretical results [7-9].   

(b) Mode locking: The locking of large magnetic islands by error fields is often observed

in  experiments,  leading  to  severe  confinement  degradation  in  tokamak  plasmas  or  even  to

disruptions  [1,10,11].  The  mode locking threshold is predicted to be much lower in a fusion

reactor than in existing tokamaks due to the stronger magnetic field and lower plasma rotation

speed [12].  

(c)  Edge localized  modes (ELMs)  mitigation:  Helical  fields  were found to  be able  to

control  ELMs while maintaining the pedestal and the confinement  of H-mode plasmas, being

planned to be applied in ITER [13].

One puzzle arising from the experimental results is the effect of a helical field on plasma

rotation.   Increased  bulk  plasma  rotation  due  to  an  applied  static  helical  field  before  field

penetration was observed on TEXTOR [6].  The tentative explanation for this phenomenon was

the induced radial electric field in a stochastic magnetic field generated by the helical field, which

leads to the same rotation direction as seen in the  experiments [6].  This explanation, however,

faces the problem that there is little field ergodicity before field penetration.  A change of the bulk

plasma rotation from the electron diamagnetic drift direction to  the ion's  direction by a static

penetrated helical field was also observed in experiments [1], a phenomenon not well understood

yet.  In the framework of reduced MHD equations the static field is known to slow down the bulk

plasma rotation [1,7,10].  
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Recently,  two fluids equations were utilized to  study helical field  penetration [8,9,14],

including the linear study on the effect of a  rotating helical field  on plasma rotation [9].   As

plasma  rotation is  very important  for,  e.g.,  the  stability  of  the  resistive  wall  modes,  a  better

understanding of the  experimental results given in Ref. 1 and 6 is desirable.  In this paper the

effect of a static helical field on plasma rotation is investigated numerically using the (reduced)

nonlinear two fluid equations.  The obtained results show the same features as observed in the

experiments [1,6].

II.  Computational model

The large aspect-ratio tokamak approximation is utilized.  The magnetic field is defined as

B=B0tet-(kt/k� )B0te� +����� et, where  
�

 is the helical flux function, k� =m/r and kt=n/R are the wave

vector in e�   (poloidal) and et (toroidal) direction, r and R are the minor and the major radius,  m and

n are the poloidal and toroidal mode numbers of the helical field, and the subscript 0 denotes an

equilibrium quantity.  The plasma velocity is given by v=v||e||+
�����

et, where 
�

 is the stream function.

The  two fluid equations utilized here include the generalized Ohm's law, the equation of

motion in the perpendicular (after taking 
�

×) and the parallel (to magnetic field) direction, and the

energy and the mass conservation equations.  Normalizing the length to the minor radius a, the time

t to the resistive time � R=a2	
0/ 
 , the helical flux 

�
 to aB0t, v to a/ � R, and the electron temperature Te

and density ne to their values at the magnetic axis, theses equations become
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where d/dt=! / ! t+v �#" � � ,   j=
� � 2� -2ktB0t/mR being  the toroidal  plasma current  density,  
  is  the

normalized resistivity, E is the equilibrium electric field, 
�

=$ d1, $ =4% pe/B2, pe=neTe, d1=& ce/ ' e, and

& ce and ' e are the electron cyclotron and the collisional frequency. S=� R/ � A, where � A=a/VA being

the toroidal Alfven time. U=-
� � 2�  is the plasma vorticity, cs=(Te/mi)1/2, 	  the plasma viscosity, and

(
||,  ( �  and D�  are the parallel and perpendicular heat and particle diffusivity.  Sp is the heating

power, Sn is the particle source, and Sm is the poloidal momentum source given by

Sm =
�

E[1-(r/a)2]3, (6)

which leads to an equilibrium poloidal  plasma rotation.  Cold ion assumption is made here since

the ion temperature is significantly lower than the electron's in the considered experiments [5,6].

III.  Numerical Results

Equations (1)-(5) are solved simultaneously using the initial value code TM1, which has

been used for modelling drift tearing modes and neoclassical tearing modes [15-16].  Dedicated

numerical methods are utilized in the code to reduce the numerical error [17,18]. 

The calculations are performed for a single helicity perturbation with m/n=2/1.  The effect

of the helical field is taken into account by the boundary condition 

�
m/n(r=a) = 

�
acos(m ) +n

�
), (7)

where 
�

a describes the helical magnetic flux amplitude of the m/n component at r=a.  

The  input  parameters  are  based  on  TEXTOR  experimental  parameters.   The  toroidal

magnetic field is B0t=2.5T, and the plasma minor and major radius are a=0.47m and R=1.75m,

respectively.  The equilibrium electron temperature and density profiles are modeled by Te=1.8[1-
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(r/a)2]1.2+0.3  (keV),  and  ne=3.2[1-(r/a)2]1.5+0.3 (1019m-3)   [5,6,9].   These  parameters  lead  to

S=1.97 * 108, 
�

=6.3 * 104, cs=1.2 * 107 (a/ � R), d1=2.5 * 107, and ( ||=1.1 * 109 (a2/ � R).  Here ( ||=vTe/

k|| is used for calculating ( ||, and vTe is the electron thermal velocity [19].  The precise form of ( ||

for a high temperature plasma is more complex as discussed in Ref. [19].  

Assuming  the  perpendicular  heat  diffusivity  and  the  plasma  viscosity  to  be  at  the

anomalous transport level 0.5m2/s, one finds  ( � =	 =21(a2/ � R) in normalized units.  Furthermore,

D� =( � /5  is  taken.  These parameters are used as input  for  our  calculations  except mentioned

elsewhere.  A monotonic profile of the safety factor q is used, and the q=2 rational surface locates

at  rs=0.628a in  agreement  with  the experiments  [5,6,9].   The m/n=2/1 tearing mode is  stable

without an externally applied helical field. 

For simplicity, we first study the case with a constant electron temperature.  With different

initial equilibrium plasma rotation velocities, the effect of a helical field on the plasma rotation is

different.   The radial  profiles  of the (normalized) m/n=0/0 component  of  the poloidal  plasma

rotation velocity, V� , in steady state are shown in figure 1 for two cases: (a)  & 0+-, & E0/ & *e0=0.42

(black curves) with 
�

a= 10-5 (solid) and 0 (dashed).  (b) & 0=-0.42 (red) with 
�

a=0.4 * 10-5 (solid)

and 1.14
�

10-5 (dotted) and 0 (dashed), where  & E0 and  & *e0 are the original equilibrium plasma

rotation frequency and the electron diamagnetic drift  frequency at the rational surface.  The  & 0

values are also marked near the corresponding curves in the figure.  The positive (negative) value

of & 0 refers to the rotation in the the ion (electron) diamagnetic drift direction.  It is seen that the

rotation is speeded up by the static helical field for & 0=0.42, while for & 0=-0.42 the rotation first

slows down (for 
�

a=0.4 * 10-5) and then changes its direction to the ion diamagnetic drift direction

for  larger  helical  field  amplitude (
�

a=1.14 * 10-5).   These  results  are  consistent  with  the

experimental  observations  [1,6].   For  & 0>1  the  plasma  rotation  velocity  is  always  found  to

decrease.   
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The results shown in Fig. 1 can be understood from the generalized Ohm's law.  Assuming

the perturbed helical flux 
�

1~exp[i(-& t+m) +n
�

)], for a sufficiently small 
�

a it is found from Eq.

(1) that in the lowest order the toroidal current perturbation at the rational surface rs is given by

j1(rs) = i( & -& E- & *e)
�

1/ 
 (8)

where the subscript 1 denotes perturbed quantities, &  is the mode frequency, & E=V� m/r being the

frequency due to V � ,  & *e=V*etn/R=V*e
� m/r being the frequency due to the  electron diamagnetic

drift, V*et=pe . /neeB/ � , V*e
� =-pe . /neeB0t, and the prime denotes d/dr.

The current perturbation together with the radial magnetic field perturbation, br1, leads to a

poloidal  electromagnetic  torque  of  the  m/n=0/0  component,  T0/0=r(j1
*br1+j1br1

*)/2,  where  the

superscript * refers to the complex conjugated part. At the rational surface one finds

T0/0(rs) = m(& - & E-& *e)|
�

1|2/ 
 . (9)

As the mode frequency is given by the applied field frequency, for a static helical field & =0.  Eq.

(9) is then reduced to

T0/0(rs) = -m & E(1+& *e/& E)(|
�

1|)2/
 . (10)

In the MHD limit & *e=0 is used, and T0/0(rs) is further simplified to -m& E(|
�

1|)2/ 
 , which is always

opposite to the plasma rotation direction, slowing down the rotation speed, no matter in which

direction the plasma originally rotates.

When taking into account the electron diamagnetic drift, the torque direction depends on

the rotation frequency and direction.  Eq. (10) indicates that for (1+ & *e/ & E)<0  (plasma rotates in

the ion drift direction with a frequency smaller than & *e), the torque is in the rotation direction.

For (1+ & *e/ & E)>0, however, the torque is in the opposite direction.

The above analysis is consistent with numerical results.  Corresponding to Fig. 1, the radial

profiles of T0/0 in steady state are shown in figure 2 for & 0=0.42 (black curve) and 2.08 (blue) with

�
a=0.4

�
10-5.  The red curves are  for  & 0=-0.42 with  

�
a=0.4

�
10-5 (solid) and 1.14

�
10-5 (dotted).

6



The  & 0 values are also marked near the corresponding curves in the figure.  The torque peaks at

the rational surface and is in the plasma rotation direction for & 0=0.42 (see Fig. 1) but is opposite

to  the  rotation  direction  for  & 0=2.08,  as  expected.   For  & 0=-0.42  the  torque  is  also  directed

opposite  to  the plasma rotation for  a  small  
�

a,  and it  even changes the rotation direction for

�
a=1.14

�
10-5.  The torque direction is as predicted by Eq. (10) for all cases.

For  a small  helical  field amplitude,  the  electromagnetic  torque is  localized around the

rational  surface and  tends to  modify the local plasma rotation velocity.  The plasma viscosity,

however, will response to the local velocity change and tend to keep the neighbouring plasma to

rotate together with the local plasma at the rational surface.  This results in a more global change

in  the  rotation  velocity  profile,  as  seen  from Fig.  1,  such  that  the  electromagnetic  torque  is

balanced  by  the viscous torque.  With increasing  helical  field  amplitude,  the  electromagnetic

torque becomes larger as seen from Eq. (10), and it will eventually lead to & E01, & *e at the rational

surface for a static helical field, such that electromagnetic torque is not too large to be balanced by

the viscous torque.  In this case the global rotation velocity profile also significantly changes.

For  a  systematic  study,  the  normalized  plasma  rotation  frequency,  & En + - & E/& *e0  (solid

curve), and the normalized electron diamagnetic drift frequency,  & *en+ & *e/& *e0 (dotted curve), at

the rational  surface in steady state  are shown as a  function of  
�

a in  figure 3 for three cases,

& 0=0.42 (black curve), 2.08 (blue) and -0.42 (red).  The  & 0 value for these curves can be also

found from the & En value at  
�

a =0.  The dashed curve shows the normalized island width w/a

multiplied by a factor 10.  It is seen that for & 0=0.42, the normalized rotation frequency & En first

increases with increasing 
�

a and then decreases following the decrease of & *en.  For a sufficiently

large  
�

a or island width, the plasma density gradient decreases in the island region due to the

parallel  transport,  and  therefore  & *e decreases.   The  sudden  increase  in  the  island  width

corresponds to the helical field penetration.  For & 0=2.08 the normalized frequency & En decreases
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towards  & *en.  With  & 0=-0.42,  & En increases from a negative value to approach  & *en. No matter

what is  the initial rotation speed or direction, the nonlinear state  & En0 & *en (or  & E0 - & *e, plasma

rotates in the ion drift direction) is always reached for a sufficiently large  
�

a.  In this state the

torque is minimum as seen from Eq. (10).  

For a non-constant electron temperature, similar results are found as shown in figure 4, in

which & En (solid curve) and & *en (dotted) are shown as a function of 
�

a for & 0=0. The black (red)

curves are for  constant  (non-constant)  electron temperature.  The dashed curve shows 10
�

w/a.

The case with a non-constant electron temperature has a larger values of & En and & *en but a smaller

value of  w/a.   A  larger  
�

a is  required  for  the  field  penetration with  a  non-constant  electron

temperature, since the frequency difference between the mode and the field is larger due to the

contribution of the temperature gradient to & *e.  It is seen that a static field forces the plasma to

rotate in the ion diamagnetic drift direction, even if originally there is no plasma rotation.

In figure 5 the normalized frequencies & En (solid curve) and & *en (dotted curve) are shown

as a function of log(S) for & 0=0 and 
�

a=10-5.  The other parameters are the same as those of Fig. 3.

The dashed curve shows 10
�

w/a.  The electromagnetic torque exerted on the island by the helical

field is larger for a larger magnetic Renolds number S, so that  & En increases with increasing S,

which in turn leads to field penetration at S=1.2 * 108 as indicated by a sudden increase in the

island width.  After field  penetration one finds & E 0 - & *e similar to the results shown in Figs. 3 and

4, and & *e 0124365 & *e0 due to the small island width.  Fig. 5 suggests that the plasma rotation will be

more easily generated by the helical field for a reactor plasma with a high S value. 

IV. Discussion and Summary

The  above results  are  obtained  for  the  case  of  poloidal  plasma  rotation.   In  tokamak

experiments the plasma rotation is mostly in the toroidal direction due to the neoclassical effect
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not considered here.  For toroidal rotation, Eq. (9) is found to be modified as

T0/0(rs)=n(& - & E-& *e)|
�

1|2 7 
 , (11)

where & E=Vtn/R being the mode frequency due to the toroidal plasma rotation velocity Vt.  The

electron diamagnetic drift is in the counter plasma current direction, so that the helical field drives

the plasma to rotates in the co-current direction.  A larger toroidal rotation speed than the poloidal

one will be driven by the helical field, since the toroidal rotation speed should be (m/n)(R/rs) times

larger than the poloidal one for the same change in the frequency.

Our results indicates that a static resonant magnetic perturbation of a single helicity can

drive plasma flow, showing the same features as observed in the experiments [1,6].  Future studies

using the toroidal rotation and a stochastic magnetic field will be helpful for a further comparison

with the experimental results.  

For a fusion reactor the plasma rotation velocity is expected to be low, since the neutral

beam injection heating will not be present for a burning plasma.  A slowly rotating plasma will be

more easily subject to plasma instabilities due to the weaker stabilizing effect of the wall.  As the

diamagnetic drift velocity is very large in the pedestal region of H-mode plasmas, while the local

parallel transport is not too fast, a local fast plasma rotation could be generated by a static helical

field of an appropriate amplitude, especially when considering the reduced plasma viscosity in the

pedestal region.  Spontaneous plasma rotation in the co-current direction has been found in H-mode

plasmas on several tokamaks [20].  It would be of interest to study whether the intrinsic machine

error field is resonant at the plasma edge and large enough to cause such a rotation.  In the tokamak

core region the parallel transport is much faster, and & *e begins to decrease due to the flattening of

the radial electron pressure profile even before field penetration [8].  In this case a rotating helical

field would still be able to drive plasma rotation.  Eqs. (9) and (11) suggest that a helical field

rotating in the ion diamagnetic drift direction can more efficiently drive plasma rotation.  This was

indeed found to be the case in TEXTOR experimental results [6].  
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In summary, the effect of a resonant helical field on plasma rotation is investigated based on

two fluid equations, providing a new insight into previous experimental results.  It is found that: (a)

Before field penetration the rotation is  speeded up by a static helical field in case  the original

rotation is in the ion diamagnetic drift direction with a frequency smaller than & *e, but it is slowed

down otherwise.   (b)  For  a  sufficiently  large field  amplitude,  the  plasma  rotation  frequency

approaches the electron diamagnetic drift frequency but rotates in the ion drift direction. 
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CAPTION

Figure 1 (color  online)  Radial  profiles  of  the  normalized  m/n=0/0  component  poloidal

velocity,  V� ,  for  two  cases:  (a)  & 0+1, & E0/ & *e0=0.42  (black  curves)  with  
�

a=10-5 (solid)  and  0

(dashed).  (b)  & 0=-0.42 (red) with  
�

a=0.4 * 10-5 (solid) and 1.14
�

10-5 (dotted) and 0 (dashed).

The  & 0 values are also marked near the corresponding curves.

Figure 2 (color online) Radial profiles of T0/0 in steady state for & 0=0.42 (black curve) and

2.08 (blue)  with  
�

a=0.4
�

10-5.   The  red  curves  are  for  & 0=-0.42  with  
�

a=0.4
�

10-5 (solid)  and

1.14
�

10-5 (dotted).  The  & 0 values are also marked near the corresponding curves.

Figure 3 (color online) & En + - & E/ & *e0 (solid curve), & *en+ & *e/ & *e0 (dotted) and 10w/a (dashed)

versus 
�

a for & 0=0.42 (black), 2.08 (blue) and -0.42 (red).  & En0 & *en (or & E0 -& *e) for a sufficiently

large 
�

a.   The  & 0 value for these curves can be also found from the & En value at 
�

a =0.

Figure 4 (color  online)  & En  (solid  curve),  & *en (dotted)  and 10w/a  (dashed)  versus  
�

a for

& 0=0. The black (red) curves are for a  constant  (non-constant)  electron temperature.  The case

with a non-constant electron temperature has a larger values of & En and & *en but a smaller value of

w/a.  A static field drives the plasma rotation in the ion diamagnetic drift direction.

Figure 5 (color online) & En (solid curve), & *en (dotted) and 10w/a (dashed) versus log(S) for

�
a=10-5 and & 0=0. & En increases with increasing S. After field  penetration & E0 - & *e.
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