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Abstract

The current 
owing around a magnetic island and connected to its

rotation with respect to the plasma is studied by means of a drift-kinetic

approach. It is shown that the current due to the change of the precession

frequency of the trapped particles in the island potential can compete

with the standard polarization current for island rotation frequencies

close to or below the diamagnetic frequency. The passing particles are

found on the contrary to have little impact on the standard picture. The

analytical results are shown to explain the features of the island current

seen in numerical simulations.

1 Introduction

The tearing mode is a non-ideal MHD instability which changes the topology of
the magnetic �eld by reconnecting separate �eld lines, thus causing the appear-
ance of magnetic islands. In a toroidal fusion device, this severely deteriorates
the radial con�nement of particles and energy. These modes are localized on so
called resonant surfaces, where the safety factor q is a rational number. First
studies [1, 2] described the tearing mode as a dissipative phenomenon for the
magnetic energy stored in the plasma, so that the growth rate of the mode
was basically determined by the equilibrium magnetic con�guration through
the parameter �0. Later, it was shown both theoretically [3, 4] and experi-
mentally [5, 6] that the tearing mode can also be destabilized in a tokamak by
the loss of bootstrap current caused by the appearance of a \seed" island, and
this neoclassical drive characterizes the so called neoclassical tearing modes
(NTMs). While the neoclassical drive and the stabilizing e�ect of the equilib-
rium current pro�le can describe the nonlinear saturation of the mode under
experimental conditions, to compute the stability and the growth of a seed
island, one needs to take into account other e�ects which are still to be fully
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explained. Among these, the rotation of the island with respect to the plasma
turns out to potentially play a major role. For \fast" rotating islands (i.e. !
suÆciently larger than kkvth, where ! is the island rotation frequency with
respect to the plasma, i.e. in the local equilibrium E� B frame, kk is the par-
allel wave vector de�ned in Eq. (6) below and vth is the ion thermal velocity)
suÆciently larger than the ion banana width [7], a well-known contribution
comes from the polarization current [8, 9], which arises because particles expe-
rience a time-dependent electric �eld during their streaming around the island.
This phenomenon has di�erent physical features depending on collisionality
[10, 11, 12, 13], and frequency [14]. Moreover, other e�ects have been shown
to be relevant, for example �nite ion banana width e�ects [7, 15], or even �nite
Larmor radius e�ects [16]. As a matter of fact, for small islands the gyroradius
scale starts to be relevant, and a gyro-kinetic approach can be necessary to get
a satisfactory physical picture [17, 18, 19].

As a general theory for the determination of the mode rotation frequency
! is currently not available, we perform a parametric study in ! focusing on
a frequency range which has not been explored yet, even though it can be
physically meaningful for a NTM. A common assumption in the theory of the
polarization current consists in the ordering ! s !�, where !� is the electron
diamagnetic frequency. According to the scaling criteria discussed in detail in
Section 4, this ordering leads to ! s kkvth. Physically, this means that the
island rotation occurs on the same timescale as the transit time of the parti-
cles around it, potentially leading to resonant interactions between the mode
and the particles, as already pointed out previously [14]. To investigate these
processes, a kinetic approach is necessary. In a previous study [11], focusing
on the contribution of the polarization current, terms in kkvth have been disre-
garded. In this paper, we retain these terms and investigate their contribution
to the currents generated by a rotating magnetic island. We neglect the mode
evolution due to the plasma response, so that the island width and its rota-
tion frequency are constant with time. Moreover, we assume for simplicity a

at pressure gradient for the background plasma. Although fundamental for
a self-consistent determination of the island dynamics, the inclusion of a �nite
gradient in the background pressure is not strictly necessary to understand
the phenomena related to the resonances between island and particle motion,
which are the subject of the present paper.

We show that, at low frequencies, the contribution of the polarization cur-
rent can be overcome by other electric and magnetic e�ects. In particular,
we demonstrate in this work that a crucial contribution comes from the mu-
tual interaction between the island propagation and the electric and magnetic
precession of the trapped particles in toroidal direction. The corresponding
perturbed parallel current is shown to stabilize the NTM for ! > 0, or for j!j
suÆciently larger than !tp if ! < 0, where !tp is the precession frequency of
trapped particles de�ned in Eq. (29) below. Passing particles are on the con-
trary shown to give a negligible current contribution. The analytical results are
shown to explain the behaviour of the island current as calculated by means of
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the Hamiltonian drift-kinetic code HAGIS [20].
This paper is structured as follows. In Section 2, the chosen magnetic

geometry is outlined. In Section 3 we describe the analytical and numerical
techniques adopted to solve the drift-kinetic equation. In Section 4 and 5
we solve the drift-kinetic equation in the ! s kkvth and in the ! � kkvth
regime. This allows us to highlight the role of passing and trapped particles,
respectively. Analytic solutions are compared to numerical simulations. The
results are further discussed and summarized in Section 6.

2 Magnetic Geometry

In the calculations which follow, we assume an axisymmetric, large-aspect-ratio
toroidal geometry, with circular cross section. We de�ne � as the inverse aspect
ratio. For convenience we use here the same notation as in Ref. [11]. The
coordinate system is represented by a poloidal 
ux �, which can be used as a
radial coordinate, a toroidal angle � and a poloidal angle �. This choice is such
that

r� �r� = rB�r�;

where r is the minor radius coordinate and B� the poloidal component of the
magnetic �eld. The equilibrium magnetic �eld is expressed by

B = I(�)r� +r� �r�; (1)

having de�ned I(�) = RB� , where R is the major radius and B� the toroidal
component of the magnetic �eld. Thus, the equilibrium magnetic �eld is such
that B �r� = 0. We suppose that the magnitude of the magnetic �eld B varies
over the poloidal cross section as B = B0 (1� � cos �). The helical angle � is
introduced as:

� = m� � n� � !t;

where m;n are the poloidal and toroidal mode number, respectively, and ! is
the island rotation frequency, supposed constant in time for simplicity. We can
include the magnetic island as a perturbation in the magnetic �eld writing

B = I(�)r� +r� �r (�+  ) ; (2)

where

 = ~ cos �; (3)

where ~ is supposed to be a constant according to the well-known constant- 
approximation [2]. We can de�ne a new coordinate system, using �; � and �,
and this is the system which will be used in this article from here on. It is
possible to build a perturbed 
ux surface label 
, such that in presence of the
magnetic island B � r
 = 0. Writing with a subscript s quantities which are
calculated on the resonant surface, we obtain

3




 =
2 (�� �s)

2

W 2
�

� cos �; (4)

where W 2
� = 4 ~ qs=q

0
s, is connected to the island half-width w by the relation

W� = RB�w, q is the safety factor and the apex 0 refers to the derivative with
respect to �. With the help of the function 
, one arrives at the following
expression for the parallel gradient:

rk =
1

Rq

@

@�
+ kk

@

@�

����



; (5)

where

kk = �m
(�� �s)

Rq

q0s
qs
: (6)

It can be seen that  can be thought as a perturbation of the parallel
component of the magnetic vector potential A. As we suppose that every
parallel electric �eld Ek is immediately shorted out by the very fast electron
streaming along the �eld lines, we can obtain an analytical expression for the
(�-independent) scalar potential using the Faraday's law:

rk� = �
1

c

@Ak

@t
) � =

!q

mc
[�� �s � h(
)] ; (7)

where use has been made of Eq. (26) below. Here, h(
) is a function which
plays the role of an integration constant, and can be determined from boundary
conditions. A simple choice for h(
) can be found in Ref. [10]:

h(
) =
W�p
2

�p

� 1

�
�(
� 1) ;

whereW� is de�ned to have the same sign as (���s), and �(x) is the Heaviside
step function. This choice allows the scalar potential to vanish far away from
the magnetic island. Moreover, this �xes h(
) to the value of zero inside
the island (
 = �1 corresponds to the O-point, while 
 = 1 to the island
separatrix).

3 The Drift-Kinetic Equation

3.1 Analytic Approach

The drift-kinetic equation describes the time evolution of the distribution of
the particles' guiding centres in a magnetized plasma. This means that parti-
cles are treated like streaming along magnetic �eld lines through their parallel
velocity, and drifting across the �eld lines through their electric and magnetic
drifts. Gyration motion is implicitly present in the mirror force and in de�ning
the magnetic moment � (supposed to be a constant), but spatial variation of
physical quantities on the Larmor radius scale are neglected:
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@fj

@t
+ vkjrkfj + vE�B � rfj + vDj � rfj �

qj

mj

vDj � r�
v

@fj

@v
= Cj(fj): (8)

The subscript j labels the di�erent species that are present in the plasma.
Spatial derivatives have to be taken at constant kinetic energy. This form of
the drift kinetic equation is explained in detail in Ref. [21].

The magnetic drift velocity can be written in the form

vDj = �vkjb�r
�
vkj

!cj

�
; (9)

where b is the unit vector parallel to the magnetic �eld and !cj is the cyclotron
frequency for the j-th particle species. In this work we are focusing on ions,
supposing that the only contribution of electrons is shorting out the parallel
electric �eld Ek. As every physical quantity such as temperature (T ) or the
distribution itself is referred to ions, we can from here on drop the subscript j
without ambiguity. We keep the index i only for the ion mass mi and for the
ion charge qi in order to avoid confusions with the poloidal mode number m
and the safety factor q, respectively. Eq. (8) is solved splitting the distribution
function into an analytically known part F0, assumed here to be an isotropic
Maxwellian

FM (v) = n0

� mi

2�T

�3=2
emiv

2=2T

(where the density n0 and the temperature T are assumed to be uniform,
cf. Introduction), and a part g do be determined perturbatively. Speci�cally,
in the coordinate system discussed in Section 2, writing the full expression for
drifts, Eq. (8) takes the form

�!
@g

@�
+
vk

Rq

@g

@�
+ kkvk

@g

@�

����



+m
c

B

I

Rq

@�

@�

@g

@�
+

�m
c

B

I

Rq

@�

@�

@g

@�
+
Ivk

Rq

@

@�

�
vk

!c

�
@g

@�
�m

Ivk

Rq

@

@�

�
vk

!c

�
@g

@�
(10)

�
qi

mi

�
Ivk

Rq

@

@�

�
vk

!c

�
@�

@�
�m

Ivk

Rq

@

@�

�
vk

!c

�
@�

@�

�
@g

@v
=

= �
qiFM

T

�
Ivk

Rq

@

@�

�
vk

!c

�
@�

@�
�m

Ivk

Rq

@

@�

�
vk

!c

�
@�

@�

�
;

where we have neglected the collision operator (the role of collisions will be
discussed later on). The parallel velocity vk is written in the so called pitch-
angle variables [21]:

vk = �v
p
1� �B:

Here, � = 2�=miv
2, where � is the magnetic moment, and � is the sign of

the parallel velocity. A trapped particle has 1=B > � > 1=BM , where BM is
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the maximum value of the magnetic �eld on a given 
ux surface. With these
variables, the integration operator over velocity space becomes

Z 1

�1

: : :d3v = �B
X
�=�1

Z 1

0

v2dv

Z 1

B

0

: : :
d�p

1� �B
: (11)

Eq. (10) is solved performing a double parameter expansion of the perturbed
distribution g, i. e.

g =

1X
m;n

g(m;n)Æm�n; (12)

where
Æ =

�b

w
� =

w

a
(13)

are supposed to be two small parameters (here, �b is the ion banana width and
a the tokamak minor radius). The ordering of the various terms in Eq. (10)
with respect to Æ and � will be discussed in Section 4 and 5. The only \free"
parameter is the island propagation frequency !. In Section 4 we mantain the
ordering assumptions for ! used in Ref. [11], which leads to ! s kkvth. In
Section 5, we order ! s !D, where

!D =
q

Rr!c

1

2�b

Z �b

��b

�
�B

mi

+ v2k

�
cos �d� (14)

is the (bounce averaged) toroidal precession frequency of the trapped particles
[22], de�ning as �b the bounce angle.

The aim of these ordering assumptions is to study which physical phenom-
ena can take place when the island propagation frequency ! starts to be com-
parable with the particles' transit frequencies around the island itself, which
are basically linked to kkvk (with vk s vth) for passing particles, and to !D for
trapped particles. This second case can also be thought as ordering the island
propagation frequency like the parallel streaming of the trapped particle, as
! s !D means ! s

p
�kkvth. This point will be developed in Section 5.

3.2 Numerical Approach

The HAGIS code (HAmiltonian GuIding centre System) [20] solves the drift
kinetic equation for ions by means of a Hamiltonan approach and with the Æf
technique. This method consists in writing the distribution f as f = F0 + Æf ,
where F0 is known and arbitrary. This approach is completely general, but can
be convenient from the numerical point of view only if f is not expected to be
so di�erent from the chosen F0, that means

Æf

F0
� 1;
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which is what we expect to �nd. The HAGIS code calculates the evolution in
time of the distribution function by means of \markers" which span the whole
phase space and represent the ions. These \markers" evolve according to the
Hamiltonian equations of motion, which are integrated by the code. As in
Section 3.1, we choose as F0 a space-independent isotropic Maxwellian. In the
simulations presented in the next Sections, we consider a tokamak with circular
concentric 
ux surfaces and major radius R = 8 m, aspect ratio a=R = 0:5,
magnetic �eld B0 = 8 T, deuterium plasma with density ni = 1020 m�3 and
temperature T = 5 keV. Collisions are described by a Monte Carlo algorithm
which models pitch-angle scattering [23]. A (m = 3, n = 2) magnetic island
with a �xed half-width w = 6:8 cm is included in the simulations, and the
island frequency ! is treated as an input parameter. With these values, the
ratio between the island width and the thermal ion banana width corresponds
to w=�b t 9:6 and the ratio between the island width and the tokamak minor
radius a corresponds to w=a t 0:017. The space domain is divided into \radial"
cells (between two neighbouring perturbed 
ux surfaces) and into helical cells,
in such a way that the volume between two X-points of a magnetic island
consists of six helical cells (for further details see Ref. [24]). All numerical
results presented below refer to the \upper" half of the magnetic island (i.e.
from O-point to X-point travelling in the positive-� direction). In the \lower"
half, results can be shown to simply change their sign.

4 The ! s kkvk Regime

4.1 Solution of The Drift-Kinetic Equation

The solution of the drift-kinetic equation presented in this paper follows closely
the analytic treatment presented in Ref. [11]. In that paper, F0 is chosen so
that an adiabatic response of the ions to the electrostatic potential is included,
and equilibrium gradients are retained. Under these circumstances, the lowest
order perturbation g(0;0) has the double role of cancelling the adiabatic response
and of introducing the perturbations due to the island in the density and tem-
perature pro�les. The next-order term in the expansion of the distribution
function with respect to Æ, i.e. g(1;0), is shown to be linked to the neoclassical
parallel 
uxes, included that due to radial electric �elds. The frequency !E ,
corresponding to the latter, is de�ned as in Ref. [25]:

!E = c
Er

RB�

; (15)

where in this case the radial electric �eld we are interested in is generated by
the island itself. By means of the charge continuity equation, Wilson et al.

show that this electric drift is the physical trigger of the polarization current,
because it allows trapped particles to experience a time-varying electric �eld.

Let us now turn to Eq.(10). In this Section, we follow the ordering assump-
tions adopted in Ref. [11]. This in particular consists in
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@

@�
s

@

@�
s 1

qi�

T
s

g

FM
s � �� s w

(�� being the poloidal ion Larmor radius). As for the island propagation fre-
quency, if the pressure pro�le possesses a �nite gradient characterized by the
length Lp, a natural choice is to assume ! to be of the same order as the
diamagnetic frequency (!� = mcTn0e=qiqne, with n

0
e = @ne=@�, being ne the

electron density). Supposing n0e s ne=RB�a (i. e. making the choice Lp s a),
this implies (cf. Eq. (13)):

Rq

vk
! s

Rq

vk
!� s

Rq

vth

mcTn0e
qiqne

s

��

a
s �:

The term describing the parallel streaming turns out to be of the same order,
since (see Eq. (6))

Rq

vk
kkvk s (�� �s)

q0s
qs
s

w

r
s �;

having assumed (�� �s) sW�, as we focus our calculations on the vicinity of
the island, and Lp s Lq s �Ls, Lq and Ls being the radial scale length of the
safety factor and of the magnetic shear, respectively.

As already mentioned, to point out the e�ects linked to the mutual rotation
of particles and island, in our analysis we take a 
at pressure pro�le, !� = 0, and
treat ! as a free parameter. In this Section, we retain the ordering !Rq=vk s �,
which implies ! s kkvth. The resulting ordering of the terms in Eq. (10) is

� : 1 : � : � : � : Æ : �Æ : �Æ : �2Æ = Æ : �Æ:

It is worthwile to stress the fact that the term vD � r in Eq.(8) consists in two
di�erent components which, under our assumptions, are not of the same order.

We now turn to the order-by-order solution of Eq.(10). As we do not include
an adiabatic split in F0, and as we do not consider density and temperature
equilibrium gradients, according to the meaning of g(0;0) elucidated above, we
can assume

g(0;0) = 0: (16)

The O (Æ) equation reads

vk

Rq

@

@�
g(1;0) = �

qiFM

T

Ivk

Rq

@

@�

�
vk

!c

�
@�

@�
; (17)

which can be directly integrated to give

g(1;0) = �I
vk

!c

@�

@�

qiFM

T
+ �h

(1;0)
P + �h

(1;0)
T (18)

(in the �rst term on the right-hand side of this expression, it is easy to identify
the �rst-order expansion of a Maxwellian shifted by a velocity cEr=B� in the
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parallel direction). The bar over a function indicates that it is �-independent,
so, �h-functions represent the integration constants. We have divided them,
separating the passing region of phase space (subscript P ) from the trapped
one (subscript T ).

As g(0;0) = 0, the O (�) equation simply amounts to

vk

Rq

@

@�
g(0;1) = 0: (19)

The g(0;1) = �g(0;1) is �-independent. This information allows us to eliminate
the contribution of g(0;1) when performing the � averages in Eq. (21) below.

To calculate the �h-functions, we move to the O (�Æ) equation. Using the
identity

@

@t
+ c

B�r�
B2

� r =
d0
dt

=
dh

d


!

m ~ 
Rqkk

@

@�

����



+
!

m

�
1�

@h

@�

�
@

@�
; (20)

we obtain

dh

d


!

m ~ 
Rqkk

@g(1;0)

@�

����



+
!

m

�
1�

@h

@�

�
@g(1;0)

@�
+
vk

Rq

@g(1;1)

@�
+

+kkvk
@g(1;0)

@�

����



+
Ivk

Rq

@

@�

�
vk

!c

�
@g(0;1)

@�
= m

Ivk

Rq

@

@�

�
vk

!c

�
@�

@�

qiFM

T
: (21)

In order to calculate the �h-functions, it is convenient to use the bounce
average operator, which has two di�erent de�nitions in the trapped and in the
passing region of phase space. We consider the passing region �rst. Starting
from the average operator

h: : : i� =
1

2�

I
: : : d�;

the bounce average operator is de�ned as [21]�
Rq

vk
: : :

�
�

=
1

2�

I
Rq

vk
: : : d�:

So we �nd �
dh

d


!

m ~ 

Rqkk

vk
+ kk

�
�

@�h
(1;0)
P

@�

�����



=

I

��
dh

d


!

m ~ 

Rqkk

vk
+ kk

�
vk

!c

�
�

@

@�

����



�
@�

@�

�
qiFM

T
+ (22)

I

�
m

Rq

@

@�

�
vk

!c

��
�

@�

@�

qiFM

T
:
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As we focus on the contributions which vanish on the 
ux-surface average, �h-
functions are supposed here to vanish when averaged over 
, where the average
on 
 is de�ned as

h: : : i
 =

H
� � � d�=

p

+ cos �H

d�=
p

+ cos �

:

This is because all the contributions which do not vanish by using this operator
are related to the bootstrap current. So we obtain

�h
(1;0)
P = �

4I

W 2
�

!q

mc

dh

d


qiFM

T

��
dh

d


!

m ~ 

Rq

vk
+ 1

�
vk

!c
+
qs

q0s

@

@�

�
vk

!c

��
�

�

"�
dh

d


!

m ~ 

Rq

vk
+ 1

�
�

#�1
[�� h�i
] : (23)

The physical features related to this solution will be discussed in the next
Section.

We now solve Eq. (21) in the trapped region of velocity space. The corre-
sponding bounce average operator becomes [21]

*
Rq��vk�� : : :

+T

�

=
X
�=�1

1

2�b

Z �b

��b

Rq��vk�� : : : d�;
yielding

@�h
(1;0)
T

@�

�����



= I

*
kk

��vk��
!c

@

@�

����



�
@�

@�

�
+m

@

@�

 ��vk��
!c

!
@�

@�

+T

�

�

0
@
*
dh

d


!

m ~ 

Rqkk��vk��
+T

�

1
A
�1

qiFM

T
: (24)

We can approximate the right-hand side of this equation noting that

�
1

vk

��1
�



rvk

�
�
=


vkrvk

�
�
+O

�
�2
�
: (25)

Eq. (25) and the identity

kk
@�

@�

����



=
m

q

@Ak

@�
=
m

q

~ 

R
sin � (26)

allow us to write Eq. (24) in the more perspicuous form

�h
(1;0)
T = �

qiFM

T
[!D + !ŝ]

[�� h�i
]
c

: (27)
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Here, !D is de�ned as in Eq.(14) and !ŝ is related to the toroidal precession a
of a trapped particle due to the magnetic shear [22],

!ŝ =

*
qŝv2k

r2!c

+T

�

; (28)

where ŝ is the magnetic shear (the correlation of the !D and !ŝ-terms with the
poloidal component of magnetic drifts and the terms in kkvk, respectively, is
discussed in Appendix I). As both !D and !ŝ are related to magnetic e�ects,
from here on we de�ne the magnetic toroidal precession frequency [22]:

!tp = !D + !ŝ: (29)

Note that, within this ordering, �h
(1;0)
T does not depend on any quantity related

to the island, apart from the average radial position h�i
.

4.2 The Perturbed Current

The quasi-neutrality condition r � J = 0 is now used to derive an expression
for the �-independent parallel current which closes the polarization drift. In
Ref. [11], this equation reads

kk
@JPolk

@�

�����



= �
qiI

!c

!

m ~ 

Z
d3vvk

@

@�

�
dh

d


�
Rqkk

@g(1;0)

@�

����



�
�

�
(30)

where the superscript Pol refers to the polarization current. Considering the
physical relation previously discussed between g(1;0) and !E , the integral on the
right-hand side can be connected to the total time derivative of the electric pre-
cession (i.e. the acceleration along the island surface which allows the particle
to experience a time-dependent electric �eld, see Eq.(20)). This is the physical
mechanism of the neoclassical polarization. In the limit ! � kkvk adopted
in Ref. [11] (which is an assumption that goes beyond the chosen scaling, and

was adopted to isolate the polarization current), �h
(1;0)
T is zero, while a leading

order annihilation takes place because the �-dependent part of g(1;0) and �h
(1;0)
P

di�er only for higher order terms in �. As a result, the polarization current
contributing to the island dynamics is carried only by the trapped particles
and is therefore O

�
�3=2

�
.

In our case, the quasi-neutrality condition includes the terms in kkvk and
has the following expression:

kk
@Jk

@�

����



= �
qiI

!c

@

@�

Z
d3vvk

��
dh

d


!

m ~ 
Rqkk + kkvk

�
@g(1;0)

@�

����



�
�

: (31)

The terms in square brackets represent the advection along the magnetic sur-
face, which includes now, in addition to that due to the island rotation and to
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the electric drift d0=dt (see Eq. (20)), also the parallel streaming of the ions
through the term in kkvk. According to Eq. (18) and (23), we obtain

@Jk

@�

����



= �
qiI

!c

@

@�

Z
d3vvk�FM

��
�u+ vk

�
�
��

vk

!c

�
+ (32)

�
��

�u

vk
+ 1

�
vk

!c
+
qs

q0s

@

@�

�
vk

!c

��
�

�
�
�u

vk
+ 1

��1
�

#+
�

;

with

� =
4I

W 2
�

!q

mc

dh

d


qi

T

@�

@�

����



and

�u =
dh

d


!

m ~ 
Rq:
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Figure 1: Perturbed distribution (a) and perpendicular current (b) in velocity space

for the parameters described in Section 3.2 and ! = �4000 rad/s, calculated at the

fourth radial cells outside the magnetic island towards the centre (cf. Fig. 2).

Eq. (32) exhibits an important feature: the resonant denominator that ap-
pears in the distribution function (23) is almost cancelled by a similar numer-
ator which arises from including the parallel streaming in the advection, as
discussed above (this cancellation can be shown to occur up to O

�
�2
�
). This

is a consequence of the motion of the particles, which have (at least in this or-
dering) vanishing �-averaged drifts across the 
ux surfaces when they approach
the resonance.

Numerically, a resonant behaviour of the perturbed distribution function in
velocity space can be clearly observed in Fig. 1a, which shows Æf in the vicinity
of the inner island separatrix as a function of vk=v and of v=vth. The resonance
is visible in the part of the velocity space with vk < 0. Passing particles with
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vk > 0 resonate on the other (outer) side of the island, since kk reverses its sign
across the resonant surface. The corresponding current (Fig. 1b), however, does
not present such a resonant behaviour. Moreover, it shows an odd symmetry
with respect to vk=v, so that the passing particles do not contribute to the total
current, i. e. their contribution vanishes after integration over velocity space
because of the sum over �, as can be seen in Fig. 2.

0.20 0.25 0.30 0.35
r/a

-6•10-8

-4•10-8

-2•10-8

0

2•10-8

4•10-8

6•10-8

j pe
rp
 / 

en
v t

h

Figure 2: Radial pro�le of the perpendicular current (the inner island separatrix is

located at r=a = 0:38) for ! = �4000 rad/s. Magenta stars represents the contribu-

tion of the passing particles with vk > 0, green squares passing particles with vk < 0,

blue diamonds the total current due to passing particles, red triangles the trapped

particles and the crossed black line the total perpendicular current. The sudden rise of

the current close the island separatrix is due to the onset of the standard polarization

current [14].

Formally, the contribution of the resonance to higher-order corrections (not
retained in our calculations) should be treated employing an approach similar
to that of e. g. Refs. [26, 27, 28, 17, 29]. However, we stress the fact that the
Landau resonance contributes only to the \out of phase" part of the current,
determining the island rotation. These e�ects are not included in the anal-
ysis presented in this paper, where the rotation frequency ! is treated as a
parameter and not determined self-consistently.

We conclude this Section with a remark concerning the behaviour of the

trapped particles. According to Eq. (27), the perturbed distribution �h
(1;0)
T in-

troduces in the solution the magnetic toroidal precession of the trapped parti-
cles. In the next Section, we will discuss in more detail how this precession can

interact with the magnetic island. We anticipate that the �h
(1;0)
T found above
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represents an asymptotic limit for the solution we will �nd in Section 5 if one
supposes ! � !tp.

5 The ! s !D Regime

5.1 Solution of the Drift-Kinetic Equation

We now order the terms of Eq. (10) supposing ! s !D (cf. Eq. (14)). As previ-
ously stated, our goal is to study the physical mechanisms linked to the mutual
interaction between the island propagation and the precession of trapped par-
ticles around it. The ordering of the terms in Eq. (10) becomes

�Æ : 1 : � : �Æ : �Æ : Æ : �Æ : �Æ2 : �2Æ2 = Æ2 : �Æ2

Again, as we did not include an adiabatic split of the Maxwellian, and as we
are neglecting equilibrium gradients, we can set (see Section 4):

g(0;0) = 0: (33)

Let us then move to the O (Æ) equation. We have

vk

Rq

@

@�
g(1;0) = 0; (34)

and this means

g(1;0) = �h
(1;0)
P + �h

(1;0)
T : (35)

The bar over a function again indicates that it is �-independent. We have
again divided the solution in two parts, each describing a di�erent region of
the velocity space.

Next we write the O (�) equation. This is simply

vk

Rq

@

@�
g(0;1) = 0: (36)

So also g(0;1) = �g(0;1) is �-independent.
The following step is to calculate the O

�
Æ2
�
equation,

vk

Rq

@

@�
g(2;0) +

Ivk

Rq

@

@�

�
vk

!c

�
@

@�
�g(1;0) = �

Ivk

Rq

@

@�

�
vk

!c

�
@�

@�

qiFM

T
(37)

which can be integrated over �, so we have

g(2;0) = �I
vk

!c

@

@�

�
qi�

T
FM + �g(1;0)

�
+ �h

(2;0)
P + �h

(2;0)
T (38)

where again we separate the trapped and passing contributions in de�ning the

functions �h
(2;0)
P and �h

(2;0)
T , that result as constants of integration.
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To evaluate the lowest-order contribution due to the island, i.e. the �g(1;0),
we now turn to the O

�
�Æ2

�
equation, which has the form

�!
@

@�
�g(1;0) +

vk

Rq

@

@�
g(2;1) + kkvk

@

@�
�g(2;0)

����



+

c
B�r�
B2

� r�g(1;0) +
Ivk

Rq

@

@�

�
vk

!c

�
@

@�
�g(1;1) +

�m
Ivk

Rq

@

@�

�
vk

!c

�
@

@�
�g(1;0) = m

Ivk

Rq

@

@�

�
vk

!c

�
@�

@�

qiFM

T
: (39)

Let us solve this equation �rst in the trapped region of phase space. We use
the bounce average operator de�ned for the trapped region (see Section 4).
Recalling Eq. (38), this yields

�!

*
Rq��vk��
+T

�

@

@�
�h
(1;0)
T � I

*
Rqkk

@

@�

 ��vk��
!c

@

@�
�h
(1;0)
T

!�����



+T

�

+

+c

*
Rq��vk��

B�r�
B2

+T

�

� r�h(1;0)T �mI

*
@

@�

��vk��
!c

+T

�

@

@�
�h
(1;0)
T =

mI

*
@

@�

��vk��
!c

+T

�

@�

@�

qiFM

T
+ I

*
Rqkk

@

@�

"��vk��
!c

@

@�

�
qi�

T
FM

�#�����



+T

�

: (40)

We note that

*
@

@�

 ��vk��
!c

!
@g(1;1)

@�

+T

�

= 0

because, for symmetry reasons, we can suppose g(1;1) to be an even function in

� . We also suppose that �h
(2;0)
T is independent on �, which is consistent with

the bounce point continuity condition.
An analytic solution of Eq. (40) is extremely diÆcult. However, we can

greatly simplify this equation by employing the same approximation as in
Eq. (25) (for the details of the calculation see Appendix I). If we focus on
the dynamics along the island (the radial component of the E�B drift, which
goes to zero faster with � than the other terms, will be shown later to be
important only to unlock resonating particles), it is possible to write Eq. (40)
as: �

�! �
m

q
!E �

m

q
!tp

�
@�h

(1;0)
T

@�
=
m

q
!tp

qiFM

T

@�

@�
: (41)

Eq. (41) can be integrated with the condition �h
(1;0)
T ! 0 for � ! 1. For

the sake of simplicity, we neglect the dependence of !E on �, so that the only
quantity depending on � is the electrostatic potential.
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�h
(1;0)
T = �

m

q

!tp

! + m
q
!E + m

q
!tp

qi�

T
FM : (42)

Note that in this case the � part of the potential plays the role of an integration
constant. The physical implications of Eq.(42) will be discussed in the following
Section.

We now turn back to Eq.(39) and we solve it in the passing region of phase
space. Again we suppose that the bounce average operator (see Section 4)
cancels the g(1;1) contribution. The fundamental di�erence with respect to the
trapped particles is that for passing particles�

@

@�

�
vk

!c

��
�

= O
�
�2
�
;

so the term on the right-hand side of Eq. (39) is negligible. This equation
becomes then

�!
@

@�
�h
(1;0)
P �

�
Rqkk

@

@�
g(2;0)

����



�
�

+ c
B�r�
B2

� r�h(1;0)P = 0: (43)

We can choose

�h
(1;0)
P = 0:

This solution is consistent with the fact that, in this regime, the contribution
of the passing particles to the perpendicular current is negligible. So we obtain�

Rqkk
@

@�
g(2;0)

����



�
�

= 0 (44)

which in view of Eq. (38) leads to

�h
(2;0)
P =

�
I
vk

!c

@

@�

qi�

T
FM

�
�

: (45)

Inserting Eq. (45) into Eq. (38), we see that these equations are linked to the
annihilation in the passing region of the phase space discussed in Section 4.
Within the ordering employed in this Section, this contribution still exists,
but it pertains to a higher order because of the island propagation frequency
ordering, and by consequence all the purely electric e�ects (see Eq.(7)) become
less important.

5.2 The Perturbed Current

The velocity perpendicular to perturbed magnetic surface can be thought as
the variation of the 
 coordinate with respect to time, i.e. d
=dt. We are
interested in the lowest-order, �-averaged perturbed current.

By de�nition of total derivative, and noticing that rk
 = 0, we can write
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d


dt
=
@


@t
+ v � r
 =

@


@t
+ (vE�B + vD) � r
: (46)

Considering Eq. (7), and recalling that

@

@t
= �!

@

@�
;

we note that

@


@t
+ vE�B � r
 = 0

and this means, for trapped particles

d


dt
= �

m

q
!D sin �: (47)

The radial component of the magnetic drift does not contribute to the cur-
rent we are interested in because it �-averages to zero even in the trapped
region of phase space. So the toroidal precession in this island propagation
frequency regime is the main mechanism which allows a particle to explore
di�erent magnetic surfaces. This is a fundamental di�erence with the previ-
ous Section, because for passing particles this contribution averages to O

�
�2
�
,

so that what forces particles to explore di�erent magnetic surface is not an
equilibrium velocity contribution.

Eq. (47) allows us to write an approximate expression for the �-averaged
current crossing the perturbed magnetic surface in presence of a slowly rotating
NTM as a function of v:

J? (v) = qi

�
g(1;0)

d


dt

1

jr
j

�
�

=
m2

q2
q2i�

T

!D!tp

! + m
q
!tp +

m
q
!E

1

jr
j
FM sin �;

(48)
estimating with d
=dt � 1= jr
j the velocity component perpendicular to the
perturbed magnetic surface. We remind that g(1;0) is nonzero only for trapped
particles. This expression for the perpendicular current at low rotation fre-
quencies is con�rmed by our numerical simulations.

We see in Fig. 3 that for positive frequencies no particle can be resonant
with the NTM, since the island drift and the precession of the trapped particles
are in opposite directions, so the distribution is quite smooth. On the other
hand, if the frequency is negative, the distribution starts to be very peaked
around that region of phase space where ! t n!tp (we recall that !tp depends
on v), and changes sign around this critical value of velocity.

Another important information which can be gained from Fig. 3 is that,
for the trapped-particle resonance under consideration, the physical e�ect that
resolves the singularity in Eq. (48) is represented by collisions, even for the
low-collisionality regime discussed in this paper. This is consistent with the
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(a) (b)

Figure 3: Perpendicular current as a function of velocity, calculated at the fourth

radial cells outside the magnetic island towards the plasma centre, for ! = 300 rad/s

(triangles) and for ! = �300 rad/s (diamonds) in the collisionless regime (a) and in

a standard banana collisional regime (b). Note the di�erent scale on the y-axis.

fact that, in our simulations, the frequency on which trapped particles can be
scattered into the passing domain is comparable or higher than the toroidal
precession of thermal ions !tp � !. Fig. 3b is obtained in the standard banana
regime (�coll=� s 102 Hz, and !b=2� s 104 Hz, where �coll is the collision
frequency and !b the banana bounce frequency), whereas in Fig. 3a, where
the collision frequency is reduced by �ve orders of magnitude (we call this a
\collisionless" regime). Collisions drastically reduce the peaks of J?(v) around
the resonance, this e�ect being more pronounced for slower particles, as can
be expected. As a consequence of this last fact, in particular, the sign of the
total perpendicular current density (i. e. of the integral of J?(v) over v) can
change depending on the collision frequency, as shown in Fig. 4a. The sign
of the perpendicular current is of course crucial for the determination of the
stabilizing or destabilizing nature of the perturbed parallel current.

To evaluate explicitely the in
uence of this current on the NTM stabi-
lization, we need to compute the closure parallel current. However, the in-
tegration over the velocity space cannot be performed because of the reso-

nant denominator in �h
(1;0)
T (see Eq. (42)). To account for the e�ect of colli-

sions, we go back to Eq. (41) and we add a simple Krook collision operator

(@f=@tjcoll = �� (f � FM ), where (f � FM ) = �h
(1;0)
T and � = �0v

3
th=v

3). We
obtain

�
�! �

m

q
!tp �

m

q
!E

�
@�h

(1;0)
T

@�
=
m

q
!tp

qiFM

T

@�

@�
� ��h

(1;0)
T ; (49)

Again, we neglect the � dependence of !E for the sake of simplicity. Indicating

�! = ! +
m

q
!tp +

m

q
!E �F =

m

q
!tp

qiFM

T
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Figure 4: a) Comparison between the perpendicular current integrated in the veloc-

ity space versus island propagation frequency in non collisional regime (diamonds)

and in standard banana regime (triangles).b) Perpendicular current integrated in the

velocity space versus island propagation frequency in the non-collisional regime show-

ing the transition to the standard polarization current (proportional to !
2) at high

frequencies.

and expanding the island potential into its Fourier components

� =

1X
k=0

�̂k (�) cos (k�)

a solution to Eq. (49) is found in the form

�h
(1;0)
T = ��! �F

1X
k=0

k2�̂k (�)

�!2k2 + �2
e�=�!�� � e�=�!��

�F

�!

Z �

0

d�0e��=�!��
0 @�

@�0
; (50)

using as a boundary condition the fact that the solution must be �nite for
�! ! 0.

Now we use the quasi-neutrality condition r�J = 0, multiplying the ion and
electron drift-kinetic equations times the respective charge, and then summing
them, neglecting the magnetic drifts of the electrons (cf. Ref. [11]). The �-
averaged parallel current is then

kk
@Jk

@�

����



= mqi

*Z
d3v

Ivk

Rq

@

@�

�
vk

!c

�
@�h

(1;0)
T

@�

+
�

t nqi

Z
d3v !D

@�h
(1;0)
T

@�
:

(51)
The approximations leading to the appearance of !D in the last step have been
discussed previously (see again Appendix I for details). Exploiting Eq. (50),
one obtains after some algebra

@�h
(1;0)
T

@�
= �F

1X
k=0

k2�̂k
�!k sin (k�)� � cos (k�)

�!2k2 + �2
: (52)

19



We neglect the cosine terms in Eq. (52), because they are related to out-of-
phase current contributions which are not involved in the island stabilization
[2] (they contribute to determining the island rotation frequency; a detailed
analysis of these e�ects, however, is beyond the scope of this paper). With this
approximation

@�h
(1;0)
T

@�
= �F

1X
k=0

�̂k
�!k sin (k�)

�!2 + �2=k2
= �

�! �F

�!2 + �2e�

@�

@�
; (53)

where the e�ective collision frequency �e� is implicitely de�ned by this equation.
Going back to Eq.(51), with the help of the pitch-angle variables (v; �) and

supposing !tp = !tp (v) (which relies on the fact that in the trapped region of
phase space v � v? � vk), one obtains

Jk = �n0
4p
�kk

p
�n2

q2i
T
!0tp!

0
D

q

mc

dh

d

K1 (!) [cos (�)� hcos (�)i
] ; (54)

where

K1 (!) =

Z 1

0

dyy12
!e�y

2 �
! + n!E + n!0tpy

2
�

�
! + n!E + n!0tpy

2
�2
y6 + (�0e�)

2
;

having de�ned y = v=vth and !tp = !0tpy
2, �e� = �0e�=y

3. The parameterK1 (!)
can be computed if all the plasma parameters are known, and it is important to
note that it is the only factor in Eq. (54) which depends on the island rotation
frequency. The integration has been performed within the condition that this
parallel current vanishes when 
ux-surface averaged. From here on, we call
this perturbed current the precessional current, and we indicate it as JPrk . Its
contribution to the island stability can be found with the help of the Amp�ere
equation [2]:

X
�

Z 1

�1

d


I
d�

JPrk cos (�)p

 + cos (�)

=
c

8
p
2
�0

Pr

wB

Rq
: (55)

Here, the sum is de�ned over the � > �s and � < �s regions. It yields, after
some algebra

�0
Pr =

32n0p
2�wB

p
�n2

q2i
T
!0tp!

0
D

q

m2c2
qs

q0s
R2q2K1 (!)K2; (56)

where K2 is a negative constant de�ned as

K2 =

Z 1

1

d
p



I
d�

cos2 (�)� cos (�) hcos (�)i


+ cos (�)

' �6:65:

The sign of �0
Pr depends only on the sign of K1 (!). We recall that positive

values of �0 correspond to destabilizing e�ects [2]. Thus, we have a stabilizing
current for ! > 0 and, if ! < 0, for j!j suÆciently larger than !tp.
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Figure 5: Current on the X-point helical cell (triangles), on the O-point cell (stars),

on the intermediate cell (diamonds) and their sum (solid) for a) ! = 300 rad=s and

b) ! = �300 rad=s.

We now compare the contribution we just found and that of the polarization
current, in order to understand under which circumstances one prevails on the
other. For the parallel current which closes the polarization current, Eq. (30),
we refer to the ! � kkvk case, so that �hT is zero, while for this comparison
we refer to the parallel precessional current as expressed in Eq. (51). As we
are comparing the two contributions in trapped space, we do not consider �hP
functions. Using the identity Eq. (62), see Appendix I, we can write
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= �
qiI

2

!2c

!2q

mc

dh

d


8

W 2
�

Z
d3vv2k

@

@�

�
dh

d


�
qiFM

T
sin �: (57)

We can compare JPrk and JPolk by comparing the two functions under the inte-
gration operator. So, the two contribution are comparable if

I

!2c
!

1

W 2
�

@

@�

dh

d

�

m

Rq

@

@�

�
vk

!c

�
n!tp

! + n!tp
; (58)

where !E in Eq.(51) has been discarded for the sake of simplicity. If we are not
so far away from the island (i.e. (�� �s) sW�) the derivative in � of dh=d

is O (1). According to the estimate (see Appendix I)

@

@�

�
vk

!c

�
t

Rq!tp

Ivk
; (59)

Eq. (58) becomes

I2

!2c
!
v2k

W 2
�

� n!tp
n!tp

!
: (60)

We estimate vk s
p
�vth. Recalling that the ion banana width �b can be

calculated as �b =
p
���, we can conclude that the polarization current is

comparable with the precessional current if
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n!tp

!
�
�b

w
: (61)

The ratio on the right-hand side of Eq. (61) is assumed to be small in our
calculations, cf. Eq.(13), so that the assumption that the ratio on the left-hand
side of Eq. (61) is of the same order of magnitude is absolutely realistic.

6 Discussion and Conclusions

We have studied the plasma current due to a rotating magnetic island when
the island propagation frequency is comparable to the parallel streaming of
the passing particles (kkvk) or to the toroidal precession frequency the trapped
particles (!tp) in a low-collisional plasma. When the absolute value of ! is
large (! � kkvk, assuming for passing particles vk s vth), the polarization cur-
rent, which scales like !2 in absence of equilibrium gradients, is the dominant
contribution. In Section 4, we showed that even if ! s kkvk the polarization
current remains the most important perturbed current linked to the presence of
the island rotation, since the contribution of the resonating (passing) particles,
signi�cant for the distribution function, is almost cancelled when the corre-
sponding current is calculated. In Section 5, we showed that for decreasing
values of ! other electric and magnetic e�ects dominate over the polarization
current. In particular, the toroidal electric �eld generated by a magnetic island
can modify the magnetic toroidal precession a trapped particle experiences in
an equilibrium con�guration, braking or accelerating the particle itself. This
leads to the appearance of a precessional current competing with the polar-
ization current. For a more detailed physical explanation of this e�ect, we
distinguish between positive and negative frequencies. For positive frequen-
cies, the magnetic island is moving towards �r�-direction, while both electric
and magnetic toroidal drifts point in the r�-direction. If we suppose to build
a frame of reference which moves in the toroidal direction together with the
island (from here on: IFR, island frame of reference), we will see all the trapped
particles travelling in the r�-direction. The toroidal component of the electric
�eld E� varies sinusoidally along the island, see Eq. (7). So in regions where
it points in the r�-direction, all particles tend to increase their kinetic energy
and �nally their magnetic precession frequency (recall !tp _ v2), while they
slow down in the opposite case. This means that between O-X and between
X-O, all trapped particles either accelerate or decelerate, depending on the
sign of E� (they accelerate for E� > 0 and decelerate for E� < 0, respectively).
Where they decelerate, they tend to accumulate, so that the local density in-
creases. On the contrary, they tend to disperse as they accelerate, so that the
local density decreases. Fig. 5a) shows this situation in the \upper" half of the
island (as stated before, the situation is opposite in the \lower" half).

This picture is di�erent when ! < 0. In this case the island is propagat-
ing in the same direction as the particles (r�-direction), so in the IFR there
are particles moving in the r� direction (if j!j < !tp, high-energy particles)
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and in the �r� direction (if j!j > !tp, low-energy particles). Now, when
for example E� points in the �r�-direction, again all particles decrease their
magnetic precession frequency. The behaviour of more energetic particles is
the same as the one described before. But slower particles, if decelerated in
the laboratory frame, actually increase their relative speed with respect to the

island, so the e�ect is an acceleration in the IFR.In other words, where slower
particles accumulate, faster particle disperse and viceversa, and this explains
why the perturbation changes sing around !tp � j!j. Moreover, another mech-
anism complicates the overall picture in the case ! < 0. In this case, the
electric toroidal precession !E acts in the opposite direction with respect to
the magnetic drifts. So, moving from O-point (where the radial electric �eld is
maximum, in absolute value) to X-point (where the radial electric �eld is the
lowest in absolute value) the number of particles which overtake the island or

are overtaken by it in IFR can change (cf. Eq.(42)). The variation of !E with �
is such that the integral of J? over velocity space can change its sign depending
on where with respect to the island we are performing the integration. This
especially happens if j!j s !tp (vth), because in that region of phase space lies
a large number of particles, so even a small shift of the resonant point means
turning a large number of faster particles into slower or vice versa (cf. Fig. 3a)).
This physical picture is con�rmed in Fig. 5b). In this case, we are able to iden-
tify the change of sign of the current going from O-point to X-point, as indeed
j!j t !tp (vth). It is important to stress that resonance conditions are highly
local, so after a while a resonant particle will be able to unlock from the island,
for example through the radial component of the E�B drift.

There are some strong analogies between the behaviour of the trapped and
passing particles as their motion along the island start to be comparable with
the rotation of the island itself (i.e. the case ! s !D and ! s kkvk, respec-
tively). In both cases, the lowest-order perturbed distribution function exhibits
a resonant denominator (Eq.(23) and (42)), which underlines the fact that the
interaction between the particles and the mode (and the subsequent modi�ca-
tion of the distribution function) is stronger if the particle and the island have
a small relative motion. Indeed, this result is not surprising for most wave-
particle interactions. Nevertheless, signi�cant di�erences occur as we focus on
the corresponding perturbed current. Trapped particles cross the perturbed
magnetic surfaces just because of their equilibrium drift velocity (see Eq.(47)),
so that every perturbation on the distribution immediately leads to a current
such that

ÆJ? _ qi hÆfvD � r
i� :

This is not the case for passing particles, as their �-averaged equilibrium drift
across the perturbed 
ux-surface is much smaller. For resonating particles, in
particular, the advecion is such that it nearly cancels the contribution of the
perturbed distribution function to the current, as shown in Section 4.

Referring to Fig. 4b), we can now discuss all the changes of sign of J? as
a function of !, going from right to left. For positive island frequencies, we
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experience a change of sign when the precessional current starts to exceed the
standard polarization current. The sign reversal at !=0 is due to the fact
that the electric potential goes through zero and changes sign across that value
(cf. Eq. (7) and Eq. (42)). As a matter of fact, for extremely small negative
values of !, the situation more or less corresponds to the one which occurs for
small positive values of !, as almost all particles are faster than the island.
So the sign reversal is due to a sign reversal in the electric �eld. As ! grows,
the fraction of slower particles gets larger, and this leads to the third change of
sign. Collisions contribute to determine the position of this third reversal, since
they determine how the singularity in Eq. (48) is resolved. Finally, for large
negative values of ! the polarization current prevails again. The qualitative
agreement between the analytical and numerical results is remarkable.

The change of sign determines the stabilizing or destabilizing e�ect of these
currents. The precessional current is found to be stabilizing for ! > 0 and,
if ! < 0, for j!j suÆciently larger than !tp. It is known that polarization
current is globally destabilizing, neglecting equilibrium gradients e�ects, be-
cause of the \current spike" at the island separatrix [30], without which it
would be stabilizing. This precessional current acts against the polarization
current (which is in our case always destabilizing, according to the analysis of
Ref. [30]). We emphasize that in this paper we neglected e�ects connected to
equilibrium pressure gradients, as our aim was not a complete determination
of the island dynamics, but rather the discussion of the contributions linked
to the island rotation and to possible resonances with the motion of the par-
ticles. Our �nding that precessional e�ects can compete with the neoclassical
polarization and that trapped-particle resonances have a major impact on this
e�ect highlights once again that a kinetic description is mandatory in view of
a exhaustive theory of NTMs in toroidal plasmas.

7 Appendix I

In this Appendix the relation between the toroidal magnetic precession frequen-
cies of trapped particles !D and !ŝ and the corresponding terms in Eq. (41) is
brie
y discussed. We start wit !D, which deals with the poloidal component of
the equilibrium magnetic drift vD . As the spatial derivatives have to be taken
at constant kinetic energy, one can write [21]

rvk = �
1

mivk
�rB:

Using this relation, recalling that the parallel velocity and the cyclotron fre-
quency depend on space only through the magnitude of the magnetic �eld, one
can write

@

@�

�
vk

!c

�
= �

1

!c

�
�

mivk
+
vk

B

�
@B

@�
:
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In the large aspect ratio approximation B = B0 (1� � cos �), so

@B

@�
= �

q

rR
cos �

neglecting higher order terms in �. This implies

@

@�

�
vk

!c

�
=

q

rR!c

�
�

mvk
+
vk

B

�
cos �:

The poloidal component of the magnetic drift can for this reason be written
as

m
Ivk

Rq

@

@�

�
vk

!c

�
=
m

q

q

rR!c

�
�B

mi

+ v2k

�
cos �:

This result, after being bounce averaged, corresponds exactly to (m=q)!D (see
Eq. (14)).

We now focus on the relation between the terms in kkvk in the Eq.(40) and
the magnetic shear frequency !ŝ. We concentrate on

I
vk

!c
kkvk

@

@�

����



�
@

@�
�

�

because all terms related to !ŝ have this form in our equations. It is easy to
see that
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Recalling that
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and

~ =
W 2

�

4

q0s
qs

one can �nd with a few algebra
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r2!c
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;

where ŝ is the magnetic shear (ŝ = r=q dq=dr) and the shear precession fre-
quency [22] can be easily identi�ed after �-averaging this expression.
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