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Abstract

Short mean-free path two-fluid equations are employed to evaluate the lowest order

non-ambipolar radial current in plasma confined by a three-dimensional toroidal mag-

netic field. The result is used to obtain a necessary condition for intrinsic ambipolarity

of plasma transport in such a field and to derive a criterion for the importance of the

toroidal field ripple for collisional tokamak plasma rotation. The ripple effects on

toroidal plasma rotation are found to be negligible if the characteristic perpendicular

length scale is determined by the pedestal width of order the poloidal ion gyroradius

(as may be the case in the H-mode regime), but may conceivably become important

for more shallow plasma gradients.
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I. INTRODUCTION

Plasma flow in magnetic confinement devices can strongly influence plasma sta-

bility and transport and is therefore important to understand. In particular, sheared

flow is known to enhance particle and heat confinement by suppressing and regulat-

ing turbulent transport [1]. Understanding plasma flow requires knowledge of plasma

momentum transport, both its turbulent and collisional (predominantly neoclassical)

channels. The reason is that although radial variation of turbulence-driven zonal flow

is often much faster than that of the global (predominantly neoclassical) flow, the

amplitude of the former is normally much smaller than that of the latter. As a result,

contributions to flow shear from both can in principle be important.

Momentum transport theory in an axisymmetric tokamak is rather involved and

still incomplete, even in the turbulence-free neoclassical limit. The reason is that neo-

classical plasma transport in this case is “intrinsically ambipolar” [2, 3] and therefore

cross-field ion viscosity plays a fundamental role in the radial transport of toroidal

angular momentum [4]. However, accounting for this viscosity component, including

the so-called perpendicular viscosity, requires difficult-to-evaluate corrections of order

δ2(ν/Ω) ¿ 1 to the lowest order ion distribution function, which is a Maxwellian in

the absence of strong external driving sources [5]. Here, δ ¿ 1 is the small ion gyrora-

dius expansion parameter, Ω is the ion gyrofrequency, and ν ¿ Ω is the ion collision

frequency. This problem was only recently solved completely for short mean-free path

plasma [6–9]. At the same time, a complete understanding of neoclassical momen-

tum transport in the long mean-free path or banana regime for the plasma rotation

velocity small compared with the ion thermal speed still remains elusive since exist-

ing treatments [10, 11] only consider large-aspect-ratio circular-cross-section tokamak

limit and arbitrarily neglect poloidal variations of plasma density, ion temperature,
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and electrostatic potential, which play a fundamental role [7, 9]. On the other hand,

if the rotation velocity is assumed large, i.e., comparable to the ion thermal speed,

the banana-regime momentum transport problem becomes less complicated and has

been solved completely [12, 13].

It is somewhat easier to understand neoclassical plasma momentum transport in

a strongly-rippled tokamak or a stellarator [14] since in those cases, due to the confin-

ing magnetic field geometry, particle transport is not “intrinsically ambipolar” and

momentum transport is dominated by the so-called parallel ion viscosity, which is de-

scribed by an order δ correction to lowest order ion distribution function and is much

easier to evaluate. In fact, it has been shown that neoclassical plasma transport

and rotation in a three-dimensional toroidal magnetic field are equivalent to those

in an axisymmetric tokamak if [15] and only if [16] the confining magnetic field is

either quasi-axisymmetric [17] or quasi-helically symmetric [18]. On the other hand,

the most difficult to understand experimentally-relevant situations are for a tokamak

with small toroidal field ripple and for a quasi-symmetric stellarator with small helical

field ripple. Depending on the ripple size, effects of both parallel and cross-field ion

viscosities can be important and must be accounted for.

Since hot magnetized plasmas have long mean-free paths, most of the analyti-

cal work on momentum transport concentrates on the banana-plateau collisionality

regime. Various aspects of the neoclassical momentum transport problem in three-

dimensional toroidal magnetic fields in this collisionality regime have been studied in

Refs. [19–27] and other publications. A good overview of the earlier work is given in

the review paper [28].

In this paper, we consider short mean-free path plasma confined by an arbitrary

three-dimensional toroidal magnetic field and investigate effects of parallel ion viscos-

ity on rotation of such plasma. Then, we apply the results to a tokamak with a small
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toroidal magnetic field ripple to determine what ripple size can affect the axisymmetric

plasma rotation result [6–9]. The main purpose of this work is to gain understanding

on the transition from a two-dimensional to a three-dimensional toroidal magnetic

configurations. This problem is not new and has been studied in Refs. [29–34], but

none of these treatments is completely satisfactory. As discussed in the Appendix

of this paper, Ref. [29] contains an error in evaluation of radial plasma current due

to parallel ion viscosity, arriving at the result that, contrary to the authors’ claim,

does not vanish in the axisymmetric tokamak or quasi-symmetric stellarator limits.

Reference [30] only considered a large-aspect-ratio rippled tokamak and neglected

cross-field ion viscosity, and was therefore unable to describe the axisymmetric limit

and consequently the case of small toroidal field ripple. Calculations based on the

moment approach to neoclassical theory [31, 35] cannot exactly recover the correct

expression for the parallel ion flow velocity, which was first calculated by Hazeltine

[36] in the axisymmetric tokamak case and in this paper for an arbitrary toroidal ge-

ometry. In addition, Refs. [32, 33] neglected temperature gradients and cross-field ion

viscosity. On the other hand, Ref. [32] considered additional potentially important

effects which are not accounted for herein, such as time evolution, presence of neu-

tral particles, and external bias currents. Finally, Ref. [34] studied large-aspect-ratio

three-dimensional toroidal magnetic confinement configurations with a circular cross-

section and also neglected cross-field ion viscosity. In this work, we allow arbitrary

aspect ratios and poloidal cross-sections, account for effects of temperature gradients

and cross-field viscosity, and do not employ the moment approach.

This paper is organized as follows. Section II describes our orderings and as-

sumptions. Lowest-order expressions for ion particle and heat fluxes in an arbitrary

three-dimensional toroidal magnetic field are obtained in Sec. III, and are then used

in Sec. IV to evaluate the non-ambipolar radial plasma current due to parallel ion
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viscosity and obtain a necessary condition for intrinsically ambipolar neoclassical par-

ticle transport in such a magnetic field. Section V applies the general expression to

evaluate this non-ambipolar radial current in the case of a large-aspect-ratio tokamak

with a small toroidal magnetic field ripple. Finally, this current is employed in Sec. VI

to evaluate how large the ripple should be to make plasma rotation deviate from the

axisymmetric limit [6–9]. Our conclusions are then presented in Sec. VII.

II. ORDERINGS AND ASSUMPTIONS

We consider a plasma consisting of electrons and singly-charged ions and adopt

the standard neoclassical collisional transport ordering for the Pfirsch-Schlüter regime

(see e.g. Refs. [3, 35]). The primary expansion parameters are based on smallness of

the ion gyroradius, ρi = vTi/Ω, and the ion mean-free path, λi = vTi/ν, as compared

with the characteristic perpendicular, L⊥, and parallel, L‖, length scales, respectively:

δ ≡ ρi

L⊥
¿ 1,

∆ ≡ λi

L‖
¿ 1. (1)

Here, vTi =
√

2T/M is the ion thermal speed, with T the ion temperature and M

the ion mass; Ω = eB/(Mc) is the ion gyrofrequency, with e the magnitude of the

electron charge, c the speed of light, and B the magnitude of the magnetic field B;

and ν = 4π1/2ne4 ln Λ/(3M1/2T 3/2) is the ion collision frequency [37], with n the

plasma density and ln Λ the Coulomb logarithm. The parallel length scale can be

comparable with or larger than the perpendicular length scale, but not too large:

L⊥ . L‖ < L⊥/δ.

We employ drift-ordered short mean-free path expressions [38] for the ion viscosity

that were obtained by assuming that the ion flow velocity, V , is of the order of the

diamagnetic drift velocity, which in turn is of the order of the ion diamagnetic heat
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flux, qd, divided by the ion pressure, p = nT :

|V |
vTi

∼ |qd|
pvT i

∼ δ. (2)

In addition, ν/Ω ¿ 1 is assumed.

As usual in transport theory, we also assume that the plasma density, n, the elec-

tron and the ion temperatures, T and Te, respectively, and the electrostatic potential,

φ, are flux functions in lowest order, so that the dominant variation within a flux

surface is due to a variation of the magnetic field. In particular, we assume that

B ·∇ ln T

B ·∇ ln B
¿ 1. (3)

It can be shown a posteriori that the left-hand side of this inequality is of order δ/∆,

so that the assumption

δ

∆
¿ 1 (4)

must be made.

The time scale of interest is assumed to be that associated with the collisional ion

radial heat transport, namely

∂

∂t
∼ χT

L2
⊥
∼ νδ2

ι2
, (5)

where χT ∼ νδ2/ι2 is the ion thermal diffusivity, with ι the rotational transform. This

time scale is assumed to be much shorter than the characteristic time scale for the

variation of the vector potential, A, which is determined by the resistive diffusion of

the magnetic field, so that β(M/m)1/2 À ι2, with β ≡ 8πn(T + Te)/B
2 and m the

electron mass. As a result, the electric field, E = −∇φ− c−1∂A/∂t, is electrostatic

to the order we require,

c−1|∂A/∂t|
|∇φ| ¿ δ

∆ι2
¿ 1, (6)

where we estimate |A| ∼ BL‖, eφ ∼ Te ∼ T .
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Finally, we assume that B possesses three-dimensional nested toroidal flux surfaces

labeled by poloidal flux χ.

III. LOWEST ORDER ION HEAT AND PARTICLE FLOWS

In the calculation that follows we require lowest order expressions for the ion heat

and particle flows. This section evaluates such expressions. To avoid employing a

specific coordinate system we introduce a solenoidal vector field

h ≡ b̂×∇χ

B
+ uB, (7)

where b̂ ≡ B/B and u satisfies

∇‖u =
2

B2
b̂×∇χ ·∇ ln B, (8)

so that ∇ · h = 0. The vector h is proportional to the equilibrium current, J0,

satisfying ∇ · J0 = 0 and J0 × B = c∇pΣ, where pΣ(χ) is the sum of the ion and

electron pressures: J0 = c(dpΣ/dχ)h. In particular, the quantity u is proportional

to the parallel current divided by B and defined up to an arbitrary flux function

(recall that the standard Pfirsch-Schlüter current in an axisymmetric tokamak is also

evaluated up to a flux function times B). It is easy to show a posteriori that none of

the results in the remainder of this paper depend on the value of this flux function.

The lowest order ion heat flow is given by the sum of the parallel and the diamag-

netic contributions,

q = q‖b̂ +
5cp

2eB
b̂×∇T. (9)

Substituting this expression into the ion energy conservation equation, we obtain in

lowest order

∇ · q = B ·∇
(

q‖
B
− 5cp

2e

∂T

∂χ
u

)
= 0, (10)
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resulting in

q‖ = L(χ)B +
5cp

2e

∂T

∂χ
uB. (11)

Since q‖ = −125p/(32Mν)∇‖T , where ν = 1/τi = 4π1/2ne4 ln Λ/(3M1/2T 3/2) is the

inverse ion collision time [37], we have
〈
Bq‖

〉
= 0 if 〈· · ·〉 denotes a flux-surface

average defined as a volume average between two neighboring flux surfaces. Using

this constraint in Eq. (11) to evaluate L(χ) we finally obtain

q‖ =
5cp

2e

∂T

∂χ

(
uB − 〈uB2〉

〈B2〉 B

)
(12)

and

∇‖T =
16

25

ν

Ω

∂T

∂χ

(〈uB2〉
〈B2〉 B2 − uB2

)
. (13)

The flux-surface averaged radial ion heat flux is then obtained from Eqs. (9) and

(13) and becomes

〈q ·∇χ〉 = −
〈

5cp

2eB
b̂×∇χ ·∇T

〉
≈ 5cp

2e

〈
uB∇‖T

〉
=

8

5

νp

M

(
B

Ω

)2
∂T

∂χ

(
〈uB2〉2
〈B2〉 − 〈

u2B2
〉
)

. (14)

Note that the flux-surface averaged heat conductivity defined by this equation must

be positive by the Schwartz inequality, 〈fg〉2 ≤ 〈f 2〉 〈g2〉, valid for arbitrary real

functions f and g.

The standard axisymmetric limit of results (13) and (14) is recovered by noticing

that for an axisymmetric tokamak with B = I(χ)∇ζ + ∇ζ × ∇χ, where ζ is the

negative of the ordinary cylindrical angle measured about the toroidal axis, (2/B2)b̂×
∇χ ·∇ ln B = −∇‖(I/B2). Then, Eq. (8) gives

u|as = −I(χ)

B2
+ F1(χ), (15)

with F1(χ) a flux function. Using this result in Eqs. (13) and (14) gives the usual
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axisymmetric Pfirsch-Schlüter expressions [3, 36]

∇‖T |as =
16

25

νI

Ω

∂T

∂χ

(
1− B2

〈B2〉
)

,

〈q ·∇χ〉 |as =
8

5

νpI2

M

B2

Ω2

∂T

∂χ

(
1

〈B2〉 −
〈

1

B2

〉)
.

The lowest order ion flow is given by the sum of the parallel, the E ×B, and the

diamagnetic contributions,

nV = nV‖b̂ +
c

eB
b̂× (en∇φ + ∇p). (16)

Using this expression in the ion continuity equation, we obtain in lowest order

∇ · (nV ) = B ·∇
[
nV‖
B

− cn

(
∂φ

∂χ
+

1

en

∂p

∂χ

)
u

]
= 0, (17)

so that

V‖ =
B

n
K(χ) + c

(
∂φ

∂χ
+

1

en

∂p

∂χ

)
uB. (18)

As in the corresponding calculation for tokamaks [36], the unknown flux function

K(χ) can be determined from the flux surface average of electron plus ion parallel

momentum equation, which gives in lowest order

〈
B · (∇· ↔π‖)

〉
= − 〈

π‖∇‖B
〉

= 0. (19)

The ion parallel viscosity,
↔
π‖= (b̂b̂− ↔

I /3)π‖, with
↔
I the unit dyad, was obtained in

Ref. [38]. The pressure anisotropy π‖ = p‖− p⊥ is given to the order required by [39]

π‖ =
cηB

2
(∇‖u)

(
∂φ

∂χ
+

1

en

∂p

∂χ
+

1.61

e

∂T

∂χ

)

− 2η√
B
∇‖(

√
BV‖)− 1.42η

p
√

B
∇‖(

√
Bq‖), (20)

where η ≡ 0.96p/ν is the ion parallel viscosity coefficient [37], and we employed

Eq. (8). Using this π‖ in the constraint (19) we obtain

K(χ) = −c

e

〈
(∇‖ ln B)∇‖(uB2)

〉

2
〈
(∇‖B)2

〉
(

en
∂φ

∂χ
+

∂p

∂χ

)

+
c

e
n

∂T

∂χ

(
1.77

〈uB2〉
〈B2〉 − 0.91

〈
(∇‖ ln B)∇‖(uB2)

〉
〈
(∇‖B)2

〉 + 0.05

〈
u(∇‖B)2

〉
〈
(∇‖B)2

〉
)

. (21)
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Employing expression (21) for K(χ) in Eq. (18) and considering the axisymmetric

limit (15) recovers the standard axisymmetric Pfirsch-Schlüter expression [36]

V‖ = −cI

B

(
∂φ

∂χ
+

1

en

∂p

∂χ

)
− cIB

e 〈B2〉
∂T

∂χ

(
1.77 + 0.05

〈B2〉 〈(∇‖ ln B)2
〉

〈
(∇‖B)2

〉
)

. (22)

Calculations based on the moment approach to neoclassical theory [31, 35] cannot

exactly recover the correct expression for the parallel ion flow velocity (they miss the

very last term in Eq. (22), though the error tends to be small in practice), which was

first calculated by Hazeltine [36] in the axisymmetric tokamak case and in this paper

for an arbitrary toroidal geometry.

IV. RADIAL CURRENT

We can now use the lowest order ion heat and particle flow expressions (9) and (16),

respectively, to evaluate the lowest order radial plasma current (due to ion parallel

viscosity). Dotting by h the sum of the electron and the ion momentum equations

(with electron inertia and viscosity and ion cross-field viscosity neglected),

Mn(V · ∇)V =
1

c
J ×B −∇P −∇· ↔π‖, (23)

and flux surface averaging gives in lowest order

1

c
〈J ·∇χ〉 =

〈
π‖
∇‖(uB2)

2B

〉
, (24)

where we have used

〈
h · (∇· ↔π‖)

〉
= −

〈↔
π‖: ∇h

〉
= −

〈
π‖∇‖h · b̂

〉
=

〈
π‖[κ · h−∇‖(uB)]

〉
= −

〈
π‖
∇‖(uB2)

2B

〉
. (25)

Employing expression (20) for π‖ results in

1

c
〈J ·∇χ〉 =

3

4
c η G1(χ)

(
∂φ

∂χ
+

1

en

∂p

∂χ

)
+ c η [1.37 G1(χ) + 0.085 G2(χ)]

1

e

∂T

∂χ
,(26)
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where

G1(χ) ≡
〈
(∇‖ ln B)∇‖(uB2)

〉2

〈
(∇‖B)2

〉 −
〈[∇‖(uB2)

B

]2
〉

(27)

and

G2(χ) =
〈
u(∇‖ ln B)∇‖(uB2)

〉−
〈
(∇‖ ln B)∇‖(uB2)

〉 〈
u(∇‖B)2

〉
〈
(∇‖B)2

〉 . (28)

It follows from the Schwartz inequality that G1(χ) is always non-positive and

vanishes if and only if

B−1∇‖(uB2) = F2(χ)∇‖B, (29)

with arbitrary F2(χ). u satisfying Eq. (29) also results in G2(χ) = 0 and thereby

〈J ·∇χ〉 = 0. It is clear from Eq. (15) that u|as satisfies constraint (29) and parallel

ion viscosity does not contribute to the radial plasma current for an axisymmetric

tokamak, as expected. Solving Eq. (29) for u and plugging the result into Eq. (8) gives

a coordinate-independent form of the necessary condition for intrinsically ambipolar

particle transport in collisional plasmas confined by a three-dimensional toroidal mag-

netic field:

b̂× κ ·∇χ = F3(χ)∇‖ ln B, (30)

with arbitrary F3(χ). This agrees with arbitrary-collisionality findings of Ref. [16].

Moreover, Ref. [16] showed that condition (30) is equivalent to quasi-symmetry

requirement for magnetic field in the Boozer coordinates (χ, θB, ϕB) [15], B =

B(χ, sθB − tϕB) with arbitrary integers s and t.

V. LIMIT OF A TOKAMAK WITH A SMALL TOROIDAL FIELD

RIPPLE

Next, we consider an almost axisymmetric collisional tokamak with a small toroidal

field ripple and employ Eq. (26) to evaluate the contribution to the radial current due

to the deviation from the axisymmetry. We use Hamada magnetic flux coordinates
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[40] (v, θH , ϕH), with v the volume enclosed by a given magnetic flux surface and θH

and ϕH the poloidal and the toroidal angles, respectively, chosen such that ∇v ×
∇θH ·∇ϕH = 1. Then, the magnetic field can be conveniently written as

B = ∇ψ ×∇θH + ∇ϕH ×∇χ = ψ′∇v × (∇θH − ι∇ϕH) = ψ′∇v ×∇α, (31)

with ψ(v) and χ(v) the toroidal and the poloidal fluxes enclosed by the flux surface

with volume v, ψ′ ≡ dψ/dv, χ′ ≡ dχ/dv, ι ≡ dχ/dψ, and α ≡ θH − ιϕH . It is often

convenient to use (v, α, ϕH) coordinates instead of (v, θH , ϕH), and we will do so in

this section. For example, in this case the parallel gradient has a particularly simple

form: B ·∇ = ψ′(∂/∂ϕH).

In the remaining portions of this work, we assume that the parallel length scale

represents the characteristic distance along the magnetic field associated with the

toroidal field ripple, L‖ ∼ 2πR0/N , with R0 the toroidal radius of the magnetic axis

and the integer N describing the ripple toroidal period. Therefore, the mean-free

path expansion parameter ∆ ∼ Nλi/(2πR0).

To proceed, we rewrite G1(χ) and G2(χ) in terms of B and its α and ϕH derivatives.

First, we introduce a quantity w ≡ B×∇v ·∇ϕH and notice that to order β∆δ ¿ 1

(i.e., neglecting effects of the ion parallel viscosity on the magnetic curvature)

2

B2ι
b̂×∇χ · κ =

2

B2ι
b̂×∇χ ·∇ ln B = −∇‖

( w

B2

)
. (32)

Then, Eq. (8) requires

u = −wι

B2
+ F4(χ). (33)

The arbitrary flux function F4 cannot depend on α since it must be constant along

field lines and, consequently, on entire rational and, by continuity, irrational flux

surfaces. Moreover, since u is defined up to an arbitrary flux function [see Eqs. (8)

and (15)], we can choose F4 = 0 without loss of generality.
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Employing relation u = −wι/B2 in Eq. (8) we obtain

∇‖(uB2) =
ι

B

∂B2

∂α
. (34)

Noticing that

∇‖B =
ψ′

B

∂B

∂ϕH

(35)

and using the geometrical relations (34) and Eqs. (35) in (27) we find a convenient

expression for G1:

G1(χ) = ι2

[
〈(∂ ln B/∂ϕH)(∂ ln B2/∂α)〉2

〈(∂ ln B/∂ϕH)2〉 −
〈(

∂ ln B2

∂α

)2
〉]

. (36)

To evaluate G2(χ) we first solve Eq. (34) for u to obtain

uB2 =
ι

ψ′

∫
dϕH

∂B2

∂α
+ F5(χ). (37)

As in Eq. (33), F5 cannot depend on α and is therefore a flux function. Employing

Eqs. (35) and (37) in Eq. (28) we arrive at the following expression for G2:

G2(χ) = ι2
[〈

1

B2

(∫
dϕH

∂B2

∂α
+

F5ψ
′

ι

)
∂ ln B

∂ϕH

∂ ln B2

∂α

〉

−〈(∂ ln B/∂ϕH)(∂ ln B2/∂α)〉 〈B−2[
∫

dϕH (∂B2/∂α) + F5ψ
′/ι](∂ ln B/∂ϕH)2

〉

〈(∂ ln B/∂ϕH)2〉
]
.(38)

Concentrating on the limit of large-aspect-ratio tokamak with circular cross-section

and small toroidal ripple, we next assume [41]

B(r, α, ϕH) = B0(r)[1− ε(r) cos(α + ιϕH)− ρ(r) cos(NϕH) + O(ε2, ρ2, ερ)], (39)

where r is the poloidal radius of a flux surface, ε ≡ r/R0 ¿ 1 is the inverse aspect

ratio of the flux surface, and ρ ¿ 1 is a measure of the magnitude of the ripple.

Substituting expression (39) into Eqs. (36) and (38) for G1 and G2 and noticing that

〈· · ·〉 = (2π)−2
∮

dαdϕH(· · · ) we obtain to lowest order in ε and ρ

G1(χ) = − 2(Nρ)2(ει)2

(Nρ)2 + (ει)2
(40)
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and, taking into account that N2 À 1 & ι2,

G2(χ) =
(Nρ)2(ει)2

(Nρ)2 + (ει)2

[(
7

4
ε2 − ρ2

)
− 7

4

F5ψ
′

B2
0

(
ε2 − ρ2

)]
. (41)

Employing expansion (39) in Eq. (37) and comparing with Eq. (15) gives that F5ψ
′/B2

0

is at most of order unity in the ε and ρ expansion, so that |G2| ¿ |G1|. Since

∂/∂χ = (B0ιr)
−1∂/∂r, the lowest order radial current from Eq. (26) is

〈J ·∇χ〉ripple = − c2p

νιB0

(Nρ)2(ει)2

(Nρ)2 + (ει)2

1

r

[
1.44

(
∂φ

∂r
+

1

en

∂p

∂r

)
+ 2.63

1

e

∂T

∂r

]
. (42)

In reality, the ripple magnitude is usually a strong function of the poloidal

angle, reaching maximum about the tokamak outer midplane, so that ρ(r) must

be replaced by ρ(r, θH) in Eq. (39). This leads to replacements ρ2 → 〈ρ2〉 and

ε2 → ε2 + 〈(∂ρ/∂θH)2〉 in Eq. (42), with the latter replacement seemingly unim-

portant.

VI. RADIAL ELECTRIC FIELD

Having evaluated the contribution to the radial current caused by the small toroidal

field ripple, we can now estimate how big should the ripple be to influence the radial

electric field and plasma rotation in a rippled tokamak. This is done by setting

the total radial current to zero and comparing “the ripple” and “the axisymmetric”

contributions to the radial electric field.

The toroidal field ripple contribution to the radial current, as given by Eq. (42), is

proportional to the ripple magnitude squared and vanishes in the axisymmetric limit.

Then, radial current is dominated by cross-field ion viscosity contributions [3]. Such

contributions have been evaluated in Ref. [6–9]. In the limit of BP /BT ¿ 1, where

BP and BT are the magnitudes of the poloidal and the toroidal components of B,

respectively, we can obtain for axisymmetric tokamaks with up-down symmetric but
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otherwise arbitrary poloidal cross-sections [7]:

〈J ·∇χ〉axisym =
1.2

v′
∂

∂χ

[
v′

c2p

ν

(
νB

Ω

)2 〈
R4B2

P

B2

〉
∂

∂χ

(
∂φ

∂χ
+

1

en

∂p

∂χ

)]

−0.23

v′
∂

∂χ

[
v′

c2p

ν

I2ν2

e 〈Ω2〉
TTe

T + Te

(〈
R2

〉− 〈R2B2〉
〈B2〉

)(
∂ ln T

∂χ

)2
]

+
0.64

v′
∂

∂χ

{
v′

∂

∂χ

[
c2p

ν

I2ν2B2

eΩ2

(
2
〈
R2

〉 〈
1

B2

〉
− 〈R2〉
〈B2〉 −

〈
R2

B2

〉)
∂T

∂χ

]}
, (43)

where v′ ≡ dv/dr =
∮

(dθ/B · ∇θ) with θ the poloidal angle. Expression (43) can

be further simplified by considering the large aspect-ratio circular poloidal cross-

section limit (see e.g. Ref. [42]): R = R0(1 + ε cos θ), BT = B0/(1 + ε cos θ), and

BP = εB0ι/(1 + Λε cos θ), where Λ ≡ 1 − ε−1∂∆s/∂r with ∆s the Shafranov shift.

Then, to lowest order in ε,

〈J ·∇χ〉axisym =
1

r

∂

∂r

{
c2p

νιB0

(
ν

Ω0

)2

R4
0ε

2

[
1.2

ι

r

∂

∂r

(
1

ιr

∂φ

∂r
+

1

enιr

∂p

∂r

)

−0.45

(
Te

T + Te

)
1

ι2r2

∂ ln T

∂r

(
1

e

∂T

∂r

)]}
, (44)

where Ω0 ≡ eB0/(Mc).

When effects of the ripple are negligible, radial electric field, Er ≡ −∂φ/∂r, is

determined by requiring 〈J ·∇χ〉axisym = 0 [6, 7]:

∂

∂r

[
1

ιr

(
∂φ

∂r
+

1

en

∂p

∂r

)]
= 0.38

(
Te

T + Te

)
1

ι3r

∂ ln T

∂r

(
1

e

∂T

∂r

)
. (45)

When effects of the ripple dominate, Er is determined by requiring 〈J ·∇χ〉ripple = 0

and Eq. (42) gives

∂φ

∂r
+

1

en

∂p

∂r
= −1.83

1

e

∂T

∂r
. (46)

Using this to evaluate the toroidal component of ion flow from Eq. (16) gives nV ·
R∇ζ = 0, i.e. the toroidal flow is damped, in agreement with Ref. [30].

In general, for ripple small enough that the radial current contribution (44) due

to cross-field ion viscosity, derived for axisymmetric magnetic field, is approximately
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valid, Er must be determined from Eqs. (42) and (44) by requiring 〈J ·∇χ〉ripple +

〈J ·∇χ〉axisym = 0. Comparing coefficients in front of Er in Eqs. (42) (with ρ2 → 〈ρ2〉)
and (44) we see that ripple effects are important when

N

2π

δ

∆
<

√
N2 〈ρ2〉 (ει)2

N2 〈ρ2〉+ (ει)2
∼ min

[
ει, N

〈
ρ2

〉1/2
]

(47)

and that these effects are negligible when the opposite inequality is satisfied, where

δ = ρi/L⊥ and ∆ = Nλi/(2πR0).

Assuming that the characteristic perpendicular length scale is determined by the

pedestal width of order the poloidal ion gyroradius, L⊥ ∼ ρpi ≡ vTiMc/(eBP ), as it

may be in the H-mode regime, we obtain δ ∼ BP /BT ∼ ει. Inequality (47) becomes

then

2π∆

N
>

√
1 +

ε2ι2

N2 〈ρ2〉 . (48)

Since ∆ ¿ 1 and 2π/N . 1 (e.g. N = 20 for Alcator C-Mod [43]), inequality (48)

is never satisfied and ripple effects on plasma rotation in this case are expected to

be negligible. However, it is conceivable that such effects may be important in the

L-mode regime, where L⊥ ∼ r À ρpi.

VII. CONCLUSIONS

We have considered the neoclassical equilibrium of a short mean-free path plasma

confined by an arbitrary three-dimensional toroidal magnetic field, and calculated

the rotation velocity and the non-ambipolar radial current. The former is given by

Eqs. (16), (18) and (21), and the latter by Eqs. (26) – (28). This has allowed us

to obtain the necessary condition for intrinsically ambipolar particle transport in

such a field, given by Eq. (30), which agrees with the arbitrary-collisionality result of

Ref. [16].
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We have also employed the general expression for this non-ambipolar radial current

to obtain an estimate for a tokamak with a small toroidal ripple, Eq. (42), and to

estimate the ripple size that can affect the axisymmetric plasma rotation result of

Refs. [6–9]. We have found that the ripple effects dominate when inequality (47) is

satisfied and are unimportant otherwise. If the characteristic perpendicular length

scale is given by the pedestal width of order the ion poloidal gyroradius (as might be

the case in the H-mode regime), inequality (47) simplifies and is replaced by Eq. (48).

However, this inequality is never satisfied for short mean-free path plasmas, meaning

that toroidal field ripple effects on plasma rotation are expected to be unimportant

in this case. On the other hand, the ripple effects may become important for more

shallow plasma gradients.

An interesting and potentially important effect that was not accounted for in this

paper is the non-linear back-reaction of the radial electric field on the radial transport.

In our ordering scheme, this effect is formally small. In tokamaks, it was shown by

Hinton and Wong [12, 44] that this effect becomes important when the Mach number

squared, (V/vTi)
2, is comparable to our parameter ∆, defined by Eq. (1), but no

rigorous calculation has to our knowledge been performed for the case of stellarator

geometry. In addition, we did not consider the dynamical process of approaching the

ambipolar state [14, 32]. We also neglected effects of neutral particles on momentum

transport [32], which can become important for neutral fractions of order 0.1% or

smaller [45].
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APPENDIX A: WHY REF. [29] DOES NOT RECOVER THE CORRECT

AXISYMMETRIC TOKAMAK AND QUASI-SYMMETRIC

STELLARATOR LIMITS

This appendix discusses why Ref. [29] failed to reproduce the necessary condition

(30) for intrinsically ambipolar particle transport in collisional plasmas confined by a

three-dimensional toroidal magnetic field.

It is convenient to start from the well-known drift-kinetic expression for a radial

particle flux (the equation right after Eq. (A26) of Ref. [29]),

〈njV j ·∇χ〉 =

〈∫
d3v (vdj ·∇χ)f̄j

〉
, (A1)

where j = e, i denotes particle species, f̄j is a gyrophase-averaged distribution func-

tion accurate to first order in the gyroradius expansion, and

vdj ≡ −v‖b̂×∇U,µ

(
v‖
Ωj

)
(A2)

is the lowest order perpendicular drift velocity with Ωj ≡ ejB/(Mjc) the species’

gyrofrequency and ∇U,µ evaluated holding the total energy U = v2
‖/2 + µB + ejφ/Mj

and magnetic moment µ = v2
⊥/(2B) fixed. Substituting vdj gives

〈njV j ·∇χ〉 =
c

ej

〈
(p‖j + p⊥j)

b̂× κ ·∇χ

B

〉
+ c

〈
nj

b̂×∇φ ·∇χ

B

〉
(A3)

with p‖j = Mj

∫
d3v v2

‖ f̄j and p⊥j = Mj

∫
d3v µBf̄j, so that accounting for quasineu-

trality
∑

j ejnj = 0 produces the following convenient expression for the radial cur-

rent,

1

c
〈J ·∇χ〉 =

〈∑
j

(p‖j + p⊥j)
b̂× κ ·∇χ

B

〉
, (A4)
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in agreement with Ref. [29].

Expanding f̄j into a series of Legendre polynomials Pk(v‖/v) and noticing that to

the order required k = 0, 1, 2 we obtain

f̄j =
2∑

k=0

f̄
(k)
j (v)Pk(v‖/v). (A5)

Introducing p
(k)
‖j ≡ Mj

∫
d3v v2

‖ f̄
(k)
j Pk(v‖/v) and p

(k)
⊥j ≡ Mj

∫
d3v µBf̄

(k)
j Pk(v‖/v),

noticing that p
(0)
‖j = p

(0)
⊥j and p

(1)
‖j = p

(1)
⊥j = 0, and employing Eq. (8) gives

1

c
〈J ·∇χ〉 = −

〈∑
j

p
(0)
‖j B ·∇u +

∑
j

(p
(2)
‖j + p

(2)
⊥j)

B ·∇u

2

〉
. (A6)

Finally, employing the parallel velocity moment of a first-order accurate drift-kinetic

equation (see for example Eq. (38) of Ref. [36]),

B ·∇(p
(0)
‖j + p

(2)
‖j ) = (p

(2)
‖j − p

(2)
⊥j)∇‖B, (A7)

in Eq. (A6) gives

1

c
〈J ·∇χ〉 =

〈∑
j

(p
(2)
‖j − p

(2)
⊥j)

∇‖(uB2)

2B

〉
=

〈∑
j

(p‖j − p⊥j)
∇‖(uB2)

2B

〉
. (A8)

Since electron pressure anisotropy is small and can be neglected compared with that

of ions,

1

c
〈J ·∇χ〉 ≈

〈
(p‖i − p⊥i)

∇‖(uB2)

2B

〉
. (A9)

Expression (A9) for the radial current coincides with Eq. (24) obtained from the

fluid approach. At the same time, it disagrees with the expression used in Ref. [29],

Eq. (A27), which unjustifiably approximates ∇‖(uB2)/2B = (B · ∇u)/2 + u∇‖B

with (B · ∇u)/2. As a result of this approximation, Ref. [29] obtains an incorrect

ambipolarity condition [compare with Eq. (30)]

b̂× κ ·∇χ = F6(χ)∇‖B
2 (A10)



20

with F6(χ) an arbitrary flux function. Moreover, contrary to the claim made in

Ref. [29], their radial current does not vanish in the axisymmetric limit, where b̂ ×
κ ·∇χ = −I(χ)∇‖ ln B.
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