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With a background of having obtained positive results with Function Parametrization (FP) applied to

stellarator configurations, the technique was used once again for recovering the vacuum magnetic field

configurations of the WEGA stellarator including the main symmetry-breaking magnetic islands. A clas-

sical stellarator of typel = 2, WEGA has an inherentn = 1 (leading order) field perturbation responsible

for these islands. The perturbation is assumed to be generated by a misalignment between the centres

of the toroidal and helical field generating coil systems. Thesen = 1-periodic WEGA configurations,

displaying no stellarator symmetry, were numerically generated around the experimental boundaries and

analysed with FP. For the first time FP models with 4th order polynomials and non-linear regressions

with rational functions were needed to parametrize the physical state of the configurations. Modelling

of the widths of the magnetic islands was challenging, however. The FP functions are in the process of

being implemented to run with the WEGA control system.
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Figure 1: The WEGA stellarator showing the external coils. TF: toroidal field coils. HF: helical field
coils. VF: vertical field coils.

1. INTRODUCTION

Fast recovery of magnetic configurations is a crucial issue for all fusion devices. Being inherently

steady state devices stellarators need rapid and reliable techniques, whichwould monitor the evolution

of different physics parameters in real time, to be implemented with them.

The WEGA stellarator [1] (Fig. 1) is in operation since July 2001 at the Greifswald branch of Max-

Planck-Institut f̈ur Plasmaphysik in Germany. A classical stellarator intended primarily for educational

purpose, it has a major radiusR = 72 cm, a plasma radiusaeff ≤ 11.5 cm and a planar and circular

magnetic axis. 40 toroidal field (TF) coils and 2 pairs of helical field (HF) coils generate anl = 2

type stellarator configuration with a five-fold toroidal periodicity and stellarator symmetry. The HF

coils produce the rotational transformι- required for plasma confinement with an usually-operated range

between 0.1 and 1.0, limited by the plasma size which becomes too small to be of use for large values

of iota (typically for axis values ofι-ax > 0.8). Two pairs of vertical field (VF) coils of the Helmholtz

type, one pair above and the other below the torus, provide control overthe magnetic axis position. The

shapes of the flux surfaces, in their toroidal variation, are rotating ellipses which are characteristics of

l = 2 helical windings. The plasma (resonant) start-up is by means of a 2.45 GHz Electron Cyclotron

Resonance Heating (ECRH) system at a magnetic field strength of≤ 87.5 mT [2]. With a recently

implemented 28 GHz ECRH the machine is operated at∼0.5 T. For the high-field operation, technical

constraints such as the cooling system for the HF coils and the pulse length ofthe discharges further

limit the operationalι-ax-range to 0.2 - 0.5. The plasma boundary is defined either by the ECRH antennae

or the inner wall of the vacuum vessel acting as material limiters.

However, real configurations do not enjoy the periodicity and the stellarator symmetry of the ideal



coil system as described above, but suffer from a breakdown of both these features by error fields.

Error fields are perturbations on the symmetric and periodic magnetic configuration and arise from, e.g.,

inaccuracies in manufacturing and assembling of the external coils, deformations in the coils during

operation, etc. In case of WEGA, error fields are due to an assumed horizontal misalignment in the mm-

range between the TF and the HF coil systems [1]. The periodicity-breaking effect was observed in flux

surface measurements from the non-natural islands at low-order values of the rotational transform, e.g.

the 1/4 island instead of the natural 5/20 islands. The extent of the misalignmentwas inferred from a

comparison of experimentally measured flux surfaces and rotational transform profiles with numerically

calculated ones. A 4 mm misalignment reproduces the observed islands and their sizes in the best way.

As a result of the break down of the stellarator symmetry, the toroidal periodicity has a dominantn =

1 mode. In flux surface measurements islands belonging to higher modes (n ≥ 2) are observed, but

with smaller island widths due to the higher poloidal mode numbers needed to be resonant with the

corresponding rational iota-value. Nevertheless, this gives rise to unique features for the entire torus.

Encouraging results were obtained with Function Parametrization (FP) for W7-X parameter recov-

ery where cubic polynomials were used to model vacuum configurations [3] in terms of external coil

current ratios (CCR), and the finite-beta case [4] in terms of CCR, plasma pressure and toroidal plasma

currents. Since error field effects were always neglected, it was nowdecided to test the applicability

of the method on a smaller device whose magnetic configurations included error field effects. Because

WEGA is a stellarator in operation, the main motivation for this study was that the analysed real mag-

netic configurations can be implemented as FP-functions into the control system of WEGA to work in

real time in same way as planned for W7-X.

In this paper an analysis of the vacuum configurations of WEGA is presented, including the non-

periodic, symmetry-breaking magnetic islands having their toroidal periodicityequal to the perturbed

value ofn = 1. Recovering the important magnetic islands in the configuration formed a crucial part of

this work. The following section briefly discusses the basic principles of FP, while Section 3 describes

the nature and the size of the database that was analysed to set up the FP model. The detailed results of

the statistical analysis are in Section 4, first for the scalar, or locally determined, parameters, and then

for the profile parameters, meaning those varying with the flux surfaces.

2. Principles of FP

The basic principle of FP [3 - 7] consists in getting a simple representation of acertain dependent (or

response) variableY , as a function of a set of independent (or predictor, regressor) variables, resulting

from a statistical analysis on a large dataset that contains all these variables. For convenience, let the

set of predictor variables define a vector~x. The ranges of variables over what is also called the training

dataset should encompass those expected in the experiment as these statistical models learn the trends

of variation within the data and are usually poor extrapolators if trend changes are present outside of the

training dataset, but also especially if non-linear models are used.

A typical FP model has the form

y = F (~x) + ǫ (1)



where the functionF is an estimate of the dependency of the true valuey of the response variableY

on ~x, andǫ is a random error term which shows that this representation is only an approximate one.

Therefore one may write

ỹ = F (~x) (2)

whereỹ is the FP-estimated value ofY .

The components of~x should be statistically uncorrelated among themselves and should not have

widely varying standard deviations, to make the problem well-conditioned. Ifthey are correlated, the

raw variables are subjected to a coordinate transformation (e.g., PrincipalComponent Transformation

PCT [8]) such that the transformed variables, which will replace the raw variables as the components of

~x in equation (1), are mutually orthogonal in the new space. If their standarddeviations differ by orders

of magnitude, the raw variables need to be standardized (i.e., normalized to unit standard deviation)

before being analyzed.

Also known as “regression” in statistics, the above function is set up usingthe principles of least

squares whereby the coefficients ofF are estimated from the minimisation of a mean squared error

(equation (3) below) wheñy is compared withy:

〈ǫ2〉 =
1

N

N
∑

α=1

[y(α) − ỹ(α)]2 (3)

Hereα runs over theN observations in the database. Different forms of the functionF result in different

estimates ofy. An error analysis shows the kind of function that best fitsy to the data.

In order that the FP model is robust enough to be used later with data not contained in the training

set, two important conditions must be satisfied. First, the new data must come from within the same

configuration space, and be generated using the same criteria, as the training data. This is important to

ensure that the models are not forced to extrapolate beyond the boundaries of the training data. Sec-

ondly, there should be a sufficient difference between the numbers of training data points and the model

parameters being estimated. This difference is called the residual degreesof freedom after the model is

set up, and determines the generalization capability of statistical models. Therefore, the quality of the

fit of equation (1) is tested by another error analysis on an independentbut known subset of the training

dataset, called the test dataset.

These time-consuming offline steps precede the ultimate application of equation (1), when new data

for ~x are fed in to calculate unknownyi. This process is very fast as it simply involves evaluatingF .

Finally, a regression is termed as linear (non-linear) depending on whether the coefficients ofF are

linear (non-linear) in the equation foryi.

3. THE DATABASE OF WEGA CONFIGURATIONS

As described in the preceding section, setting up of an FP model relies on analysing a (training)

dataset showing the trends of variation of all relevant variables that the model is to approximate. This

dataset, generated by conventional computer codes, needs to be produced carefully in order not to in-

troduce numerical errors. However, for some variables their numericaldetermination is connected with

an uncertainty which cannot be specified in any case, e.g. for variablesconnected to the configuration



boundary and to the island parameters. Another such parameter is the iota-value, because it is calculated

by tracing a finite length of a field line and also due to the algorithm used. Nevertheless, as long as the

errors are somewhat random (comparable to noise) or low enough for the required accuracy (in case of

iota) and do not destroy the underlying trend we can still regress the trendif we have enough training

data. The underlying uncertainty will, however, show up in a lower limit of the FP-recovery error, below

which the error cannot be reduced even if the models are refined. Therefore, in the error analyses to

determine the quality of the FP model we are looking for the saturation effect that tells us whether the

numerical error is negligible with respect to the resulting reconstruction error. In the next section this

will be examined further.
Table 1: Database summary statistics of WEGA parameters.
Parameter mean spreadσ minimum maximum

ι-ax 0.31 0.215 0.017 0.837

ι-b 0.33 0.218 0.013 0.867

aeff (cm) 8.91 4.40 1.60 18.95

Rax (cm) 70.58 3.95 60.03 83.50

Bax (T) 0.30 0.018 0.25 0.35

r
(1/3)
is (cm) 8.09 2.44 1.73 11.91

w
(1/3)
is (cm) 2.05 1.15 0.74 5.78

r
(1/4)
is (cm) 8.58 2.06 2.73 12.26

w
(1/4)
is (cm) 1.08 0.45 0.31 3.94

r
(1/5)
is (cm) 7.64 2.57 1.71 12.65

w
(1/5)
is (cm) 0.59 0.41 0.20 2.25

The physical parameters describing the WEGA configurations, which arelisted as response variables

for the regression in table 1, contain: the rotational transform on the magnetic axis (ι-ax) and at the

boundary (ι-b), the axis positionRax, the on-axis magnetic field strengthBax, the positionr(n/m)
is and the

width w
(n/m)
is of the important non-periodic, symmetry-breaking magnetic islands in the configuration

(in particular, those with toroidal to poloidal mode number ratios ofn/m = 1/5, 1/4 and 1/3 and thus

the dominant periodicity of the magnetic field structure). A few islands with toroidal mode numbern

= 2 were also detected in the database cases, e.g., those with the mode structure 2/5 and 2/7. While

the 2/7 islands, with a largem value, had exceedingly small widths and therefore were unsuited to be

determined even with a fine resolution, the 2/5 islands, though with larger widths, were (at least) as

small as the 1/5 islands. As will be described later, the 1/5-island widths already involved quite large

relative errors and so the 2/5 islands were not used in the database.

Choice of the aforementioned variables for analysis was based on their importance in control pur-

poses for which the FP equations are to be used. It may be commented here that the magnetic field



strength has only a weak toroidal dependence in WEGA, so the toroidal mirror field effect is negligible

for both the ideal coil system and the considered misaligned coil system.

All variables listed above have been locally determined, at a particular pointof the configuration,

and are called scalar variables. Only the rotational transformι- was analysed as a profile quantity with a

dependence onreff , which is an effective minor radius for labelling flux surfaces. Its definition, using

the cross sectional areas of the flux surfaces, is the same as that mentioned in [3]. Mathematically, theι--

dependency was considered to be withr2eff . This is because profile variables in magnetic configurations

are strictly functions of magnetic flux enclosed by the flux surfaces andr2eff , compared toreff , is the

main radial dependence of the flux.

Definitions ofris andwis were the same as those in [3], namely, from the detection of the inner and

the outer separatrices of a magnetic island chain. If thereff values corresponding to these separatrices

arer(innsep)eff andr(outsep)eff then

ris =
r
(outsep)
eff + r

(innsep)
eff

2
and wis = r

(outsep)
eff − r

(innsep)
eff (4)

Therefore, an accurate detection of the inner and the outer separatrices is a very important criterion

for calculating the island parameters. Very often, however, the outer separatrix is not clearly formed

due mainly to stochastic regions surrounding, e.g., islands of large size which usually also means large

values ofι-. This uncertainty makes especially the island width somewhat inaccurate in the database

which is also reflected in the error of the FP approximations.

A field line tracing code [9], whose inputs were the currents in the TF, HF and VF coils, was used to

generate the vacuum magnetic field. The misalignment of 4 mm between the centres of the TF and the

HF coils was included in the numerical model to reproduce the measured errorfield effects.

Since magnetic configurations are essentially invariant under a global scaling of the coil currents,

except for the magnetic field whose strength varies explicitly with the currentin the relevant coil, the

predictor variables (components of~x) for the FP models were the CCRiHF = IHF /ITF and iV F =

IV F /ITF , wherei andI denote CCR and the coil currents, respectively. The TF coil is maintained at

a constant current in the experiment, and so it was in the dataset (atITF = 2 kA) and formed the nor-

malisation parameter, so the magnetic field strength should be duly scaled according to the experimental

value ofITF . For CCR, the ranges 0.5≤ iHF ≤ 2.7, and -0.05≤ iV F ≤ 0.05 were used in generating

the dataset of 250 configurations for our analysis.

Figure 2 shows the configuration space for CCR. Three aspects of the scatter plot are worth not-

ing. First, the data points were not generated in the pseudo-random way as is often done for statistical

analyses, but systematically in a 2-D grid defined byiHF andiV F . This is justified due to the low dimen-

sionality of the input space. Assuming that a polynomial of orderp is necessary to represent an output

variable, the criterion for the minimum number of points in the configuration space for the regression is

p2 in our case, and with the order of 100 points in the space the criterion is safely satisfied. Second, there

is a void in the bottom-left corner. This region, at smalliHF , corresponds to ultra-low values of rota-

tional transformι- so that flux surfaces are not well-formed due to insufficient twist in the magnetic field

lines. As seen from figure 3,ι-ax increases withiV F , so the void does not continue upwards. There are a

few additional voids foriHF = 2.1 and 2.3. For these configurations the code failed in the method of an
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Figure 2: WEGA configuration space in the coil current ratios.

automatic determination of the separatrix. Small shifts of these points in the grid for these cases, e.g., by

alteringiHF , may produce successful runs. However, this was not considered necessary because, even

without those grid points, the space is still reasonably uniformly covered. Third, a clustering of points

is seen in the region with 1.4≤ iHF ≤ 2.0. These points were generated in order to get a good coverage

of the part of the configuration space containing the magnetic islands of interest, namely those with the

modes 1/3, 1/4 and 1/5.

Table 1 lists the summary statistics for the configuration parameters in the database, that includes

the mean, the standard deviation or spreadσ and the extreme values. The CCR were varied so that the

physical state parameters at least encompass all the experimental scenarios. The values ofι-, for example,

cover with values between 0.017 and 0.837 the experimental range for the low field scenario; in case of

the high field operation the experimental range is much smaller (typically 0.20≤ ι- < 0.50). Theaeff

values also span a wide range, from very small configurations (aeff < 2 cm) up to very large ones (aeff

> 15 cm). The former correspond to highι- cases which imposes an upper limit on theι- values since

these configurations are too small to be of experimental use. The largeraeff values in the data safely

exceed the present experimental limit of 11 cm. For the magnetic island locations, cases with islands

too close to the magnetic axis were excluded from the dataset as their parameters are anyway difficult to

be determined, even in the experiment.

One of the configurations in the database, corresponding to (iHF , iV F ) = (1.76, -0.04), is shown in

a Poincaŕe plot in figure 4, atφ = 0. This clearly displays the symmetry-breaking, and not the natural

5-fold periodic, island chains (of modes 1/3 and 1/4). The corresponding rotational transform profile

in figure 5 shows the considerable positive shear in this configuration (defined as the gradient of theι--

profile in thereff space). For WEGA it has been observed that, asiV F is moved from negative through

zero to positive values (at constantiHF ), the shear keeps reducing so that for the upper regions of the

configuration space in our database (figure 2) theι--profile is almost flat with only a small upward trend

close to the boundary.
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Figure 4: Poincaŕe plot for case number 202 (iHF = 1.76,iV F = -0.04) in the WEGA vacuum database.
Islands with 1/3 and 1/4 modes are clearly visible.

4. STATISTICAL ANALYSIS RESULTS

As explained in section 2, the purpose of statistical analysis on a dataset is todevelop global (i.e.,

over the entire configuration space defined in the dataset) representations of physical quantities in terms

of the predictors, and a study of the error statistics leads to a decision on thebest fit. These will now be

described for the physical parameters of WEGA. From the database, 175 configurations were used for

setting up the FP models, making sure the parameter values covered at least all relevant experimental

cases, and another 75 to test the quality of fit. We would like to point out that the external coil currents

were assumed to be accurately measurable so the simulated coil currents were not perturbed with mea-

surement errors. This was reasonable, since coil current measurements usually involve only very small

levels of uncertainties.

Prior to setting up the statistical models, an exploratory PCT was performed on the CCR in the

database to test whether they, having been non-randomly generated in a grid, are uncorrelated. Eigen-

analysing the2× 2 correlation matrix generated out of the CCR data, it was found that (a) the first of the
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Figure 5: Theι- profile for case number 202 in the WEGA vacuum database. Discontinuities are at the
locations of islands. The configuration has a large, positive shear.

two principal components explained only 58% of the total variance ofiHF andiV F , (b) the ratio of the

maximum eigenvalue of the correlation matrix to the minimum, called the condition number,was 1.37,

i.e., of the order of unity, signifying that the CCR data were well-conditioned,and (c) the magnitude of

the correlation coefficient ofiHF andiV F was 0.15. Thus, the raw “measurements”iHF andiV F were

indeed only weakly correlated in the database and so were fit to be used asthe independent variables in

the regression model.

a) Scalar parameter recovery

The regressions were done and tested with a quadratic (2-FP), a cubic (3-FP), a 4th order (4-FP)

and a 5th order (5-FP) polynomial in (iHF , iV F ) including interaction terms, that involved 6, 10, 15 and

21 model coefficients, respectively. In [3] and [4] expressions were given to combine the predictors in

quadratic and cubic. When the fourth and the fifth order terms, including interactions, are added, the

expressions expand into a 4-FP and a 5-FP polynomial of the forms

y =
nin
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

aijkl xixjxkxl (5)

and

y =
nin
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

l
∑

p=0

aijklp xixjxkxlxp (6)

respectively. In the two equations above,nin is the number of (uncorrelated) predictors.



Table 2: Recovery statistics of scalar parameters using linear regression
Parameter spread RMS error from models 100 (RMS error)/(spread)

2-FP 3-FP 4-FP 5-FP 2-FP 3-FP 4-FP 5-FP
ι-ax 0.215 0.0060 0.0035 0.0020 0.0018 2.79 1.63 0.93 0.84

ι-b 0.218 0.0160 0.0126 0.0113 0.0108 7.34 5.78 5.18 4.95

aeff 4.40 cm 1.70 cm 1.33 cm 1.0 cm 0.93 cm 38.29 30.00 23.50 21.40

Rax 3.95 cm 1.66 cm 1.00 cm 0.59 cm 0.30 cm 42.00 25.30 14.94 7.59

Bax 0.018 T 0.0073 T 0.0041 T 0.0028 T 0.0019 T 40.56 22.78 15.56 10.56

r
(1/3)
is 2.44 cm — 0.48 cm 0.37 cm 0.20 cm — 19.85 15.30 8.12

w
(1/3)
is 1.15 cm — 0.80 cm 0.43 cm 0.35 cm — 69.23 37.79 30.00

r
(1/4)
is 2.06 cm — 0.45 cm 0.18 cm 0.11 cm — 21.74 8.74 5.10

w
(1/4)
is 0.45 cm — 0.16 cm 0.12 cm 0.07 cm — 36.19 26.03 14.50

r
(1/5)
is 2.57 cm — 0.12 cm 0.08 cm 0.08 cm — 4.28 2.61 2.49

w
(1/5)
is 0.41 cm — 0.10 cm 0.09 cm 0.09 cm — 24.39 21.95 19.51

In our previous studies [3, 4] on W7-X configurations, a 3-FP model was always found to be neces-

sary and sufficient. For WEGA a significant improvement in the regressionaccuracy was observed, for

all the configuration parameters regressed, when a 4-FP model was used. The error statistics for all re-

gressed parameters are tabulated in Table 2, where the spreadσ, the root-mean-square (rms) errorǫrms,

theR2-measure of fit (which is the fraction of the total variance of the regressed variable explained by

the model) and the percentage spread errorǫperc (defined asǫrms normalised to the database spreadσ)

are recorded. The last-mentioned statistic is given by

ǫperc = 100× (ǫrms/σ) = 100×
√

1−R2 (7)

where theR2-measure of fit is the fraction of the total variance of the regressed variable explained by

the model.

The central iotaι-ax shows a progressive improvement with the size of the model, up to 4-FP when

its estimation is accurate to within±0.002 corresponding toǫperc = 0.93% and anR2 statistic of 0.9999.

The slow decrease of the error level seen for the 5-FP may indicate that the accuracy of the numerical

procedure to determine the iota-value is in reach.

The boundary parameters, due to an inherent uncertainty of locating the boundary of the configu-

ration, could not be very accurately generated in the data. This inaccuracy is more pronounced if the

configuration is bounded by a separatrix. This feature inevitably shows up in the recovery and the two

parameters in question, theι-b andaeff , were less accurately estimated. Forι-b the recovery was correct

to within±0.01 corresponding toǫperc = 5.7% and anR2 measure of fit of 0.9967 with 3-FP model, and
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Figure 6: Variation ofRax with iHF at three fixed values ofiV F .

did not improve significantly with the extra non-linear terms of the higher ordermodels. The sufficiency

of 3-FP for the regression ofι-b is also manifested by the fact that 7 of the 15 regression coefficients

of the 4-FP model were found to be statistically insignificant at the 5% level, when tested against the

null hypothesis that the parameter values are zero. This means that the significance probabilities for

these coefficients were greater than 0.05 and so the null hypothesis couldnot be rejected. Foraeff , the

recovery errors significantly reduced up to 4-FP, when the estimation of the parameter is found to be

correct to±1 cm. Hence, with increasing model size the recovery errors of both variables approach the

error level of the dataset due to the imperfect estimation of these quantities.

From the table it is also clear that forRax, Bax, and for the parameters of at least two island modes

there was a further significant enhancement in the quality of regression with a 5-FP model. The necessity

of higher order regression terms in the models suggests either strong non-linear dependencies of the

physical parameters of WEGA configuration on the coil currents, or thatthe polynomial function may

not be the best choice for fitting. The latter is supported by the dependency thatRax shows in figure 6.

We clearly see thatRax behaves approximately like 1/iHF . Therefore, a polynomial model iniHF that

represents this variation is expected to need significant higher order termsfor a good approximation.

However, the mere use of 1/iHF as the regressor, instead ofiHF , will not achieve success since the

singularity may not be atiHF = 0 and additionally it changes sign withiV F . This suggests the use of

rational functions to model this behaviour.

Before continuing further, some comments on the island parameters should bemade here. First, we

did not bother to use a 2-FP model forris andwis, as we presumed that their regression will demand

many more non-linear terms. The 3-FP error statistics (Table 2) justify this. Second, for the 1/4 and

1/5 modes a regression ofr2is expectedly produced significantly better results – and these are the ones

quoted in the table. The expectation is based on the observations that the profile of iota behaves like

r2eff around the magnetic axis (figure 5) and that the CCR-dependence ofι-ax may be approximated by

a linear function around the value where an island appears. Figure 7 shows the island location for the

three modes as functions ofiHF for iV F = -0.04.
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For all the parameters whose regression showed progressively betterfits even up to 5-FP, we decided

to test the feasibility of non-linear regression using rational functions. The purposes were (i) to study the

usefulness of these functions from the viewpoint of accuracy as compared to, e.g., the 5-FP model, and

(ii) to test the size of each regression model compared to the 21-coefficient 5-FP. Non-linear regressions

involve iterative convergence of the error function to its minimum in the hyperspace of the model co-

efficients, and the Levenberg-Marquardt scheme was used for that. The results were very encouraging,

and the rational functions were finally settled with as the best fit.

DenotingiHF andiV F by x1 andx2 respectively, for convenience, the best fit rational functions for

the relevant configuration parameters were the following :–

Rax =
a0 + a1x1 + a2x2 + a3x

2
1 + a4x

2
2

a5 + a6x1 + a7x2 + a8x21 + a9x22 + a10x1x2 + a11x31 + a12x32
(8)

with 13 coefficients,ǫrms = 1.1 mm,R2 = 0.9992,ǫperc = 2.84;

Bax =
b0 + b1x1 + b2x2 + b3x

2
1 + b4x

2
2

b5 + b6x1 + b7x2 + b8x21 + b9x22 + b10x31
(9)

with 11 coefficients,ǫrms = 0.0007 T,R2 = 0.9988,ǫperc = 3.48;

r
(1/3)
is =

c0 + c1x1 + c2x2 + c3x
2
1 + c4x

2
2

c5 + c6x1 + c7x2 + c8x21 + c9x22
(10)

with 10 coefficients,ǫrms = 1.8 mm,R2 = 0.9932,ǫperc = 8.27;

w
(1/3)
is =

d0 + d1x1 + d2x2 + d3x
2
1 + d4x

2
2 + d5x

3
1 + d6x

3
2

d7 + d8x1 + d9x2 + d10x21 + d11x22 + d12x32
(11)

with 13 coefficients,ǫrms = 2.1 mm,R2 = 0.9515,ǫperc = 22;

r
(1/4)
is =

e0 + e1x1 + e2x2 + e3x
2
1 + e4x

2
2 + e5x1x2

e6 + e7x1 + e8x2 + e9x21 + e10x22
(12)



with 11 coefficients,ǫrms = 0.96 mm,R2 = 0.9973,ǫperc = 5.18;

w
(1/4)
is =

g0 + g1x1 + g2x2 + g3x
2
1 + g4x

2
2 + g5x1x2

g6 + g7x1 + g8x2 + g9x21 + g10x22
(13)

with 11 coefficients,ǫrms = 0.76 mm,R2 = 0.9782,ǫperc = 14.7.

TheR2-statistic in equations (9) - (14) were calculated from the basic definition in equation (8).

For Rax andBax there was a remarkable improvement in accuracy over a 5-FP model, while for

the island parameters the 5-FP results were reproduced, by the use of rational functions with 8-10 co-

efficients less. This result suggests that the rational functions are indeed better approximators of the

dependencies forRax andBax. For the island parameters the uncertainties within the database set the

level of the achievable accuracy; this is inferred from the fact that the error levels obtained from the

5-FP model and the rational functions are more or less the same, except for w(1/3)
is . For this particular

parameter the accuracy was indeed improved from 3.5 mm with a 5-FP model to 2.1 mm with the ratio-

nal function. Generally, the errors in the data leading to a poorer recovery of the island widths can be

explained as follows. For the modes with highι-, the region outside the island chain is usually stochastic

and as such the island may not be properly formed, leading to a possible misjudgement on the location

of the outer separatrix. This was reflected in the recovery ofw
(1/3)
is . On the other hand, the islands with

moderate to high poloidal mode numbersm (which generally also implies moderate to lowι- for fixedn)

do not have very large widths. In fact, the mean width for the 1/5 islands (theones with the largestm)

in our database was only 6 mm. However, this smallness may also result in large relative errors in their

determination, as was observed for the 1/5 island widths. The 1/4 islands, being in-between, were less

affected from both the aforementioned problems and so their width was determined with better relative

accuracy which was passed on to the accuracy of the recovery.

The superiority of the rational functions was also proved in a comparison with a different approach,

namely, regressing the inverse of the original response variables, especially where a1/x-dependence

was observed. For example, the regression of1/Rax, instead ofRax, improved the rms error from 3

mm to 2.2 mm using 5-FP, but the result of the rational function FP is still better bya factor of 2.

The use of higher order polynomials or rational functions improves the accuracy of the recovered

response variables, however, they are less stiff compared to the standard 2-FP and extrapolation bears

the risk of getting unreasonable values. This is especially important for rational functions since they

will very likely have singularities close to the parameter region covered by thedataset if their non-linear

behaviour is important to describe the trend. For control purposes, the allowed parameter range for

the FP-usage has to be restricted to the safe parameter regions, on which the training dataset was well

approximated.

b) Profile parameter recovery

As already listed, the only relevant profile quantity for WEGA isι- which, in the context of the FP

equation, was considered to be a function of CCR andr2eff , as already explained. Theι--profile was

parametrized with a radial polynomial of the form

ι-(iHF , iV F , r
2
eff ) = p0 + p1r

2
eff + p2(r

2
eff )

2 (14)
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Figure 8: FP-reconstructedι--profile (blue) for a configuration generated with (iHF , iV F ) = (1.9488,
-0.0243), and the corresponding data points (black filled circles) from code calculations. Also shown
are the approximate limit B (red filled circle) of good flux surfaces from predictedaeff including its
uncertainty and the location IL (magenta filled circle) of the 1/3 mode. IS and OSdenote the inner and
the outer separatrix, respectively. Inset: Poincaré plot for this configuration for comparison.

where CCR (iHF , iV F ) are contained within the coefficientspi. When CCR are combined in a “mixed”

cubic form, the uncertainty ofι- over the entire profile was±0.0025; when the combination was in a

“mixed” 4th order form, the uncertainty was±0.0015. So the latter was chosen as the best fit, consistent

with the scalar parameter results. Higher powers ofr2eff did not improve the regression at all.

Some features of the radial regression function include the following:

a) It is a smooth function and so unable to represent the discontinuity in the profile due to the effect

of islands.

b) Being a quadratic function inr2eff , which is rather stiff, it mathematically allows extrapolations

beyond the LCFS of a given configuration. It will return a value ofι- for anyreff whether flux surfaces

exist for thatreff in the real configuration or not.

To avoid the misinterpretation b) of the regression function it is necessary tocombine the regression

of ι--profile with that of the island location and/oraeff in order to restrict the valid range ofreff for the

regression functions.

Figure 8 is a demonstration of the above. The blue curve is the reconstructed ι--profile for a con-

figuration in the test-data (i.e., one which is not in the training dataset) generated by (iHF , iV F ) =

(1.95, -0.02). The curve smoothly continues indefinitely inreff with realistic values ofι-. However,

the predictedaeff (point B) is only 7.62 cm (with an uncertainty ofǫrms = ±1 cm) that denotes the

FP-predicted extent along the profile to which good flux surfaces shouldexist in the configuration. A

1/3 island is predicted from the FP-r
(1/3)
is to be atreff = 6.50±0.18 cm. The island location is indicated

by IL in the figure. This estimate is consistent with the appearence of the appropriate rational surface

in the reconstructedι--profile as seen from the figure. The island widthw
(1/3)
is is predicted to be 1.98



cm with ǫrms = ±0.21 cm. The points IS and OS, drawn at distancesw
(1/3)
is /2 and−w

(1/3)
is /2 from IL,

denote the inner and the outer separatrices, respectively. From the predictedaeff , r(1/3)is and the island

width, it appears that the configuration has a few good flux surfaces beyond the island chain.

The inset to figure 8 is the Poincaré plot for the configuration to compare with the above predictions.

It shows the configuration to be separatrix-bound by a 2/5 island mode whilethe 1/3 island chain is

internal. The filled black circles are the data for theι--profile from code calculations. The indicated

island size seems to be consistent with the gap in the recalculatedι--profile for which the line of starting

points passed through the x-point. Up to the inner separatrix of the 2/5 island, aeff is found to be∼9

cm, so the FP-predicted value of 7.62 cm is somewhat underestimating it. The discrepancy is possibly

due to the fact that the region of configuration space to which this configuration belongs is one where

aeff is found to have steep gradients in its variation withiHF and where theι--profile has a considerable

shear at largerreff . Since the FP model foraeff is a smooth (polynomial) function of CCR, it may have

had problems in a more accurate prediction. This is in addition to the already stated reason of boundary-

related parameters being somewhat erroneous in the data itself due to the uncertainty in locating the

boundary.

Reasonable consistency and agreement on predicting the locations of the rational surfaces using the

models for theι--profile andris have also been observed. A 1/3 island case has been already described

above. For a 1/4 island mode, with (iHF , iV F ) = (1.75, -0.03), we obtainedι-(reff ) ∼ 0.25 atreff ∼ 6.05

cm. For the same CCR,r(1/4)is = 6.04± 0.096 cm. To get the location of a 1/5 mode, a configuration

generated by (iHF , iV F ) = (1.56, -0.02) was used. Theι--profile model predicted the mode rational

surface to be atreff ∼ 7.13 cm, while the predictedr(1/5)is was 7.05± 0.08 cm.

5. CONCLUSIONS

The FP on WEGA, though performed on a small device with a small number of independently vari-

able predictors, has shown the inherent non-linearities in the dependencies of the physical state of the

magnetic configurations on the external coil currents. We successfully modelled the parameters of the

low-order rational islands in the configurations generated by the symmetry-breaking error fields due to

the misalignment of the centres of the toroidal and helical field coil systems. The best-fit statistical mod-

els needed to be either 4th order polynomials with linear regression, or rational functions with non-linear

regression. The fact that the latter, for some of the physical parameters, improved upon the 4th and even

the 5th order polynomial regressions demonstrated the strong non-linearities in the dependency. Even

then, all the regression models were of modest size due to the small number ofpredictors, with a 4-FP

having 15 estimated regression coefficients being the largest. Our results,therefore, were encouraging.

However, extrapolation of the high order polynomials and rational functions has to be avoided wespe-

cially for use in a control system. Modelling the magnetic islands was an importantpart of this study,

and this was quite successful except, to some extent, for the challenging issue of the island width whose

“measurement” (database) itself can be erroneous due to the problems linked with the detection of the

outer separatrix. Since coil currents were the only measurements involved, noise in the predictors was

neglected as these are usually very small. The validity of an important assumption of the theory of

statistical regressions, namely, that of the predictor variables being measured without error, was thus



maintained. The FP functions are now in the process of being implemented in software to run with the

control system.
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