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52.30.Ex — Two-fluid and multi-fluid plasmas
52.55.Fa — Tokamaks, spherical tokamaks

ment devices

52.35.-g — Waves, oscillations, and instabilities in plasmas and intense beams

52.55.Hc — Stellarators, spheromaks, compact tori, bumpy tori, and other toroidal confine-

Abstract. - Equations describing eigenmodes with the frequencies of the order of the geodesic
acoustic frequency and the electron/ion diamagnetic frequency in toroidal plasmas are derived and
analyzed, a code solving them is developed. It is shown that there exist drift-sound eigenmodes
and a new kind of drift-Alfvén eigenmodes. This is done by means of an analytical consideration
and numerical modelling of particular discharges in the stellarator Wendelstein 7-AS.

Introduction. — Recently, instabilities with frequen-
cies below that of the Toroidicity-induced Alfvén Eigen-
modes (TAE) attracted considerable attention in fusion
research. These Low Frequency (LF) instabilities may
strongly deteriorate the confinement of fast ions [1]; they
are not necessarily harmful, in which case they can be
used for plasma diagnostics [2,3]. LF instabilities occur
in all types of toroidal plasma systems. In particular, Re-
versed Shear Alfvén Eigenmodes (RSAE) or Alfvén Cas-
cades (AC) were observed in JET and extensively studied
theoretically [4,5]; Non-conventional Global Alfvén Eigen-
modes (NGAE) were predicted to exist in stellarators and
seem to be observed in Wendelstein 7-AS (WT7-AS) [3,6];
Beta-induced Alfvén Acoustic Eigenmodes (BAAE) were
observed in the NSTX spherical torus [7], the Sound Cas-
cades (SC) were observed in ASDEX-Upgrade [8]. Despite
efforts of many theorists, a number of features of exper-
imentally observed LF instabilities remain a mystery. In
particular, it is not clear how the BAAE modes, which
are actually sound waves and, thus, are strongly damped
in isothermic plasmas, can account for experiments de-
scribed in ref. [7]; why a LF instability observed in DIII-D
manifests itself even at any beam power [9]. Furthermore,
there are different interpretations of Beta-induced Alfvén
Eigenmodes (BAE) observed in DIII-D many years ago [1].
Both the BAAE in NSTX and the mentioned instabilities
in DITI-D have the frequencies below the frequency of the
Geodesic Acoustic Mode (GAM), wg [10]. The modes

with the frequencies below/about wg, which we may refer
to as sub-GAM modes, were observed also in W7-AS [11].
The nature of some of them remains unclear. The purpose
of this Letter is to show a possible way to understanding
the mentioned mysterious experimental facts; as a specific
example, sub-GAM instabilities observed in W7-AS are
considered.

Our basic idea is that plasma compressibility and finite
diamagnetic frequencies of the electrons and ions, w,. and
Wi, play an important role in LF instabilities. Taking the
diamagnetic frequencies into account may immediately ex-
plain why sound perturbations are weakly damped even
in isothermic plasmas: due to finite w,, the frequency of
sound perturbations does not go to zero when k; — 0
(k) is the longitudinal wave number), which implies that
w/k) > v, (w is the wave frequency, vy, is the ion
thermal velocity) when k| is sufficiently small. Moreover,
finite w, breaks the symmetry of the dispersion relation
with respect to the sign of w, which, in particular, may
lead to the existence of new modes. It follows from the
foregoing that the ideal MHD approximation may be in-
sufficient for the description of LF modes. Note that this
was realized long time ago; nevertheless, typically one usu-
ally uses ideal MHD to describe destabilized eigenmodes.
On the other hand, studies beyond ideal MHD showed
new interesting results: Kinetic Ballooning Modes (KBM)
and Energetic Particle Modes (EPM) of drift type were
predicted [12], and new features of LF instabilities were
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revealed due to taking into account plasma compressibil-
ity and the ion diamagnetic frequency on the same foot-
ing [13]. However, the mentioned results are relevant only
to perturbations rotating in the ion diamagnetic direction
(these perturbations belong to Alfvén branches, see fig. 1
and its description in the next section); another impor-
tant class of perturbation — sound perturbations rotat-
ing in the electron diamagnetic direction — is not consid-
ered yet (although the basic equations of ref. [13] could
be used to study sound modes). Moreover, the modes
in refs. [12,13] are studied in the framework of the bal-
looning formalism [14], which assumes translational in-
variance of radial mode structures. This invariance im-
plies connection of the modes with rational-: flux surfaces
[for example, with ¢ = n/m for the ballooning modes,
with ¢« = 2n/(2m — 1) for the Toroidicity-induced Alfvén
Eigenmodes (TAE) etc.; here ¢ is the rotational transform,
m and n are the poloidal and toroidal mode numbers,
respectively]. Therefore, the ballooning formalism in its
standard form cannot describe the modes with frequencies
close to extrema of continua away from the rational sur-
faces [like Global Alfvén Eigenmodes (GAE), NGAE and
RSAE], where the translational symmetry breaks down
(note that these modes can be treated by Fourier trans-
formation of the mode equations in the radial variable
in the vicinity of a continuum extremum [15], which can
be considered as a generalization of the ballooning ap-
proach [16]). This motivated us to derive new equations
describing both drift-Alfvén eigenmodes and drift-sound
eigenmodes in the real space, without using the ballooning
ansatz, which are valid for both tokamaks and stellarators.

A difficulty to be overcome for describing the eigen-
modes of the sound type is that the equation for the per-
turbations of the drift-sound type does not contain radial
derivative terms and, thus, determine only continua but
not eigenmodes. We resolve this problem by taking into
account the magnetic field inhomogeneity, which couples
the drift-sound perturbations with the drift-Alfvén per-
turbations.

Basic equations and the code BOAS. — We
proceed from the collisionless fluid equations derived in
refs. [17,18], which take into account the anisotropy of the
plasma pressure and the gyroviscous cancellation [19]. We
assume that vin; < w/k| < vin,e, where vy ¢ is the elec-
tron thermal velocity. In this case the longitudinal ther-
mal flux dominates the electron energy balance; therefore,
the electron temperature is flattened out along the field
lines: B - VT, = 0 (with B the magnetic field strength
and T, the electron temperature), which implies that the
electron temperature remains isotropic in the perturbed
state. In addition to this equation, we use the equation of
motion (without the inertia term) and the quasi-neutrality
condition n, = n; (where n./; is the electron/ion den-
sity) to describe electrons. For the ion component, we
neglect the longitudinal thermal fluxes due to the condi-
tion w/k| > v, (this implies that there is no mecha-

nism to maintain the pressure isotropy and, thus, the per-
turbed ion pressure is strongly anisotropic). To eliminate
fast magnetoacoustic waves from the consideration, we as-
sume that the total perpendicular pressure of the magnetic
field and plasma is not disturbed. For low-3 plasmas, the
plasma pressure can be neglected, which leads to the con-
dition BH ~ 0 (tilde labels perturbations). Finally, we
take the equilibrium magnetic field, By, and perturbed

quantities, X, in the forms:
D 1 v ipul—iv
BO:B<1+2§;€S§)(T)€“ N¢>, (1)

X _ Z X’m’n (r)eim07in¢7iwt7 (2)

where r, 6, and ¢ are Boozer coordinates, 6(37%7”) = ()

N is the number of the field periods. Then we obtain
the following set of equations (details will be published
elsewhere):

)

see egs. (3) and (4)

where @ is the perturbed scalar potential of the electro-
magnetic field, Gnn = WV |0y, With 7)) the longitudinal
perturbed velocity of the ion component, 7 = T;/T¢, T, ;
is the electron/ion temperature, kp,, = (m¢—n)/R is the
longitudinal wave number, R is the major radius of the
torus, ¢2, = T./M;, M; the ion mass, w.; = mcp,/(e;Bn;r)
and wy. = mcTenl/(e.Bn.r), with p; the ion pressure,
prime denotes the radial derivative, v, is the fraction of
the rotational transform produced by the plasma current
(v, = 1 in tokamaks, v, = 0 in currentless stellarators),
do 2 1 characterizes the plasma shape [3],

w Cei €t 2 1+7
= — 4| = -7
¢ R € (50 4 ’

e =r/R, ¢ = 6531’0). In these equations, ® describes
Alfvénic perturbations, whereas ( describes perturbations
of the sound type. The magnitudes ® and ( are cou-
pled due to finite e%“'). For simplicity, the coupling terms
were derived in assumptions of homogeneous plasma tem-
perature and high mode numbers; in addition, we took
do(r) = const and v,(r) = const. Equation (6) is written
with taking into account that the harmonics with high pu,
v weakly contribute to wg (see ref. [3]); in addition, the
harmonics of By with x> 1 are neglected (therefore, wg
is somewhat underestimated).

In order to solve the coupled drift-sound and drift-
Alfvén equations, a numerical code BOAS (Branches Of
Alfvén and Sound modes) was developed. The code cal-
culates both the continuum and discrete modes. It can
also allow for finite ion Larmor radius (FLR) effects when
the left-hand side of eq. (4) is supplemented by a fourth-
derivative term, ard‘l(I)erM,nJr,, ~/dr*, where « is propor-
tional to square of the ion Larmor radius (see ref. [20]
for the case of w > w, and w > ¢;/R; a more general
expression for a can be found in ref. [21]).

(6)
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Drift-sound eigenmodes, drift-Alfvén eigen-
modes, and their kinetic counterparts. — Let us an-
alyze these equations. First of all, we consider the contin-
uum, assuming that the coupling terms weakly disturb it.
The continuum branches depend on the ratio of wg/wy;.
A sketch of them for wg > w,; is shown in fig. 1. Note that
we took w > 0 for the modes rotating in the ion diamag-
netic direction and w < 0 for the modes rotating in the
electron direction, in which case m < 0 and n < 0. We ob-
serve that there are Alfvén branches with both w > 0 and
w < 0, but when w < wy;, the Alfvén branch is positive.
The sound continuum branch near which weakly damped
modes are possible is negative. Similar conclusions can be
drawn when wg < wy and wg < |wye| despite different
behaviour of the continuum branches.

An analysis of several different W7-AS discharges
(#39029, #43348, #54022 and others) confirmed a suppo-
sition based on fig. 1 that the modes with lowest frequen-
cies rotate in the direction of the electron diamagnetic
velocity, in contrast to the modes with higher frequencies.
Figure 2 demonstrates this for the modes with the same
poloidal mode number (|m| = 5) in the discharge #39029.

In order to see whether Drift-Sound Eigenmodes (DSE)
exist in the framework of our model, we consider the sim-
plest case of 4 = v = 0. Then the drift-Alfvén and drift-
sound continua are decoupled; nevertheless, the equations
determine the structure of DSE modes due to finite 6%)0).
We write eqgs. (3) and (4) for v, = 0 as follows:

(7)

/
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Fig. 1: Sketch of drift-Alfvén (labeled “A”) and drift-sound
(labeled “S”) continuum branches for wg > wyi > |wse|. No-
tations: wa = k”vA, ws = k”cs, with ¢s the sound velocity.
When T. = T;, only the parts of branches shown by bold
lines are of interest because other branches lie in the region
where w ~ kjvn,i; thus, the corresponding modes are strongly
damped.

where the coefficients can be easily determined by com-
paring egs. (7) and (8) with egs. (3) and (4). We con-
sider egs. (7) and (8) in the vicinity of an extremum of
the drift-sound continuum. Following an approach used
in ref. [22] to study Alfvén eigenmodes, we obtain the fol-
lowing Schrédinger-type equation for p = v = 0:

>V

= TE-U@v =0,

(9)

where ¥ = VA®, z = (r — r9)/A, ro the radius where
the continuum defined by S(r,w) = 0 has an extremum,
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Fig. 2: (Color online) Tomographical reconstruction of soft X-
ray data in the W7-AS discharge #39029. The high-frequency
mode (GAE [3]) rotates in the ion diamagnetic direction,
whereas the low-frequency mode rotates in the electron dia-
magnetic direction.

A? =28/85"|,,, the energy (E) and the potential (U(x))
are defined by

m? K (1K)

A Al 2 )
E=-1mt— 2 +ﬂ‘<ﬁ) A% {0
_ 2p2qp 1
Ulw) = TR (11)

where all the magnitudes are taken at the point ry. One
can see that A < 0 (at least, when w? < w2 or w? < kﬁvi),
p2gz > 0 and S, = 9S/0w > 0 for w < 0; S”S,, > 0 at
the maximum of the continuum and S”S, < 0 at the
minimum. Therefore, there is a potential well at the max-
imum, and a hill at the minimum. The energy is typically
negative (the first term dominates in eq. (10), and A? > 0
for discrete modes). We conclude from here that discrete
DSE modes exist when the continuum has a maximum
(for w < 0).

The conditions of existence of DSE with p # v # 0 and
Drift-Alfvén Eigenmodes (DAE) can be investigated in a
similar way. Note that, as follows from eq. (7), the lon-
gitudinal / transversal perturbations dominate when the

mode frequency lies close to the S =0/ A = 0 continuum

branch, which justifies the names DSE and DAE.
Neglecting the mode coupling, we obtain the following

Schrédinger-type equation for DAE modes:

(12)

where By = 0 and U;(r) = —E/A2. A condition of the
existence of discrete eigenmodes (not necessary well lo-
calized) is U (r) < 0 in some region, which provides the
presence of two “turning points”. Discrete eigenmodes ex-
ist even when Uy (r) < 0 in the whole plasma cross section
provided that ¥(a) = 0, with a the plasma radius [3].

Considering the case of u # 0, we take into account ef-
fects of the finite ion Larmor radius (FLR) by adding a
fourth-derivative term, ard*®,, 4, ntvn/drt, to the left-
hand side of eq. (8), as mentioned at the end of the pre-
vious section. Eliminating (., from egs. (7) and (8), we
obtain the following equation for drift-Alfvén and drift-
sound eigenmodes:

d dq)m—!— n+vN (m + /L)2

—F £ - F—g|®mipuniv

dr dr [ 2 g +p,n+vN
d4<I)m n+vN

+ ar% =0, (13)

where F' = A—p1q1/S, 9 = —km+pn+vN Tk ynion) —
(g1p2/S)’. Note that in the ideal limit case (o = 0) eq. (13)
possesses a continuous spectrum described by the equation
F =0 (AS =p1q1). We approximate F(r) as F = F,,(w—
wo)(1+22), where x = (r—rg)/A, A% = 2F,(w—wp)/F",
F, and F” are taken at a point (rg,wq) where the contin-
uum has an extremum. Assuming the rest of coefficients
to be constant, we perform the Fourier transformation:
@t pnton () = [ dp exp(ipz)®(p). The obtained equa-
tion can be reduced to the Schrédinger equation (9), in
which U = (1 + p2)'/2®, p = p/ M2 plays the role of x,
E=-M, M= A%(m+ p)?/ré,

2(m +p)'a p*
BT 14

1 g

U(p) = 1+p2)2 142 (14)

where g = 2g/F". In the ideal case (o = 0), eq. (9) with
U given by eq. (14) possesses a discrete spectrum when
g > 1/4 [23]. The effect of the FLR term is determined by
the sign of F”/. When F” < 0 and « > 0, FLR produces
new modes in the continuum of the ideal equation (even
when g < 1/4 and ideal modes are absent); we refer to
them as Kinetic Drift-Alfvén Eigenmodes (KDAE) and
Kinetic Drift-Sound Eigenmodes (KDSE). In the contrary
case, F” > 0, FLR results in radiative damping of ideal
modes. Typically, KDSEs exist below the maximum of
the continuum (because I, < 0). In the case of wg > wy,
KDAEs exist below the maximum when either 0 < w <
wii oF w < 0 and |w| > wg; they exist above the minimum
for w > wg (like kinetic GAEs [15]).

A numerical modelling of LF instabilities in the W7-AS
discharges #39029 and #40173 was carried out. Earlier
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Fig. 3: A drift-sound continuum branch with m = =5, n = —2
and the eigenmode location in the W7-AS discharge #39029.

these discharges were analyzed in refs. [3,24], where some
of the observed modes were identified as GAE and NGAE
modes. However, the theory of the mentioned works failed
to explain the existence of the modes with the lowest fre-
quencies (9 kHz in the discharge #39029 and 16 kHz in
the discharge #40173). Now we can suggest an explana-
tion: The code BOAS finds new modes. In the discharge
#39029, they are DSE and KDSE with the frequencies
close to 9 kHz and the mode numbers m = —5, n = —2
(see fig. 3), which means that the observed mode may be
either “ideal” or kinetic. In the discharge #40173, it is an
m = —3,n = —1 DAE mode. This mode appears due to
finite w,;; its frequency lies near the lowest branch with
w > 01in fig. 1. This implies that the mode disappears in
the ideal MHD and, thus, its nature differs from that of
BAE.

The found modes satisfy the condition vy, < w/ k<
Uth,e. They can be destabilized by injected beam ions
through the resonance w = (km+ypntvn £ L/R)’Uﬁcs due
to the velocity anisotropy. One can see that a solution
of this equation is v}*/vg = 0.63 (v is the velocity of in-
jected ions) in the discharge #39029, which means that the
drive can exceed damping when 0.63 < y < 0.77, where y
the pitch angle of fast ions (this condition is obtained for
the distribution function f, o §(x — xo0)/v® with the use
of results of ref. [25]). In addition, spatial inhomogeneity
of the electrons may contribute to the destabilization of
modes with w < 0.

Summary and conclusions. — The existence of DSE
/ KDSE modes in toroidal plasmas is shown for the first
time and a new kind of DAE modes (the modes with
w < wy) is predicted. Modelling of particular discharges
of the Wendelstein 7-AS stellarator seems to confirm the
existence of these modes. The DAE modes observed in
the considered W7-AS discharges rotate in the ion dia-

magnetic direction, whereas the DSE modes rotate in the
electron diamagnetic direction, which agrees with the-
ory predictions. In contrast to the modes with w < wg
theoretically proposed earlier (BAE, KBM, and BAAE
[7,12,13,26-29]), the new modes are located near flux sur-
faces where the continuous spectrum has extrema, which
are not necessarily rational flux surfaces. Note that the
DSE modes with small k|| are characterized by negligible
ion Landau damping, which facilitates their destabiliza-
tion; this contrasts to the properties of the BAAE modes,
which are strongly damped in isothermic plasmas. The
derived equations [egs. (3) and (4)] based on two-fluid
hydrodynamics, as well as the developed numerical code
BOAS, are applicable to both tokamaks and stellarators.
Moreover, they can be used for modelling wave phenom-
ena with w ~ w,; . in other laboratory devices and space
plasmas with inhomogeneous equilibrium magnetic field
(in which case finite 6%)0) may play an important role).

The analysis carried out gives a new evidence that
plasma compressibility, the electron and ion diamagnetic
frequencies, and other factors neglected in ideal MHD may
play an important role in physics of low-frequency insta-
bilities in tokamaks and stellarators.
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