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Abstract

It is shown that the presence of highly charged impurity ions strongly

increases the collisional damping of zonal flows in a low-collisionality toka-

mak plasma. A formula for the zonal-flow damping time is derived, which

indicates that the damping is enhanced approximately by a factor Zeff .

If the aspect ratio is large, the enhancement is significantly larger. The

zonal-flow damping time is also the time which the poloidal plasma rota-

tion needs to respond to a sudden change in the pressure gradients.

PACS numbers: 52.25.Dg, 52.25.Vy, 52.55.Fa

1 Introduction

In gyrofluid [1, 2] and gyrokinetic [3] turbulence simulations, it is observed that
so-called zonal flows strongly affect the rate at which turbulent fluctuations
cause plasma transport across the magnetic field [4, 5]. Zonal flows are bands of
poloidal and toroidal rotation with relatively short radial wave-length. They are
seen to reduce the turbulent transport by “shearing apart” the turbulent eddies,
thus reducing their radial extent and suppressing the radial flux they produce.
Zonal flows are driven by turbulent Reynolds stress and are damped by various
mechanisms, including Coulomb collisions between the circulating ions, which
are free to rotate around the torus and thus contribute to the parallel zonal
flow, and the trapped ones, which are locked in their orbits on the outboard
side of the torus.

In this paper we extend the analysis of earlier papers by Morries, Haines and
Hastie [6], Hinton and Rosenbluth [7], and Xiao, Catto and Molvig [8], where
the response of a tokamak plasma to an imposed radial electric field was calcu-
lated. At t = 0 a short-wavelength radial electric field is imposed as an initial
condition, and one asks how the plasma responds on time scales longer than the
ion bounce time. If the plasma is in the “banana” regime of small collisionality,
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so that the collision time exceeds the bounce time, the evolution occurs in two
separate stages: a relatively fast collisionless stage followed by a longer stage
where ion-ion collisions are important. Both the collisionless and the collisional
responses were calculated in Refs. [7, 8], and the result was expressed in terms
of plasma polarisation. Because the ion orbits can move radially to some extent,
the plasma is polarisable and tends to shield out (incompletely) the externally
imposed radial electric field. The question is when and to which extent this
happens, i.e., how the radial electric field evolves in time.

The primary purpose of the present paper is to establish how the presence
of heavy ion impurities affects this evolution. We consider a plasma consisting
of three species: hydrogenic bulk ions, electrons, and highly charged impurity
ions. One would expect that the latter affect the collisional response of the
ions, and we calculate in detail how this happens. As shown in Sec. 2 below,
the appropriate equation governing zonal evolution is derived from the require-
ment that angular momentum should be conserved. When the radial electric
field is first applied, the plasma quickly (i.e., on the ion cyclotron time scale)
acquires an E×B drift perpendicular to the magnetic field. On the longer time
scale of bounce motion, the plasma starts moving in the parallel direction, and
this motion is modified on the yet longer time scale of ion-ion collisions, which
compel the plasma ions to be Maxwellian as t→ ∞. Whilst the ion distribution
function evolves in accordance with the drift kinetic equation, the radial electric
field adjusts to keep the angular momentum constant. If Zeff − 1 = O(1) and
the impurities are highly charged, they contribute little to the total angular
momentum but significantly increase the bulk ion collision frequency. Then the
collisionless response of the plasma (and the so-called Rosenbluth-Hinton resid-
ual [9]) is not affected, but the collisional zonal flow damping is enhanced. In
Sec. 3 below, we find that the time history of this damping can be calculated
by the eigenfunction expansion of the collision operator introduced in Ref. [10].
Interestingly however, we also find, in Sec. 3.1, that if one is merely interested
in calculating the overall damping time of the radial electric field Er(t),

τp =

∞
∫

0

(

Er(t)

Er(∞)
− 1

)

dt,

rather than the entire time history, then the problem can be reduced to an
equation routinely solved in neoclassical transport theory. This equation can
also be solved using a more sophisticated collision operator. In Sec. 3.2, we
compare our analytical results for the damping time with the numerical results
of the NEO code [11] for different collision operators. We find numerics and
analytics to be in good agreement when the same collision operator is used,
and furthermore, the simulation indicates that the simple operator used in the
analytical calculation seems to be a sufficiently accurate approximation. A
discussion about the applicability of the presented calculations is given in Sec. 4,
and our conclusions are summarised in Sec. 5.
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2 Basic equations

2.1 Kinetic equation

For a plasma consisting of hydrogenic bulk ions and a single species of highly
charged impurities with charge qz = Zqi = Ze, Z ≫ 1, and

Z2nz
ni

∼ Zmi

mz
∼ 1,

we consider the drift kinetic equation corresponding to each particle species,

∂fa
∂t

+ (v‖ + vd) · ∇fa + ẇ
∂fa
∂w

= Ca(fa), (1)

where vd is the drift velocity, w = 1
2mav

2 the kinetic energy and ẇ = −ea(v‖ +
vd) · ∇φ represents a drive in the form of a given electrostatic zonal flow po-
tential φ(ψ, t). Both species are assumed to be in the banana regime, which
requires the usual banana regime assumption of small effective collision fre-
quency, (νzzD qR)/(ǫ3/2vthz

) ≪ 1. Here νzzD is the impurity collision frequency,
q the safety factor, R the major radius and vthz

the impurity thermal velocity.
ǫ ≡ r/R0 is the inverse aspect ratio with minor radius r and the on-axis value
of the major radius R0. Furthermore, B = I(ψ)∇ϕ + ∇ϕ × ∇ψ. Expanding
in δa = ρa

L ≪ 1, where ρa denotes the Larmor radius of the species a, one finds
the zeroth order distribution function to be a Maxwellian; the remaining first
order equation then reads

∂fa1

∂t
+ v‖∇‖(fa1

+
Iv‖

Ωa

eaφ
′

Ta
fa0

) = C(fa1
). (2)

Here we have neglected vd · ∇fa0
as this term causes ordinary neoclassical

transport, which adds linearly to the effects we want to study, and rewritten ẇ
in terms of the parallel gradient

ẇ
∂fa0

∂w
= v‖∇‖(

Iv‖

Ωa
)
eaφ

′

Ta
fa0

,

where a prime shall always denote derivation with respect to ψ. Ωa = eaB/ma

denotes the gyro-frequency of the corresponding species. This notation suggests
splitting off the adiabatic part from the distribution function by letting

fa1
= ga −

Iv‖

Ωa

eaφ
′

Ta
fa0

.

If we assume the distribution function to vary on time scales much longer than
the bounce time τb and the collision frequency ν to be much smaller than the
bounce frequency ωb, we can further expand ga to find in zeroth order

v‖∇‖ga0
= 0, (3)
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and in first order

∂ga0

∂t
− Iv‖

Ωa

ea
Ta

∂φ′

∂t
fa0

+ v‖∇‖ga1
= C(fa1

). (4)

Note that, due to symmetry arguments, ga0
vanishes in the trapped region of

velocity space for any particle species [12] and we therefore only have to consider
passing particles, i.e. particles with 0 ≤ λ ≤ λc ≡ B0/Bmax where the pitch
angle variable λ is defined as λ = v2

⊥B0/v
2B. Furthermore, we define B0 via

B2
0 = 〈B2〉, where angular brackets denote the flux-surface average,

〈Q(ψ)〉 ≡
∮

Q(ψ, θ)

B · ∇θ
dθ/

∮

dθ

B · ∇θ
.

Multiplying (4) by B
ξ , ξ ≡ σv‖/v where σ = v‖/|v‖|, and taking the flux surface

average annihilates the parallel gradient, so that the differential equation we
need to solve becomes

〈

B

ξ

(

∂ga0

∂t
− C(fa1

)

)〉

=
maI

Ta
σvfa0

∂φ′

∂t
, (5)

together with the boundary condition ga0
(λc) = 0 needed for continuity of the

distribution function at the trapped-passing boundary. This equation will be
solved in section 3 for both bulk ions and impurities, taking into account the
different collisional behaviour of the two species.

2.2 Neoclassical polarisation

In order to study the response of the plasma to a zonal flow potential we couple
the kinetic equation of the previous section with the gyrokinetic quasineutrality
condition in the limit of small ion gyroradius (k⊥ρi ≪ 1),

ene =
∑

a=i,z

qa

(

Na + ∇ ·
(

na
ΩaB

∇φ

))

,

where na denotes the number density for the respective species and Na the
guiding centre density which is defined by Na(Ra) =

∫

f(Ra,v, t)d
3v|Rafixed

where Ra = r − b × v/Ωa is the guiding-centre position and b the unit vector
along the magnetic field. Since the electrons are frozen into the field, the electron
density is conserved and we get

∂

∂t

[

Ni + ZNz + ∇ ·
(

(mini +mznz)∇φ

eB2

)]

= 0. (6)

Taking the flux surface average and using the relation

〈∇ · A〉 =
1

V ′
∂

∂ψ
V ′ 〈A · ∇ψ〉 ,
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which holds for any vector A and where V (ψ) is the volume within the flux
surface ψ, (6) can be rewritten as

∂

∂t

〈

(mini +mznz)|∇ψ|2
B2

φ′

−
∫

Iv‖

B

(

migi0 +mzgz0 −
Iv‖

B
φ′
(

m2
i

Ti
fi0 +

m2
z

Tz
fz0

))

d3v

〉

= 0, (7)

where we have used

∂ 〈Na〉
∂t

= − 1

V ′
∂

∂ψ
V ′
〈∫

fa1
vd · ∇ψd3v

〉

= − 1

V ′
∂

∂ψ
V ′
〈
∫

gav‖∇‖

(

Iv‖

Ωa

)

d3v

〉

=
1

V ′
∂

∂ψ
V ′
〈∫

Iv2
‖

Ωa
∇‖gad

3v

〉

= − 1

V ′
∂

∂ψ
V ′
〈∫

Iv‖

Ωa

(

∂ga0

∂t
− Iv‖

Ωa

ea
Ta

∂φ′

∂t
fa0

− Ca(fa1
)

)

d3v

〉

.

Note that the terms containing the collision operator drop out due to momentum
conservation. Noticing that

〈

I

B

∫

mav‖fa1
d3v

〉

=
〈

manaRVa‖b · eϕ

〉

= L‖

is the angular momentum of the parallel motion while that of the perpendicular
E ×B motion is

L⊥ =

〈

mana
b × ∇φ

B
·Reϕ

〉

= −mana

〈 |∇ψ|2
B2

〉

φ′,

we see that (7) represents the conservation of toroidal angular momentum. Here
Va‖ denotes the parallel velocity of the particle species a, b is the unit vector
along the magnetic field and eϕ the unit vector in the ϕ direction.

For later calculations, it is convenient to Laplace transform the equations
we are dealing with and choose the initial conditions such that there is no
initial parallel rotation of the plasma, i.e. fi1(0) = fz1(0) = 0. Defining the
neoclassical polarisation P̂ as

P̂ =
∑

a=i,z

〈

I

B

∫

mav‖ĝa0
d3v

〉

/

∑

a=i,z

〈

manaR
2
〉

φ̂′, (8)

we can represent the potential response as

φ̂′(p) =
1

p
φ′(0)

〈

|∇ψ|2
B2

〉

〈R2〉 (1 − P̂ )
. (9)
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Laplace transformed quantities are denoted by a hat; note that we have an-
ticipated ĝa0

(p) to be proportional to φ̂′(p) and taken the initial condition on
the distribution function to be fa1

(t = 0) = 0. For the limit of a collisionless,
large-aspect ratio tokamak with circular flux surfaces, we find, in agreement
with Hinton and Rosenbluth [7], the potential response to be

φ̂′(p) =

∑

a

〈

mana|∇ψ|2
B2

〉

∑

a
〈manaR2〉(1 − P̂ )

φ′(0)

p

≈

∑

a
manaR

2B
2

p

B2

∑

a
mana

r2

q2

(

1 + 1.64 q
2√
ǫ

)

φ′(0)

p

=
1

1 + 1.64 q
2√
ǫ

φ′(0)

p
,

where q is the safety factor and Bp the poloidal magnetic field strength. Here
we have used that the collisionless solution of (5) is

ga0
=

maIφ
′

Ta

〈

B

v‖

〉−1

fa0
, (10)

and the value of 〈B/v‖〉−1 can be computed numerically. This is the same result
as for a pure plasma. When collisions are included, one can consider the limit
of very late times (p→ 0) and determine the influence of impurity ions on that
residual. As we will find later on, the polarisation P̂ vanishes in this limit,
regardless of whether impurities are present or not, thus the residual remains
unaffected and equals

φ̂′(p→ 0) ≈ ǫ2

q2
φ′(0)

p
.

Our main task is now to calculate the polarisation P̂ when collisions are in-
cluded, which requires calculating the distribution functions of all different par-
ticle species.

3 Potential response

Using the results of the previous sections, we now solve Eq. (5) for the impuri-
ties. We start from
〈

B

ξ

〉

∂gz0
∂t

− νzzD

〈

B

ξ
L (fz1)

〉

=
mz

Tz
vσfz0

(

I
∂φ′

∂t
+ νzzD

〈

Buz‖
〉

)

, (11)

where we have used the Connor model [13] for the collision operator,

Czz(fz1) = νzzD

(L (fz1) +
mzv‖uz‖

Tz
fz0

)

, (12)
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L denoting the Lorentz scattering operator, and the quantity uz‖ can be cal-
culated from the condition of momentum conservation in self-collisions. For two
arbitrary species,

νabD = ν̂ab
Φ(xb) −G(xb)

x3
a

≡ ν̂ab
H(xb)

x3
a

,

ν̂ab =
nbe

2
ae

2
b lnΛ

4πǫ20m
2
av

3
tha

and xa = v/vtha
where vtha

= (2Ta/ma)
1/2 is the thermal velocity and lnΛ the

Coulomb logarithm. Φ denotes the error function and G the Chandrasekhar
function, defined as

G(x) =
Φ(x) − xφ′(x)

2x2
.

The index zz shall denote self-collisions between the impurities; impurity-ion
collisions can be neglected since the effect of impurity-ion collisions is smaller
than that of self-collisions by a factor of the square root of the mass ratio.

In order to solve Eq. (11), we use an eigenfunction technique [8, 10] and
expand the distribution function in eigenfunctions Λn(ψ, λ), determined by the
eigenvalue problem

〈

B

ξ
L (Λn)

〉

= 2B0
∂

∂λ
λ〈ξ〉∂Λn

∂λ
= −χn

〈

B

ξ

〉

Λn

in the domain 0 < λ < λc. The boundary conditions are chosen such that the
transition at the trapped-passing boundary is continuous, and thus Λn (λ = λc)
= 0. Note that the equation has a regular singular point at λ = 0 and we
therefore demand Λn(λ = 0) to stay finite as a natural boundary condition.
As the Lorentz operator is self-adjoint and the weight 〈B/ξ〉 ≥ 0, this is a
Sturm-Liouville problem. For convenience, we use the normalisation

λc
∫

0

Λndλ =
2

3
.

Expanding gi0 and gz0 in an eigenfunction series as

ga0
= σ

∞
∑

n=1

ban(ψ, v)Λn(ψ, λ),

and Laplace transforming Eq. (11), we get

pb̂zn − bzn(t≪ τa) + χnν
zz
D b̂zn = βn

mz

Tz
vfz0

(

Ipφ̂′ − Iφ′(t≪ τa)

+ Iφ̂′νzzD + νzzD 〈Bûz‖〉
)

(13)
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where we define

βn ≡
B0

λc
∫

0

Λndλ

λc
∫

0

〈

B
ξ

〉

Λ2
ndλ

=
2B0

3
λc
∫

0

〈

B
ξ

〉

Λ2
ndλ

.

As ga0
changes rapidly on the bounce time scale but afterwards relaxes much

more slowly on the collision time scale, we cannot use the initial condition
fa1

= 0 at t = 0 we used in section 2.2 for studying the effect on the slower
time scale as this initial condition would violate the condition (3) due to our
expansion in ωb. Therefore, we take the initial condition at t≪ τa, which shall
express a time later than a few bounce times but much earlier than the collision
time, to be consistent with our ordering. This initial condition we use for ga0

can be obtained from the collisionless limit (10), which gives

ga0
(t≪ τa) =

ma

Ta
fa0

〈

B

v‖

〉−1

Iφ′(t≪ τa),

where τa denotes the collision time. Thus, the two terms in Eq. (13) containing
the initial conditions cancel each other.

The distribution function f̂z1 is then given by the following expression

f̂z1 =
mz

Tz
fz0

[

σv
∞
∑

n=1

βnΛn
B0(p+ χnνzzD )

(Iφ̂′(p+ νzzD ) + νzzD 〈Bûz‖〉) −
Iv‖

B
φ̂′
]

. (14)

To conserve momentum in like-particle collisions, we calculate ûz‖ from

∫

v‖Czz(f̂z)d
3v

!
= 0.

Exploiting the self-adjointness of the Lorentz operator and the relationL (v‖) = −v‖, we arrive at the following expression [12]

ûz‖ =

∫

v‖ν
zz
D f̂z1d

3v

nz{νzzD } ,

with the velocity-space average defined as

{F (v)}a ≡
∫

F (v)
mav

2
‖

naTa
fa0

d3v.

As we need to calculate the quantity 〈Bûz‖〉, we multiply by B and take the
flux surface average to find

〈Bûz‖〉 = −Iφ̂′









1 −
p

{νzz
D

}
∞
∑

n=1
βn{ νzz

D

p+χnνzz
D

}

1 − 1
{νzz

D
}

∞
∑

n=1
βn{ (νzz

D
)2

p+χnνzz
D

}









, (15)
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which, in the long-time limit (small p), simplifies to

〈Bûz‖〉 = −Iφ̂′(1 − pτ0 + O(p2))

where we define

τ−1
0 ≡ {νzzD }

(

(

∞
∑

n=1

βn
χn

)−1 − 1

)

. (16)

We can show
∑∞
n=1 βn/χn to equal the “effective” fraction of circulating

particles introduced in [14], and thus always to be smaller than 1 by the following
argument: Consider the problem

〈

B

ξ
L (h)

〉

= −B0, h(λc) = 0, h(0) <∞. (17)

Inserting the expansion h(λ) =
∞
∑

n=1
hnΛn(λ) in (17) yields

∞
∑

n=1

χnhnΛn = B0

〈

B

ξ

〉−1

=

∞
∑

n=1

βnΛn,

and thus

h(λ) =

∞
∑

n=1

βn
χn

Λn.

Consequently,

λc
∫

0

h(λ)dλ =

∞
∑

n=1

βn
χn

λc
∫

0

Λndλ =
2

3

∞
∑

n=1

βn
χn
.

On the other hand, straight-forward integration of (17) leads to

h(λ) =
1

2

λc
∫

λ

dλ′
〈√

1 − λ′ BB0

〉 ,

and we can combine both equations to yield

∞
∑

n=1

βn
χn

=
3

2

λc
∫

0

h(λ)dλ =
3

4

λc
∫

0

λdλ
〈√

1 − λ B
B0

〉

≡ fc

where fc is the “effective” fraction of circulating particles. This quantity is
always smaller than or equal to 1, with equality if and only if B = Bmax = const,
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which is not the case in a toroidal device. Thus, τ0 and therefore the momentum
restoring term 〈Bûi‖〉 are well-defined. For a large aspect ratio tokamak with

circular flux surfaces, fc ∼= 1 − 1.46
√
ǫ.

Having derived the distribution function for the impurities, we proceed to
the slightly more complicated task of calculating that of the bulk ions. With
the collision operator

Ci(fi1) = (νiiD + νizD )L (fi1) +
mi

Ti
v‖fi0

(

νiiDui‖ + νizDVz‖
)

, (18)

where we again have used the Connor operator for self-collisions and the last
term on the right-hand side represents ion-impurity collisions, the differential
equation becomes

〈

B

ξ

〉

∂gi0
∂t

− (νiiD + νizD )

〈

B

ξ
L (fi1)

〉

=
mi

Ti
vσfi0

(

I
∂φ′

∂t
+ νiiD〈Bui‖〉 + νizD

〈

BVz‖
〉

)

.

Following the same steps as in the calculation for the impurities, we arrive at

f̂i1 =
mi

Ti
fi0

[

σv
∞
∑

n=1

βnΛn
B0(p+ χn(νiiD + νizD ))

(

Ipφ̂′ + νiiD(Iφ̂′ + 〈Bûi‖〉)

+νizD

(

Iφ̂′ +
〈

BVz‖
〉

))

− Iv‖

B
φ̂′
]

. (19)

The two terms on the right that remain to be calculated are the momentum
restoring coefficient ui‖ and additionally the term containing the impurity flow
speed Vz‖ . As we need this second term for the calculation of ui‖ , we start by
multiplying this term by B/v‖ and take the flux surface average to find

〈

BVz‖
〉

=

〈

B

nz

∫

v‖f̂z1d
3v

〉

(20)

=

∞
∑

n=1

βn

{

pIφ̂′ + νzzD (Iφ̂′ + 〈Bûz‖〉)
p+ χnνzzD

}

− Iφ̂′ (21)

which, in the long-time limit, becomes

〈

B

nz

∫

v‖f̂z1d
3v

〉

= −Iφ̂′
(

1 −
∞
∑

n=1

βnp

{

1 + νzzD τ0
p+ χnνzzD

}

)

= −Iφ̂′
(

1 − pτ1 + O(p2)
)

where

τ1 ≡ fc

({

1

νzzD

}

+ τ0

)
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and τ0 was already defined in (16). To calculate

ûi‖ =

∫

v‖ν
ii
Df̂i1d

3v

ni{νiiD}
,

we insert the distribution function f̂i1 and the impurity term calculated above,
and obtain

〈

Bûi‖
〉

= −Iφ̂′ +

∞
∑

n=1
βn

({

νiiD
pIφ̂′+νiz

D

“

Iφ̂′+
D

BVz‖

E”

p+χn(νii
D

+νiz
D

)

})

{νiiD} −
∞
∑

n=1
βn

{

(νii
D

)2

p+χn(νii
D

+νiz
D

)

}

(22)

and in the approximation pτii ≪ 1
〈

Bûi‖
〉

= −Iφ̂′(1 − pτ2 + O(p2))

with

τ2 =
fc

{

νii
D(1+νiz

D τ1)

νii
D

+νiz
D

}

{νiiD} − fc

{

(νii
D

)2

νii
D

+νiz
D

} .

Note that, as

1

{νiiD}

{

(νiiD)2

νiiD + νizD

}

≤ 1

{νiiD}

{

(νiiD)2

νiiD

}

= 1,

the denominator of this expression is larger than the fraction of trapped par-
ticles, i.e. non-zero, and the momentum restoring term is again well-defined.
Before finally calculating the plasma polarisation, we note that the impurity
and bulk ion distribution functions, Eqs. (14) and (19), respectively, adjust to
the radial electric field on very different time scales. The impurity ions adjust
on the time scale τ0 ∼ τ1 ∼ 1/νzzD but the bulk ions do so only on the time scale
τ2 ∼ 1/νiiD, which is a factor Z3/2(Zeff−1) ≫ 1 longer. Exploiting this property
and the fact that mznz ∼ 1

Zmini in the large-Z approximation, we find that

〈∫

Iv‖

B
(miĝi0 +mz ĝz0)d

3v

〉

=

〈

I

B2
0

∞
∑

n=1

βnmini

{

pIφ̂′(1 + τ2ν
ii
D)

p+ χn(νiiD + νizD )

}〉

,

which can, in the long-time limit, be simplified to yield
〈∫

Iv‖

B
(miĝi0 +mz ĝz0)d

3v

〉

=

〈

I2

B2
0

pφ̂′fcmini

{

1 + τ2ν
ii
D

νiiD + νizD

}〉

.

Thus, in leading order, the expression for the polarisation P̂ becomes

P̂ =
I2

〈R2〉B2
0

fcp







{

1

νiiD + νizD

}

+
fc

{

νii
D

νii
D

+νiz
D

}2

{νiiD} − fc

{

(νii
D

)2

νii
D

+νiz
D

}






+ O(Z−1/2) + O(p2).

In a large-aspect-ratio equilibrium, I2/(R2B2
0) ≈ 1.
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3.1 Long-time limit

The results from the previous section show that the detailed geometry of the flux
surfaces matters little to the zonal flow response in the long-time limit (small
p), since the only information from the eigenfunction expansion that survives
this limit is the quantity fc =

∑∞
n=1 βn/χn. This suggests that the response on

time scales longer than the bulk ion collision time can be obtained more easily.
To this end, we reconsider Eq. (4) but neglect the small term containing the
time derivative (in this limit, ∂ga/∂t ∼ pga ≪ νaaD ga). Thus, instead of having
to solve a partial differential equation depending on time, we arrive at the much
simpler equation

v‖∇‖ga −
eaEav‖

Ta
fa0

= Ca(fa) (23)

with

Ea =
I

Ωa

∂φ′

∂t

regarded as given. This resembles a neoclassical Spitzer problem, except that
the “electric field” Ea is different for different species, and we can solve straight-
forwardly for both impurities and ions to find

ĝz0 =
1

2B0

mz

Tz
σvfz0

(

Iφ̂′(1 +
p

νzzD
) + 〈Bûz‖〉

)

λc
∫

λ

dλ′

〈
√

1 − λ′ BB0
〉

+ O(p2)

and

ĝi0 =
1

2B0

mi

Ti
σvfi0

(

Iφ̂′
p

νiiD + νizD
+
(

Iφ̂′ + 〈Bûi‖〉
) νiiD
νiiD + νizD

+
(

Iφ̂′ +
〈

BVz‖
〉

) νizD
νiiD + νizD

)

λc
∫

λ

dλ′

〈
√

1 − λ′ BB0
〉

+ O(p2).

Thus, we arrive at

P̂ =
I2

〈R2〉B2
0

fcp







{

1

νiiD + νizD

}

+
fc

{

νii
D

νii
D

+νiz
D

}2

{νiiD} − fc

{

(νii
D

)2

νii
D

+νiz
D

}






(24)

+O(Z−1/2) + O(p2),

which is the same result as with the eigenfunction expansion method.
As the inverse Laplace transform ranges over the whole p-space, we can-

not formally transform the expression for the long-time limit back to t-space.
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Nonetheless, we can extract important information about the zonal flow damp-
ing time by considering how the potential approaches its final value

lim
t→∞

φ′(t) =

〈

|∇ψ|2
B2

〉

〈R2〉 φ′(0) ≡ φ′∞.

A suitable measure for the time scale on which φ′(t) approaches φ′∞ is

τp ≡
∞
∫

0

φ′(t) − φ′∞
φ′∞

dt. (25)

Using (9), we find

τp = lim
p→0

∞
∫

0

φ′(t) − φ′∞
φ′∞

e−ptdt

=
dP̂

dp
(0).

The effective zonal-flow damping time, τp, thus corresponds exactly to the term,
linear in p, that we have calculated explicitly in the polarisation (24). This
expression is a simple function of fc but depends in a complicated way on Zeff,
as it involves velocity-space averages {...} of νiiD and νizD . In order to further
simplify Eq. (24), we consider the limits of Zeff → 1 and Zeff → ∞: In a pure
plasma, the damping time becomes

τp|Zeff=1 =
I2

〈R2〉B2
0

fc
ν̂ie

(

{

x3

H(x)

}

+
fc

1 − fc

1

{H(x)
x3 }

)

,

whereas for Zeff → ∞

τp|Zeff→∞ ≈ I2

〈R2〉B2
0

fc
{x3}
ν̂ie

1

Zeff
,

where we used ν̂ie ≈ ν̂ii for large Z and [12]

νizD ≈ ν̂iz
x3

=
Z2nz
ni

ν̂ii
x3

=
Zeff − 1

1 − 1
ZZeff

ν̂ii
x3

≈ (Zeff − 1)
ν̂ie
x3

where Zeff =
∑

j

(Z2
j nj)/

∑

j

(Zjnj) and the sum is taken over all ion species j.

The normalisation to ν̂ie was chosen to account for the electron density being the
quantity typically measured in experiment, and, furthermore, this normalisation
is also used for the numerical simulations in the next chapter in order to avoid

13
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Figure 1: Normalised damping time versus effective charge

singular behaviour when Z is close to Zeff , as it would occur for normalising
with respect to ν̂ii while keeping ne, Z and Zeff fixed. With the help of these
values, we can construct the following interpolation formula for the damping
time

τp =
I2

〈R2〉B2
0

fc
ν̂ie

[

{x3}
Zeff

+

(

{

x3

H(x)

}

+
fc

1 − fc

1

{H(x)
x3 }

− {x3}
)

1

Z4
eff

]

≈ I2

〈R2〉B2
0

fc
ν̂ie

[

4.51

Zeff
+

(

0.87 + 2.49
fc

1 − fc

)

1

Z4
eff

]

,

which is exact in the limits and sufficiently accurate for intermediate values of
Zeff .

3.2 Comparison with numerical simulation

Since the calculation of τp only requires solving a standard equation from neo-
classical transport theory, a number of existing codes can be used for this pur-
pose. In this section, we compare our analytical results with the results of the
NEO code [11]. In standard form, NEO solves the multi-species, steady-state
first-order drift-kinetic equation using an Eulerian numerical scheme. Here we
have modified NEO to solve the Laplace-transformed Eq. (23) for fa1, i.e. by
setting the usual neoclassical driver source term to zero in the drift-kinetic
equation and adding the term −I(ea/Ta)v‖f0aφ̂

′[−p/Ωa + ∇‖(v‖/Ωa)] as the

new right-hand side source term. Given as input φ̂′ and p, the discretised ki-
netic equation is solved as a matrix problem for fa1 and the polarisation P̂ is
computed from Eq. (8). For these simulations, we model a deuterium species
and a carbon species in a tokamak plasma with s-α geometry and the param-
eters α = q2R0dβ/dr = 0, R0/a =3, q=2, T0i = T0c. (s-α geometry refers
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Figure 2: Normalised damping time versus ν∗i

to unshifted circular flux surfaces with R = R0 + r cos θ, magnetic field varia-
tion B = B0/(1 + r cos θ/R0), and constant flux function I(ψ) = R0B0.) The
electron parameters are assumed to be fixed, with τ−1

ee /(cs/a) = 10−2, where

cs =
√

Te/mi and τ−1
ee = (

√
2πe4nelnΛ)/(m

1/2
e T

3/2
e ). For given ne, Z and Zeff ,

the ion and impurity densities are determined from quasi-neutrality and the
relative ion and impurity collision frequencies are varied accordingly. To be
consistent with the theory, in the NEO calculations we neglect the kinetic elec-
tron dynamics, which are small. With NEO, the zonal-flow damping time τp has
been calculated using various collision operators, namely the Connor operator
we used in section 3.1, and the more advanced full Hirshman-Sigmar opera-
tor [15]. Unlike the Connor operator, which consists of just a Lorentz scattering
operator and simple momentum-restoring term, the full Hirshman-Sigmar op-
erator also includes energy diffusion and models for heating friction effects and
for the deceleration effect arising from dynamic friction, which has been shown
to be important for modelling the neoclassical transport of multi-ion plasmas
[11]. Fig. 1 shows the damping time versus effective charge at ǫ = 0.3 for both
theory and simulation. In order to emphasise the role of the impurities, the ratio
of the damping time to that in a pure plasma has been plotted. It is clearly
visible that the use of different collision operators does not have any significant
influence on the damping time as the curves hardly deviate from each other.
This suggests that the form of the momentum correction term is not playing
a large role in the dynamics. Moreover, one finds, for regimes in which the
theory is valid, numerical simulation and analytical theory to be in fairly good
agreement. The larger discrepancy for larger Zeff is due to the fact that the
effective charge approaches the impurity charge, i.e. violation of the ordering
assumptions as the impurities stop being a minority. The agreement improves
for smaller ǫ; however, it is not possible to reasonably compare simulation and
theory for much smaller ǫ as the simulation is carried out keeping the collision
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Figure 3: Normalised damping time versus ǫ

frequency fixed, which leads to a failure of the banana regime assumption of
small effective collision frequency compared with the bounce frequency. In or-
der to further illustrate for which parameters the theory is valid, Fig. 2 shows
the dependence of τp on ν∗i ≡ νi/(ǫωb). Obviously, ǫ = 0.1 or smaller would
require going to much smaller collision frequencies than done here in order to
keep the theory valid, which is difficult numerically. In Figs. 3, the damping
time has been plotted versus ǫ for different values of Z, where in Fig. 3(b) the
aspect ratio has been changed to R/a0 = 1.5 to allow for higher values of ǫ.
Clearly visible is the asymptotic behaviour for Z → ∞, which was assumed in
the theory, and again the theory fails for small ǫ as the plasma leaves the banana
regime.
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4 Discussion

Before summarising our conclusions in the next section, it is useful to reconsider
the validity of the calculation carried out in the two preceding sections and
discuss its possible usefulness. In a plasma with electrostatic turbulence, the
problem of actual interest is not the initial-value problem (1), but

∂fa
∂t

+ (v‖ + vd + ṽE) · ∇fa + ẇ
∂fa
∂w

= Ca(fa),

where ṽE = b × ∇φ̃/B denotes the fluctuating E × B velocity, averaged over
gyromotion. Following Hinton and Rosenbluth [7], we take an average over the
toroidal angle to isolate the axisymmetric component, f̄a, and obtain

∂f̄a
∂t

+ (v‖ + vd) · ∇f̄a + ẇ
∂f̄a
∂w

− Ca(f̄a) = Sa, (26)

where the source term

Sa = − 1

2πB

∮

(b ×∇φ̃) · ∇fa dϕ

only has relatively weak contributions from the axisymmetric components of
either φ̃ or fa. The point is that the axisymmetric components only contribute
through the term

(b ×∇φ̄) · ∇f̄a = I

(

∂f̄a
∂ψ

∇‖φ̄− ∂φ̄

∂ψ
∇‖f̄a

)

,

involving parallel gradients, whilst the non-axisymmetric components of φ̃ and
fa also contribute through their perpendicular gradients, which are much larger
in gyrokinetic theory. Hinton and Rosenbluth therefore took Sa to be given
when calculating the axisymmetric components. Since the resulting equation
(26) is linear, it can be solved as an initial value problem. If one calculates
the response to an initial perturbation, the general solution can be obtained by
convoluting the solution of the initial-value problem with the source term Sa
(see appendix). The latter can be arbitrary, and it does not matter, for instance,
whether its auto-correlation time is long or short compared with the collision
time.

However, in practice the source term Sa is not known and does contain
contributions from the axisymmetric part f̄a. One might then ask the question
whether the turbulent transport may carry particles across a radial wavelength
of the zonal flow in a time shorter than the collision time. The zonal flow would
then be damped by diffusion caused by the fluctuating E × B drift (turbulent
viscosity) rather than collisions. If the global confinement time is denoted by τE ,
then the time required for diffusion across a fraction ∆r/a of the cross section
is

τD ∼ τE

(

∆r

a

)2

,
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and collisional damping is only important for zonal flows with a radial wave-
length longer than

∆r

a
>

(

τp
τE

)1/2

,

where τp is the neoclassical polarisation time (25) due to collisions that we have
calculated. Depending on plasma parameters, this condition may or may not
be satisfied – a limitation that seems not to have been pointed out in earlier
papers on collisional damping of zonal flows.

It should perhaps be mentioned that there is another application of our
results, which has to do with the question of how the plasma responds to a
sudden change of the pressure profile. Conventional neoclassical theory predicts
the level of poloidal plasma rotation in steady state. In the LH-transition, the
pressure gradient changes very rapidly, and one may ask the question of how
quickly a new steady state is attained. This is of interest when trying to resolve
the “chicken-and-egg” problem of whether sheared rotation causes the H-mode
or is merely a consequence of the increased gradients in the pedestal. Since the
pressure gradient in fa0

enters in exactly the same way as the radial electric field
in the kinetic equation (2), this problem is identical to the zonal flow damping
problem, and it can be concluded that the new equilibrium is established on the
time scale (25).

5 Conclusions and Summary

We have considered the effect of heavy, highly charged impurity ions on zonal-
flow damping in tokamaks. Although such impurities do not affect the first,
collisionless stage of the damping, they do accelerate the collisional damping
since they increase the effective collisionality of the bulk ions roughly by a factor
Zeff . It is possible to calculate the time history of the damping by expanding
the pitch-angle dependence of the distribution function in eigenfunctions of the
orbit-averaged pitch-angle-scattering operator. However, in the long-time limit,
i.e. at late times during the damping process, the problem can be reduced to
solving a neoclassical Spitzer problem, and this is also sufficient to calculate the
overall damping time defined by Eq. (25).

Collisional damping of zonal flows occurs as a result of friction between the
circulating and trapped particles. The latter are locked in the magnetic well on
the outboard side of the torus and are therefore unable to rotate poloidally. The
circulating ions experience friction against this stationary, trapped population,
which damps the rotation. The damping time (25) therefore increases with
the effective fraction of circulating particles. In the limit of very tight aspect
ratio (the edge region in a spherical tokamak), where the circulating particle
fraction is small, fc → 0, the damping becomes instantaneous, independently of
whether impurities are present in the plasma. In the opposite limit of very few
trapped particles, fc → 1, the damping occurs much more quickly if impurity
ions are present than otherwise. This has to do with the fact that the time
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it takes for the trapped and passing populations to reach a mutual collisional
equilibrium is much shorter for the impurities than for the bulk ions, because
of the shorter collision time of the former. Therefore, as soon as the poloidal
impurity rotation has been damped, the bulk ions experience friction against
the entire impurity population, not just the trapped impurities. This is much
more effective than the friction against just the trapped bulk ions when fc is
close to unity. Mathematically, this is reflected by the fact that the denominator
of Eq. (24) does not vanish in the limit fc → 1. Physically, it has the effect that
the zonal flow damping is enhanced by more than a factor Zeff when the aspect
ratio is large.

These analytical predictions, which are made using a simple pitch-angle-
scattering collision operator with a momentum-restoring term, seem largely in-
sensitive to the choice of collision operator. Indeed, because the zonal flow
damping time can be reduced to a neoclassical Spitzer problem, it can be calcu-
lated by neoclassical transport codes, which makes it possible to use still more
accurate collision operators and to treat cases of finite collisionality. As long as
the particles are in the low-collisionality banana regime, the results are in very
good agreement.

It is clear from these results that, when a realistic amount of impurities
are present in a tokamak plasma, the collisional damping of zonal flows occurs
significantly faster than otherwise. Insofar as this damping mechanism is im-
portant, this would suggest that impurities inhibit zonal flows and could have
a deleterious effect on confinement.

Appendix: Arbitrary source term Sa

The problem (26) with an arbitrary source term amounts to finding the functions
Ga and Φ′, which satisfy

Ma[Ĝa] = Ŝa

Φ′(t) =
∑

a

〈

I

B

∫

mav‖Gad
3v

〉

/

∑

a

〈manaR
2〉 (27)

Ga(0) = 0, Φ′(0) = 0

where the operator Ma is defined as

Ma[h] ≡ ph+ v‖∇‖h− Iv‖

Ωa

ea
Ta
fa0

p
∑

a

〈

I

B

∫

mav‖hd
3v

〉

/

∑

a

〈manaR
2〉.
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We already know the solutions ĝa and φ̂′ to

M [ga] = k
Imav‖

B
fa0

= La[ga]

φ′(t) =
∑

a

〈

mana|∇ψ|2
B2

φ′(0) +
I

B

∫

mav‖gad
3v

〉

/

∑

a

〈manaR
2〉

ga(0) =
Iv‖

Ωa

ea
Ta
φ′(0)fa0

, φ′(0) = φ′0,

where

La[h] ≡ ph− v‖∇‖h− Iv‖

Ωa

ea
Ta
fa0

p
∑

a

〈

I

B

∫

mav‖hd
3v

〉

/

∑

a

〈manaR
2〉

only differs from Ma in the reversed sign in front of the term containing the
parallel gradient. As we found ga to be odd in σ, it is also a solution to the
problem including the operator La. When all ion temperatures are equilibrated,

the constant k ≡ 1
Ta

∑

a

〈

mana|∇ψ|2
B2

〉

φ′(0)
/

∑

a
〈manaR

2〉 is independent of the

particle species.
Since, for the unlike-species collision operator, the relation

∑

a,b

∫

d3v
ga
fa0

Cab(fa, fb) =
∑

a,b

∫

d3v
fa
fa0

Cab(ga, gb)

holds for any pair of distributions ga, fa [16], the operators Ma and La are
adjoint in sense that

∑

a

〈

∫

Ĝa
fa0

La[ĝa]d
3v

〉

=
∑

a

〈∫

ĝa
fa0

Ma[Ĝa]d
3v

〉

.

Thus, to calculate the potential response (27), one can use

∑

a

〈

I

B

∫

mav‖Ĝad
3v

〉

=
1

k

∑

a

〈

∫

Ĝa
fa0

La[ĝa]d
3v

〉

=
1

k

∑

a

〈∫

ĝa
fa0

Ma[ĝa]d
3v

〉

=
1

k

∑

a

〈

∫

ĝaŜa
fa0

d3v

〉

.

As mentioned in Sec. 4 and in [7], the response to a source is thus obtained by
convoluting this source with the solution of the initial value problem.
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