
Robust control of resistive wall modes using

pseudospectra

M Sempf, P Merkel, E Strumberger , C Tichmann and S

Günter

Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2,

D-85748 Garching, Germany

E-mail: msempf@ipp.mpg.de

Abstract. A novel methodology to design robust feedback controllers for the

stabilisation of resistive wall modes (RWMs) in tokamaks is presented. A linear

state space model is used which describes the system composed of the plasma, the

resistive wall, the active coils, and the magnetic field sensors. The full 3D geometry

of the wall and the coils is taken into account. The control system is represented by a

parametrised matrix whose robust stability properties are optimised under variations

of the parameters. To make the optimisation process feasible, a reduced state space

model is constructed by means of a novel technique involving an orthogonal projection.

The orthogonality is essential to the robust stability concept used. The latter is

based upon the idea of matrix pseudospectra and therefore accounts for the sensitivity

of eigenvalues. Furthermore, the transient growth of perturbations is investigated.

Namely, in some theoretically stable linear systems, initial perturbations can grow by

large factors before they eventually decay, rendering them practically unstable.

A detailed analysis of a simple, ITER-like test case provides the following general,

conceptual insights into the RWM stabilisation problem: (i) it is important to

consider not only the eigenvalues themselves, but also their sensitivity, (ii) transient

amplification might be an issue requiring consideration, and (iii) the transient peak

can be substantially reduced by a careful choice of the optimisation objective and the

sensor configuration.
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1. Introduction

An important figure of merit for plasma confinement in nuclear fusion devices is the

parameter β = 2µ0〈p〉/〈B2〉, where 〈·〉 denotes the volume average. Since the fusion

power output increases with β, a future reactor must reach a sufficiently high β in

order to be efficient and economically attractive. However, ideal magnetohydrodynamic

(MHD) instabilities impose hard limits on the achievable β. In tokamaks, if internal

instabilities (i. e., those which occur within the plasma core) are avoided by a suitable

choice of the plasma current profile, the β limit comes about by the onset of external kink

modes. These are long-wavelength instabilities which are driven by the radial gradients

of the toroidal current and the pressure. They cause a deformation of the plasma

boundary, grow on the Alfvénic time scale of order 10−6 s and can terminate the plasma

discharge abruptly. A superconducting wall sufficiently close to the plasma boundary

would stabilise these modes and therefore substantially increase the β limit. But in the

realistic case that such a wall has non-vanishing resistivity, the plasma configuration

becomes unstable again, the stability limit being virtually the same as in the case

without wall. However, the modes grow much more slowly, namely, on the resistive

time scale of the wall which is typically of order 10−2 s. These decelerated external kink

modes are denoted resistive wall modes (RWMs). Therefore, in the presence of a resistive

wall the active feedback stabilisation of RWMs by means of magnetic field sensors and

a system of additional correction coils becomes technologically feasible, and successful

experiments, e. g., in the DIII-D tokamak, have already been conducted [1, 2, 3].

Given a set of sensors and control coils, the coils have to be connected to the sensors by

means of some feedback logics, or controller. Finding an appropriate controller is always

a difficult task, but at least it is strongly facilitated by numerical modelling of RWMs
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and their feedback stabilisation. In this paper, a novel approach to the computational

design of robust RWM controllers is presented.

The numerical treatment of RWM control has already been the subject of numerous

studies, and several codes have been developed and extensively used to compute the

linear stability of RWMs in the presence of a feedback system (in particular for the

upcoming fusion experiment ITER): VALEN [4, 5], DCON coupled to VACUUM [6],

MARS-F [7, 8, 9], CarMa [10], and STARWALL [11, 12]. STARWALL is used also

in the present work. All these codes differ from each other in the complexity of the

representation of the plasma, the conducting wall, and the feedback coils. In the

VALEN code, the plasma state is represented by a single unstable eigenmode only,

whereas in the other codes an expansion in terms of a finite, but large set of basis

functions is used. Only MARS-F and CarMa take toroidal rotation of the plasma into

account. The conducting structures have a full 3D representation in VALEN, CarMa,

and STARWALL, whereas the other codes are restricted to axisymmetric configurations.

In VALEN and STARWALL, however, a thin-wall approximation is used. Finally,

STARWALL is the only code being able to account for more than one toroidal Fourier

index n simultaneously in the expansion of the plasma state, thus resolving the coupling

between different n’s in non-axisymmetric setups.

All the above mentioned studies, except those related to STARWALL, tackle the control

problem in the same way as it is quite common in control engineering: by the use of

transfer functions. The underlying methodology shall be briefly reviewed here although

a different approach is taken is this study. The transfer function concept is based upon

regarding the system to be controlled as a “signal processor”, namely, a black box into

which an input signal v (scalar or vector-valued) can be fed and which produces an

output signal y (also scalar or vector-valued). Inside the black box there is a linear

4



dynamical system described by a matrix A0, whose internal dynamics is subjected to

an additional external forcing if a non-zero input signal is applied. This means, the

control system is described by

ẋ = A0x + Bv,

y = Cx, (1.1)

so that the input matrix B describes the influence of the input v on the system state

vector x, and the output signal y is a measurement taken from x by means of the

output matrix C. Without any feedback control, the input-output characteristics of

the system is described by the open-loop transfer function G0(z), which is defined by

{Ly}(z) = G0(z){Lv}(z), where the operator L denotes the Laplace transform (not

the z-transform!), and z ∈ �
. If the input and output are both scalars, the open-loop

transfer function is a scalar, as well, otherwise it is a vector or a matrix. It is given by

G0(z) = C(z � −A0)
−1B. (1.2)

In many control applications, a feedback controller with its own transfer function GK(z)

is applied which processes the output signal y and produces an appropriate input signal

vK with {LvK}(z) = GK(z){Ly}(z) to be added to the external input v in order to

stabilise the system. The resulting, feedback-controlled system has a closed-loop transfer

function given by

G(z) = [ � −G0(z)GK(z)]−1G0(z), (1.3)

satisfying {Ly}(z) = G(z){Lv}(z). The poles of the closed-loop transfer function are

related to the system’s stability properties. The system is stable if and only if all poles

lie in the open left complex half-plane. When restricting to the imaginary axis, z = iω,
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the transfer function describes the frequency response of the system.

An important aspect of control theory is the robustness of stability. A stabilising

controller is not very useful if it is not stabilising when applied to a slightly different

system. A system is called robustly stable if it remains stable under any “moderately

large” perturbation of the system properties (not of the system state!). Clearly,

robustness is important for several reasons. First of all, the “background parameters”

of the physical system under consideration (e. g., the plasma equilibrium current profile

or pressure profile in the case of a tokamak) are uncertain to some extent. Furthermore,

“real” sensor and actuator signals are always noisy. Finally, the computer model

introduces uncertainties due to numerical approximations as well as due to physical

simplifications. At first sight, it seems hard to find some general concept of robustness

which accounts for all these entirely different kinds of uncertainties at a time. What

is needed is a measure of the “size” of systems and system perturbations, that is, a

norm in the space of all possible systems, in order to decide whether a perturbation is

“large” or not. In the context of using transfer functions, the so-called H∞-norm has

become a widely accepted concept to quantify robustness, and a comprehensive theory

of H∞-optimal control has been developed [13]. The H∞-norm of a stable system is

defined in terms of its transfer function G(z) via

||G||∞ = sup
ω

smax[G(iω)], (1.4)

where smax denotes the largest singular value. In the case of scalar input and output,

||G||∞ is equal to the frequency gain maximised over all input frequencies ω, including

infinity. The details ofH∞ control theory are complicated. Its fundamental idea consists

in considering a stable system robust if it remains stable under all perturbations whose

H∞-norm does not exceed some value, which is, however, large enough. The H∞ theory
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has already been applied to the RWM stabilisation problem using the MARS-F code

[14, 15].

Concerning system norms and robustness of stability, a different philosophy is followed

in this study. Here, the focus of interest is what happens inside the black box. This

means, the internal dynamics of the system is primarily investigated rather than its

input-output behaviour. The methodology to be derived relies on the following basic

assumption:

Among the various possible vector norms in state space, there is one particular

norm ||·|| which is of special interest to the investigator. It provides an accepted

measure of the “size” of system states and, hence, of differences between states.

Typically, such a norm can be established if the state space variables of the dynamical

system are quantities which are physically measurable (in principle), or functions of such

quantities. Then, any norm of interest will be based on physical grounds, since it is a

function of physically measurable quantities. In the case of the numerical treatment of

RWM stabilisation as presented in this paper, the above assumption is assumed to hold

because a physically based state space norm will be derived in section 3.

A norm which should be used to measure the size of systems and system perturbations

can be derived immediately from the above assumption: because the linear system is

represented by a matrix, the system norm should be the matrix norm which is vector-

bound to the vector norm || · || provided by the assumption. In the following, the system

matrix A will be assumed to include the effects of the feedback controller (in the case

without feedback, A = A0 except for a similarity transformation to be explained in

section 3), so that the system dynamics is governed by ẋ = Ax. The system norm will
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then be defined by

||A|| = max
||x||=1

||Ax||. (1.5)

Consequently, a stable system A (meaning that all eigenvalues of A lie in the open left

complex half-plane) is considered robustly stable if A+E is stable for all perturbations

E satisfying ||E|| < ε with ε being “sufficiently” large. For any stable A, the stability

radius ρ(A) is defined to be equal to the supremum of all ε values for which the above

condition holds, and it serves as a measure of robustness. These definitions of system

norms and robustness are meaningful because ||E|| is equal to the maximum possible

norm of the E-induced change in the tendency ẋ provided that ||x|| = 1. Finally,

following the methodology introduced in [16], optimally robust control is achieved

by maximising ρ(A) over the set of all feasible feedback logics, i. e., over all the

corresponding modifications of A. As explained in [16], this approach is closely related

to the concept of matrix pseudospectra [17], which is also the fundament of the present

study. The ε-pseudospectrum of A is the union of all the eigenvalue spectra occurring

for all perturbed matrices A + E with ||E|| < ε.

It is important to note that the usage of transfer functions and the application of the

H∞ theory are incompatible with the concept of robustness proposed here. The input-

output characteristics have to be independent of the internal state space coordinate

system used to represent x and A0. Indeed, using (1.1), the transfer functions (1.2) and

(1.3) can be shown to be invariant under any similarity transformation x′ ← T−1x,

A′
0 ← T−1A0T. Hence, the system’s H∞-norm (1.4) is invariant under oblique

coordinate transformations, but it’s matrix norm (1.5) is not. ‡ The latter is invariant

‡ Typically, in robust control applications using theH∞-norm, more generalised versions of the problem

(1.1), including more than one (scalar or vector-valued) input and output, are solved. The resulting

transfer functions differ from (1.2) and (1.3), but the issue remains that they are invariant under oblique
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only under orthogonal (or unitary) transformations, because only these transformations

preserve the given state space norm and the induced metrics. It follows that, for systems

where a certain state space norm is of particular interest, the information contained in

the H∞-norm is independent of any properties of that state space norm and is therefore

insufficient to assess robustness in the sense explained above. The transfer function is

an incomplete characterisation of such kind of a system.

The paper is structured as follows. In section 2, the fundamentals of the used numerical

model of the linearised RWM dynamics (the STARWALL code) are briefly explained,

and it is shown in detail how the implementation of the feedback logics casts the

RWM control problem into the structure of a parametrised eigenvalue problem. These

parameters need to be optimised in order to achieve robust stability. The optimisation

task is feasible only if the state space dimension of the model is substantially reduced.

To this end, a novel model reduction procedure has been developed which is described in

section 3. The reduction is based upon projection onto an appropriate subspace. This

projection has to be orthogonal in order to preserve the state space norm of interest

which is introduced in the same section. In section 4, several concepts and objectives

of controller optimisation are formulated, with emphasis on pseudospectra and related

ideas. Their numerical implementation in the newly developed OPTIM code package

is briefly discussed. Because the proposed objective functions have some peculiar

properties, their optimisation as performed by OPTIM requires special explanation,

which is given in section 5. The methodology is applied to a computational example

related to ITER, but slightly simplified, as described in section 6. Finally, the work is

summarised and discussed in section 7.

coordinate transformations, and hence the H∞-norm.
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2. Structure of the feedback control problem

In the following three subsections, the mathematical structure of the RWM feedback

control problem is explained. The result is an eigenvalue problem of a matrix depending

on several parameters, which require optimisation in order to robustly stabilise the

system.

Subsection 2.1 contains a brief description of the physics underlying the STARWALL

code which is used to compute the stability of RWMs in the presence of a conducting wall

and a system of active feedback coils. The structure of the corresponding eigenvalue

equation will be presented. The feedback logics relating the actions of the coils to

the signals measured by a set of magnetic field sensors is described in subsection 2.2.

This feedback logics will be encoded by a small number of free design parameters. In

subsection 2.3, inequality constraints for the parameters will be derived which can be

used to account for technological limits of the feedback system. Finally, in subsection 2.4

it is demonstrated how the eigenvalue equation has to be modified in order to account

for the effect of a time delay between the sensor measurements and the actions taken by

the coils. The feedback control problem is presented in its final form before the model

reduction step.

2.1. RWM stability calculations including a feedback system

STARWALL is a 3D ideal MHD stability code specialised to resistive wall modes

[11, 12, 18]. It forms a self-consistent MHD-electrodynamical model of the system

composed of the plasma, the conducting wall, and the active coils. The plasma dynamics

is linearised about a prescribed ideal MHD equilibrium. The basic equations of the code
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stem from the Extended Energy Principle of ideal MHD [19, 20], from the boundary

conditions at the plasma-vacuum interface and the wall, and from circuit equations for

the coils. The Extended Energy Principle is modified by neglecting the kinetic energy

of the plasma. This is admissible for plasma motions on typical RWM timescales.

Under this approximation, the plasma state can be eliminated from the equations, and

the system state is uniquely determined by the current density distribution on the

conducting wall and by the coil currents.

The coils are modelled as thin, ribbon-like conductors with only one winding. The wall

is also assumed to be thin, and the currents flowing in it are divergence-free. The surface

current density j is determined by a current potential φ via

j = n×∇φ, (2.1)

where n is a surface normal pointing outward. The wall is discretised into a triangular

mesh. The current density is assumed to be constant on each triangle and can be

derived from the φ values at the corresponding three vertices. Thus, together with

the coil currents, the current potentials at the nodes of the wall mesh are the state

variables of the discretised system. The wall mesh can have holes and may consist of

more than one connected component. The current potential takes the same value on

all nodes attached to a hole, and this value forms a single state variable for each hole,

respectively. On one particular node per connected component, the φ value is set to

zero and removed from the state vector. This corresponds to fixing a gauge constant

for φ on that connected component and prevents singularity of some of the matrices

introduced below.

In addition the 3D geometry of the wall and the coils, the positions and orientations of
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the sensors, which measure deviations from the equilibrium magnetic field, are required

as input to STARWALL. Furthermore, the shape of the plasma-vacuum interface is

needed as well as the MHD force operator matrix. These data are provided as output

of the 3D ideal MHD stability code CAS3D [21]. In CAS3D, the plasma displacement

vector is expanded in terms of Fourier modes (characterised by poloidal and toroidal

Fourier indices m and n) on each flux surface accounted for in the radial discretisation,

giving rise to the matrix representation of the force operator. Recently, the possibility

to refine the radial discretisation near flux surfaces where the safety factor becomes

rational has been added to CAS3D. This grid refinement avoids unphysical spikes in

the displacement vector field near the rational surfaces and improves accuracy of the

computations. In the case that non-axisymmetric geometries are considered in the

STARWALL computation, it is advisable to include in the CAS3D Fourier expansion

at least all those n’s simultaneously for which the equilibrium is unstable with respect

to external kinks in absence of the wall. The coupling between different n’s induced by

the breaking of the axisymmetry can be significant [12].

The linear dynamics of the plasma-wall-coils system is governed by

Lẋ = Rx, (2.2)

where x ∈ � N is the state vector of the system. The first Nc components of x contain

the coil currents (Nc is the number of coils), and the remaining components represent

the current potential values at the nodes of the wall mesh. The symmetric matrix L is

the sum of an inductance matrix and a matrix describing the effects due to the presence

of the plasma, and

R = −R0 + U (2.3)
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consists of the symmetric, positive definite resistance matrix R0 and the matrix U

mapping the system state x onto external voltages applied to the feedback coils. U has

non-zero entries in the first Nc rows only and will be specified in the next subsection.

Substituting a time dependence x ∼ eγt and inverting L, one obtains the eigenvalue

problem

AFx = γx, (2.4)

where

AF = A0 + F (2.5)

is the system matrix composed of the open-loop part

A0 = −L−1R0 (2.6)

and the feedback part

F = L−1U. (2.7)

The system is stable if and only if all eigenvalues of AF have negative real parts. Without

feedback (U = 0), all eigenvalues are real, and positive ones belong to unstable RWMs.

The feedback control problem consists in choosing U properly so that AF becomes

robustly stable.

2.2. The feedback controller model

As already adumbrated, a voltage control feedback model is adopted in this study. That

means, depending on the system state, or, more precisely, on sensor measurements,
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voltages are applied to the feedback coils. This dependence is described by a matrix

of gain factors which maps the vector of sensor measurements onto the vector of coil

voltages. The elements of this gain matrix will be optimised within a physically

reasonable matrix subspace. However, for such kind of a proportional gain voltage

controller, the promptness of the feedback system response is limited by the L/R time

constants of the coils. To circumvent this problem, the coil currents are taken as

additional measured quantities which are fed back onto the coil voltages by additional

gain factors. These act exactly like additional artificial resistances serially connected

with the coils and therefore effectively reduce the coil time constants. Larger total

dc resistances (“natural” plus artificial resistances) have to be compensated by larger

voltage gains to some extent. The artificial resistances are not fixed a priori, but are

used as additional degrees of freedom for optimisation. Namely, it is not clear a priori

if the fastest available response is also the most favourable one, or if the integrating

character of a slower response can also have desirable effects.

To construct the gain matrix, all coils and sensors, respectively, are subdivided into

one or more toroidal arrays, depending on the configuration. All coils within an array

are assumed to be identical in construction and to have the same poloidal and radial

position, and the same orientation. The same assumption should hold for all sensors in

an array. Each coil array k (k = 1, . . . , K) is linked to each sensor array l (l = 1, . . . , L)

via a gain sub-matrix Gkl. In addition, the current flowing in each coil in the k-th array

is fed back onto that coil’s voltage by an additional gain factor −R̃k which is equal for

each member of the array. It can be shown that this procedure, in principle, is equivalent

to current control by means of cascade control.§ Summarising, for k = 1, . . . , K, the

§ Application of a controller voltage U to a serial connection of a coil with resistance R and an

additional resistance R̃ gives a current I(t) and a voltage drop U(t) = (R + R̃)I − R̃I(t) at the coil,

where I = U/(R + R̃) is the saturation current. This voltage controller is equivalent to a current

controller subdivided into an “exterior” and an “interior” controller, where R̃ is merely a numerical
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voltage vector

uk =

L
∑

l=1

Gklsl − R̃ki
k, (2.8)

is applied to the coils in the k-th toroidal array, where ik is the vector of currents already

flowing in these coils, and sl is the signal vector measured by the l-th sensor array. If

the system is in state x, the sensor matrix Sl delivers sl:

sl = Slx, l = 1, . . . , L. (2.9)

To reduce the number of design parameters in a physically reasonable manner, the gain

sub-matrix Gkl is constructed for each k = 1, . . . , K, l = 1, . . . , L in such a way that

coil array k produces a field with toroidal Fourier index n in response to magnetic field

perturbations with the same n, measured by sensor array l. This response is a linear

combination of a response having the same toroidal phase as the perturbation, and

another one which is toroidally phase shifted by 90/n degrees. The in-phase response

is described by a basic gain matrix Gkl
n,α, the phase-shifted response by Gkl

n,β. Gkl is a

linear combination of these basic matrices:

Gkl =
∑

n

αkl
n Gkl

n,α + βkl
n Gkl

n,β, (2.10)

where the sum runs over all n’s to be controlled. The elements of Gkl
n,α and Gkl

n,β are

given by

(Gkl
n,α)ij = cos(nϕkl

ij ) (2.11)

constant determining these controllers’ properties. In response to a sensor signal, the exterior controller

“demands” a current I , where the current gain equals the voltage gain divided by R + R̃. The interior

controller measures the actual coil current I(t), computes the auxiliary quantity I ′(t) = (R̃/(R+R̃))I(t)

and applies the voltage U(t) = −(R + R̃)(I ′(t)− I), being equal to the voltage drop mentioned above,

to the coil, so that I(t) approaches I .
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and

(Gkl
n,β)ij = sin(nϕkl

ij), (2.12)

where ϕkl
ij is the toroidal angle between coil i of coil array k and sensor j of sensor array

l. The free parameters αkl
n (gains for in-phase responses) and βkl

n (gains for phase-shifted

responses) are left for optimisation, together with R̃k.

As will be shown in the following, this feedback controller model can be compactly

written down by deriving an expression for the voltage matrix U introduced in equation

(2.3). With proper numbering of the coil current components in the state vector x (the

first Nc components) and considering (2.8), (2.9), and (2.10), one finds

U =





























U1

U2

...

UK

0 ∈ � (N−Nc)×N





























− R̃kI
k

=
K
∑

k=1

(

∑

n

L
∑

l=1

αkl
n Ukl

n,α + βkl
n Ukl

n,β

)

− R̃kI
k, (2.13)

that means, Uk =
∑

n

∑L

l=1(α
kl
n Gkl

n,α +βkl
n Gkl

n,β)S
l for k = 1, . . . , K, so that U is a linear
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combination of the basic voltage matrices

Ukl
n,α =





































0

...

Gkl
n,αS

l

...

0

0 ∈ � (N−Nc)×N





































, Ukl
n,β =





































0

...

Gkl
n,βS

l

...

0

0 ∈ � (N−Nc)×N





































, (2.14)

and the basic current matrices Ik with the elements

(Ik)ij =











δij , i ≤ Nc and coil i belongs to array k

0 , otherwise.

(2.15)

Finally, it follows from (2.7) and (2.13) that the feedback matrix F contributing to the

system matrix AF, cf. (2.5), depends on the parameters as follows:

F =
K
∑

k=1

(

∑

n

L
∑

l=1

αkl
n Fkl

n,α + βkl
n Fkl

n,β

)

− R̃kF
k
I (2.16)

with the basic feedback matrices Fkl
n,α = L−1Ukl

n,α, Fkl
n,β = L−1Ukl

n,β, and Fk
I = L−1Ik.

Thus, the eigenvalue problem (2.4) has become a parametrised one.

2.3. Constraints

In most cases, the parameter optimisation should be carried out subject to constraints.

Such constraints are useful in ensuring technological feasibility of the parameters.

Furthermore, termination of the optimisation procedure can only be guaranteed if the

allowable parameter values form a bounded set in parameter space. In principle, it is

possible to limit the coils’ time constant reciprocals, voltages, and currents.
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It makes sense to prevent the time constants from becoming arbitrarily small by

imposing a lower bound T k
min for each coil array k:

Lk

Rk + R̃k
≥ T k

min, (2.17)

where Lk is the self-inductance of each coil in array k, and Rk is its “natural” dc

resistance.

Constraining the voltage and current is more difficult. Because the control problem

is a linear one and the voltages applied in response to a measured sensor signal are

proportional to that signal, some estimate concerning the maximum signal magnitude

Smax has to be given in order to formulate the voltage constraint. Here, the following

simplifying assumptions are made, similar to those described in [9]: Smax is equal to an

RWM detection limit, or noise level. As long as the sensor signal is below Smax, the

feedback system does not react at all. As soon as the threshold Smax is exceeded, the

feedback is switched on and counteracts the origin of the sensor signal. Soon, the latter

drops below Smax again, so that Smax is never significantly exceeded.

Once a value for Smax is fixed, the voltage constraint can be written for each coil array

k = 1, . . . , K as

{

1

2

∑

n

L
∑

l=1

(

N l
s

2

)2
[

(αkl
n )2 + (βkl

n )2
]

}
1

2

Smax ≤ Uk
max, (2.18)

where N l
s is the number of sensors in array l, and U k

max is some, for example

technologically caused voltage limit for the coils in array k. The expression on the

left hand side is approximately equal to the root mean square voltage applied to coil

array k (mean taken over all coils in the array) in response to a measured magnetic field

perturbation with amplitude Smax; it has been derived from (2.8), (2.10), (2.11), and
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(2.12). It makes sense to consider the root mean square voltage and current because

the voltage and current can be assumed to be alternating. Stabilised RWMs, and

therefore also the distribution of voltages and currents among coils, typically rotate in

the toroidal direction, with frequencies comparable to the RWM growth rates without

feedback, but typically much lower than the coil time constant reciprocals. From the

latter fact it follows that the instantaneous current is always approximately equal to

the saturation current which corresponds to the instantaneous voltage divided by the

total dc resistance. The current distribution among coils has virtually the same toroidal

phase as the voltage distribution. Consequently, a current constraint can be derived

from (2.18) and reads

{

1
2

∑

n

∑L

l=1

(

N l
s

2

)2
[

(αkl
n )2 + (βkl

n )2
]

}
1

2

Smax

Rk + R̃k

≤ Ik
max, (2.19)

with Ik
max being the current limit to be set for the coils in array k.

The above assumptions concerning the evolution of the sensor signal magnitude after it

exceeds Smax have to be taken with an pinch of salt, since its actual evolution strongly

depends on the initial condition. If the initial state (the state at the moment when the

sensors start to detect a signal, as it exceeds Smax) is largely an RWM, the assumptions

should be reasonably justified, since the active coils indeed counteract the origin of the

detected signal, namely, the RWM. This is no longer true for different initial states,

where significant transient amplification of the sensor signal might actually occur after

exceeding the detection limit. First of all, an initial sensor signal might be due to small-

scale eddy currents, not related to an RWM, in the wall parts close to the sensors. In

such a case, the action of the feedback system will erroneously and rapidly excite an

RWM, which, however, will be controlled later on if the system is stable (an example will
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be discussed in section 6). This process will probably be accompanied with a transient

increase of the sensor signal magnitude. Second, one has to take into account the fact

that the sensors “see” only a low dimensional subspace of the state space, that means,

there is a high-dimensional subspace which is invisible to the sensors. To any initial state

vector, an arbitrarily large portion from the invisible subspace can be added without

changing the instantaneous sensor measurement. Since the invisible subspace cannot be

expected to be invariant under the system dynamics, the large, initially invisible portion

will increasingly project onto the visible subspace as it dynamically evolves. By this

means, initial states with arbitrarily large transient amplification of the sensor signal

can be constructed theoretically. However, such initial state vectors have to be large

themselves.

Fortunately, initial states which produce large sensor signal amplifications lie in

the stable subspace of the open-loop system, because they correspond to current

distributions in the wall which are unrelated to RWMs. Their spontaneous excitation

can be caused only by physical processes not included in the model used here (e. g., edge

localised modes (ELMs)). Estimating the amplitude and relevance of such perturbations

would require nonlinear simulations of more complete, forced-dissipative MHD models,

but is not possible here. Therefore, the possibly overoptimistic constraints (2.18)

and (2.19) are relied upon, noting that, if some amount of transient sensor signal

amplification is expected, it could be incorporated as a factor into the estimate of Smax.

2.4. Effect of time delay between sensors and actuators

In the following, a technically caused time delay between an “event” detected by the

sensors and the coil voltage application in response to that event is accounted for. This
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delay can be characterised by an impulse response r(t) satisfying r(t) = 0 for t < 0 and

∫ ∞

0

r(t)dt = 1. (2.20)

For simplicity, the impulse response is here assumed to be the same for all magnetic

field sensors and all ammeters at the coils. But the following explanations can readily

be generalised. The delay causes that, at time t, the sensors do not “see” the present

system state, but a combination of states from the past. It follows from (2.5) that the

system dynamics is then governed by

ẋ(t) = A0x(t) +

∫ ∞

0

r(t′)Fx(t− t′)dt′. (2.21)

Now, a new matrix ÂF is sought which describes the system dynamics so that ẋ(t) =

ÂFx(t) and therefore x(t) = exp(tÂF)x(0). It follows that x(t − t′) = exp(−t′ÂF)x(t)

and

ÂF = A0 +

∫ ∞

0

r(t′)F exp(−t′ÂF)dt′. (2.22)

Depending on the particular form of r(t), an exact solution for ÂF might be difficult.

But, under the assumption that r(t) is essentially zero for all t > q and some q which

is small compared to all time scales occurring in the system dynamics, the exponential

in (2.22) can be approximated to first order in t′. With (2.20) and the “average delay

time”

τ =

∫ ∞

0

r(t)tdt, (2.23)

one finally arrives at the solution

ÂF = ( � + τF)−1(A0 + F). (2.24)
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Under the approximation used, r(t) has exactly the same effect as a pure time delay

rd(t) = δ(t − τ). The final form of the unreduced, parametrised eigenvalue problem

reads

ÂFx = γx, (2.25)

with ÂF given by (2.24) and the parameter dependence residing in F as given by (2.16).

3. Model reduction

For the full-sized matrix ÂF, the parameter optimisation is computationally not feasible

since the state space dimension N is typically of order 104. A model reduction procedure,

which dramatically reduces the system dimension, but retains as much information of

the original system as possible, is absolutely necessary. More precisely, such kind of

a reduction should be arranged in such a way that the neglected part of the system

dynamics is virtually unaffected by the presence of a feedback system, whereas the

retained part responds essentially in the same way to the feedback as the original system

does. A typical approach, which is also adopted here, consists of two steps: First, the

unstable subspace of the system without feedback is split off. Second, the stable subspace

is projected onto a further, “dominant” subspace by means of a similarity transform

and truncation (deletion of “non-dominant” rows and columns). Finally, the unstable

subspace is given back to the reduced system. The various truncation-based model

reduction methods which can be found in the literature [22, 23, and references therein]

differ from each other in the choice of the similarity transform, or, in other words, in

the measure of dominance. For reasons already explained in the introduction, a novel

reduction method will be introduced here which is based on an orthogonal similarity
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transform and thus preserves the metrics in the state space, in contrast to the methods

available in the literature. This procedure shall be denoted isometric truncation.

As the first step, the separation of the unstable subspace is accomplished by computing

all eigenvalues and eigenvectors of the open-loop system. The unstable subspace is

spanned by the eigenvectors belonging to positive eigenvalues. But the solution of the

eigenvalue problem also serves another purpose. Namely, a physically based state space

metrics is established, after the system is subjected to a preliminary similarity transform

defined by the eigenvector matrix, which is orthogonal not in the strict, but in a more

general sense, as it will be explained in subsection 3.1. The second step consists of the

isometric truncation and will be described in subsection 3.2.

3.1. Open-loop eigenvalue problem and the state space norm

The open-loop eigenvalue problem A0xi = γixi, i = 1, . . . , N is most efficiently solved

by first computing the solution of the generalised eigenvalue problem

Lxi = µiR0xi, (3.1)

where L and R0 are symmetric and R0 is positive definite, and then substituting

γi = −µ−1
i , cf. (2.2), (2.3), and (2.4). The ordering γi ≥ γi+1 is assumed in the following.

The eigenvectors xi are normalised so that they satisfy the generalised orthonormality

condition

xT
i R0xj = δij. (3.2)

For any system state x, xTR0x corresponds to the ohmic loss produced by the current

distribution represented by x, since R0 is the resistance matrix. All eigenvectors are
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normalised to generate unit ohmic loss. The norm

||x||R0
:=
√

xTR0x (3.3)

is defined in terms of a physically measurable quantity, and it is considered the norm of

interest. This motivates a transformation of the system states to eigenvector coefficients:

x̃ = X−1x, where X−1 = XTR0 and X = (x1 x2 . . . xN). In the new coordinate

system, the square root of the ohmic loss can be calculated in terms of the canonical

scalar product: ||x̃|| =
√

x̃Tx̃ = ||x||R0
. All the system matrices are transformed as

M̃ = X−1MX, where M has to be replaced by A0, Fkl
n,α, Fkl

n,β, and Fk
I , respectively, cf.

(2.16). Clearly, Ã0 = diag(γ1, γ2, . . . , γN).

3.2. Isometric truncation

The stable part of the open-loop system in the new eigenvector coordinates is described

by the matrix Ā0 ∈ � (N−u)×(N−u), where u is the number of nonnegative, i. e., unstable

eigenvalues. Ā0 is generated from Ã0 by deleting the first u rows and columns:

Ā0 = diag(γu+1, γu+2, . . . , γN). The stable part of the transformed state vector x̃ is

denoted x̄ and contains the last N − u components of x̃. To derive the isometric

truncation procedure, the stable part of the control system is described by the standard

“black box” formalism of control theory already described in the introduction. The

system is assumed to have an actuator input vector v ∈ � Ni and a sensor output vector

y ∈ � No , resulting in the description

˙̄x = Ā0x̄ + B̄v,

y = C̄x̄ (3.4)
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with input matrix B̄ output matrix C̄. In the following it will be shown how these

matrices can be derived from their counterparts B and C of the full system (including

the unstable part) in the original coordinate system, where the system description is

given by (1.1). The matrix B ∈ � N×Ni (Ni = 2KNt, where Nt is the number of different

toroidal Fourier indices n to be controlled) describes the excitation of cosine and sine

current patterns in the different coil arrays and with different toroidal “wave numbers”n.

It has the following block structure:

B = L−1





























B1 0 · · · 0

0 B2 · · · 0

...
...

. . .
...

0 0 · · · BK

0 ∈ � (N−Nc)×Ni





























. (3.5)

For each k = 1, . . . , K, the block Bk ∈ � Nk
c ×2NT describes the action of the k-th coil

array, where Nk
c is the number of coils in array k. The block is given by

Bk =























cos n1θ
k
1 sin n1θ

k
1 · · · cos nNt

θk
1 sin nNt

θk
1

cos n1θ
k
2 sin n1θ

k
2 · · · cos nNt

θk
2 sin nNt

θk
2

...
...

. . .
...

...

cos n1θ
k
Nk

c

sin n1θ
k
Nk

c

· · · cos nNt
θk

Nk
c

sin nNt
θk

Nk
c























(3.6)

with n1, n2, . . ., nNt
being the different n’s to be controlled and θk

i being the toroidal

position (angle) of the barycentre of the i-th coil in array k. Similarly, the output matrix

C ∈ � No×N (No = 2LNt) projects the output vectors of the sensor arrays onto cosine
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and sine patterns. It takes the form

C =























C1

C2

...

CL























. (3.7)

For each l = 1, . . . , L, Cl provides the outputs of the l-th sensor array:

Cl = PlSl, (3.8)

where Sl is the l-th sensor matrix, cf. (2.9). Pl is a projector onto the cosine and sine

components under consideration, which reads

Pl =













































cos n1ϑ
l
1 cos n1ϑ

l
2 · · · cos n1ϑN l

s

sin n1ϑ
l
1 sin n1ϑ

l
2 · · · sin n1ϑN l

s

cos n2ϑ
l
1 cos n2ϑ

l
2 · · · cos n2ϑN l

s

sin n2ϑ
l
1 sin n2ϑ

l
2 · · · sin n2ϑN l

s

...
...

. . .
...

cos nNt
ϑl

1 cos nNt
ϑl

2 · · · cos nNt
ϑN l

s

sin nNt
ϑl

1 sin nNt
ϑl

2 · · · sin nNt
ϑN l

s













































. (3.9)

Here, N l
s is the number of sensors in array l, and ϑl

j is the toroidal position of the j-th

sensor in that array. The corresponding matrices B̄ and C̄ in the stable subspace are

generated by first computing the transformed matrices B̃ = X−1B and C̃ = CX and

then deleting the first u rows in B̃ to obtain B̄ and the first u columns in C̃ to get C̄.

Before returning to the model reduction problem, it should be noted that the above

definitions of the matrices B and C are consistent with the derivation of the controller
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model in subsection 2.2. This can be seen by concluding that, in the case that

the artificial coil resistances R̃k are zero for all k = 1, . . . , K (this case is assumed

throughout the model reduction procedure, yielding reduced models which work equally

well for nonzero R̃k unless the natural dc resistances Rk are extremely small, as for

superconducting coils), the controller model is equivalent to a particular static output

feedback applied to (1.1). That means, the feedback matrix F derived in subsection 2.2

can be reconstructed by connecting the input v with the output y via a suitably chosen

controller matrix K, so that v = Ky = KCx and therefore F = BKC, cf. (1.1) and

(2.5). Using the definition ϕkl
ij = θk

i − ϑl
j, see (2.11) and (2.12), it can be shown that

BKC is equal to (2.16) for R̃k = 0, k = 1, . . . , K if the controller is chosen as

K =























K11 K12 · · · K1L

K21 K22 · · · K2L

...
...

. . .
...

KK1 KK2 · · · KKL























, (3.10)

where Kkl = diag(kkl
n1

,kkl
n2

, . . . ,kkl
nNt

) with the (2× 2)-blocks

kkl
ni

=







αkl
ni
−βkl

ni

βkl
ni

αkl
ni






, i = 1, . . . , Nt. (3.11)

Almost all truncation-based model reduction methods currently available in the

literature rely on oblique transformations. Among the most popular methods are

balanced truncation and related procedures [24, 25, 26, 27, 28, 29, 30, 23, 22]. The

isometric truncation presented here is based upon an orthogonal transformation, but the

basic idea used to define this transformation is exactly the same as in Moore’s original

work on balanced truncation [24], namely, the analysis of the response to two different

kinds of test signals injected into the control system (3.4) with the initial condition x̄ = 0
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for all t < 0. The first kind of test signals is defined by v(t) = eiδ(t), i = 1, . . . , Ni with

the i-th canonical unit vector ei ∈ � Ni. The corresponding state vector response time

series x̄i(t) are collected into a matrix X̄(t) = (x̄1(t) x̄2(t) . . . x̄Ni
(t)) = exp(tĀ0)B̄.

It can be expected that, for all t > 0, the columns of X̄(t) project most strongly

onto those state space directions which can most easily be controlled by the actuators,

and the aim is to extract these directions. Similarly, the second kind of test signals

is defined by adding a term eiδ(t) for i = 1, . . . , N , with ei ∈ � N now being the

i-th canonical unit vector in state space, to the right hand side of the equation

for ˙̄x in (3.4). The corresponding output vector responses yi(t) are collected into

Y(t) = (y1(t) y2(t) . . . yN(t)) = C̄ exp(tĀ0). For all t > 0, the columns of YT(t)

should project most strongly onto those state space directions which can most easily be

observed by the sensors, and, again, one aims at finding these directions. In the model

reduction procedure, the directions which are both almost (or exactly) uncontrollable

and unobservable are discarded.

The solution of the problem to find low dimensional subspaces which the columns of X̄(t)

and YT(t) primarily project onto is given by principal component analysis (PCA) [31],

a statistical data analysis method which is widely used in various scientific disciplines

ranging from meteorology to psychology. Given a matrix Z(t) ∈ � P×Q (t ∈ [t1 t2]),

whose columns contain Q vector time series, PCA yields a set of basis vectors wi ∈ � P

and time-dependent coefficient vectors ci(t) ∈ � Q, i = 1, . . . , P , so that the columns of

Z(t) are expanded in terms of the wi’s:

Z(t) =
P
∑

i=1

wic
T
i (t). (3.12)

The wi’s are chosen in such a way that, for all k < N , the error introduced by

a projection of the columns of Z(t) onto the k-dimensional subspace spanned by
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w1, . . . ,wk becomes minimal in a least squares sense:

∫ t2

t1

P
∑

i=k+1

||wic
T
i (t)||2Fdt = min, (3.13)

where || · ||F is the Frobenius norm. The solution of this optimisation problem is to

choose the wi’s as eigenvectors of the Gramian, or covariance matrix

W =

∫ t2

t1

Z(t)ZT(t)dt. (3.14)

Since W is symmetric and positive semidefinite, its eigenvectors w1, . . . ,wP are

orthogonal, and its eigenvalues w1 ≥ w2 ≥ . . . ≥ wP are nonnegative. For all

i = 1, . . . , P , the ratio wi/
∑P

i=1 wi describes the fraction at which the variance of the

matrix time series wic
T
i (t) contributes to the total variance of Z(t). Therefore, wi is an

“importance” measure for wi.

It follows that, when looking for the system states which are most easily controllable,

one should carry out a PCA of X̄(t) = exp(tĀ0)B̄ and consider the leading eigenvectors

of the controllability Gramian

Wc =

∫ ∞

0

exp(tĀ0)B̄B̄T exp(tĀT
0 )dt. (3.15)

Analogously, a PCA of ȲT(t) = exp(tĀT
0 )C̄T can be performed to find the most easily

observable states as the leading eigenvectors of the observability Gramian

Wo =

∫ ∞

0

exp(tĀT
0 )C̄TC̄ exp(tĀ0)dt. (3.16)

In many PCA applications, the time integration in (3.14) has to be carried out

numerically by sampling‖ Z(t), but in the case of (3.15) and (3.16) there exists a

‖ Actually, in most cases the data to be analysed are present as samples from the very beginning, and

sometimes the discretised “time” merely plays the role of sample numbering.
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convenient alternative. Namely, Wc and Wo are solutions of the Lyapunov equations

Ā0Wc + WcĀ
T
0 = − B̄B̄T,

ĀT
0 Wo + WoĀ0 = − C̄TC̄ (3.17)

[22]. Normally, solving a Lyapunov equation involves the computation of the Schur

form of Ā0 [22], but in the case at hand, the necessary work has been done before, since

Ā0 = diag(γu+1, . . . , γN) is already diagonal, and (3.17) can be solved at virtually no

extra cost:

(Wc)ij = − (γu+i + γu+j)
−1(B̄B̄T )ij,

(Wo)ij = − (γu+i + γu+j)
−1(C̄T C̄)ij. (3.18)

To proceed with the model reduction, all the system states which are essentially both

uncontrollable and unobservable have to be excluded. Hence, Wc and Wo need

to be combined somehow in order to account for controllability and observability

simultaneously. In the case of balanced truncation and related methods, oblique

transformations are defined which are associated with the product WcWo. Here,

a different, somewhat simpler approach is taken in order to obtain an orthogonal

transformation. Instead of analysing X̄(t) and YT(t) separately, both matrix time series

are analysed at a time. To this end, the joint controllability and observability Gramian

Wco =
1

2
[tr(Wc)

−1Wc + tr(Wo)
−1Wo] (3.19)

is defined here, corresponding to a PCA of 1
2
[tr(Wc)

−1X̄(t) + tr(Wo)
−1YT(t)]. In this

expression, the matrix addition includes that the matrix which has less columns than the

other is augmented with zeros to fit the size of the larger matrix. The trace prefactors

before X̄(t) and YT(t) ensure that controllability and observability are given equal
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weight in the sense that both sets of time series are normalised to have the same total

signal energy of 0.5.

To perform the isometric truncation, the eigenvalue problem

Wcoθi = λiθi, i = 1, . . . , N − u (3.20)

is solved with the eigenvalues λi sorted in descending order. For all i, λi is equal to

the variance fraction explained by the projection of all the time series onto θi, since

∑N−u

i=1 λi = 1. The orthogonal eigenvectors θi are normalised to unity and define the

transformation matrix T̄ acting in the stable subspace:

T̄ = (θ1 θ2 . . . θN−u). (3.21)

In the full space represented by the open-loop eigenvector coordinates, the orthogonal

transformation matrix is given by

T =







� 0

0 T̄






(3.22)

where the upper left block contains the identity matrix � ∈ � u×u acting in the unstable

subspace. The open-loop matrix and the basic feedback matrices, which already have

been pre-transformed into the open-loop eigenvector coordinate system (cf. the end of

subsection 3.1), are subjected to a further, orthogonal transform as M̌ = TTM̃T, where

M̃ has to be replaced by Ã0, F̃kl
n,α, F̃kl

n,β, and F̃k
I . Together with the free parameters αkl

n ,

βkl
n , and R̃k these transformed matrices define the transformed system matrix

A = ( � + τ F̌)−1(Ǎ0 + F̌), (3.23)
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cf. (2.24), where F̌ is constructed from F̌kl
n,α, F̌kl

n,β, and F̌k
I analogous to (2.16). Finally, in

the truncation step the lowermost rows and rightmost columns in Ǎ0 and F̌ are deleted,

thus retaining only an upper left Nred ×Nred-block, respectively. The truncated version

of A is constructed according to (3.23), but substituting the truncated versions of Ǎ0

and F̌. If
∑N−u

i=Nred+1−u λi � 1, it can be expected that the truncated system mimics the

full system quite accurately in responding to the feedback. Using the truncated model,

an optimally stabilising parameter set is searched for by means of the methodology

described in sections 4 and 5. Afterwards, the parameters found are used to construct

the full-sized matrix A. For quality control, the properties (eigenvalues, pseudospectra,

||etA|| curves, cf. section 4) of the full model and the reduced one have to be compared.

If there are unacceptable deviations, the optimisation step has to be repeated using a

less severely truncated model, i. e., a higher value of Nred.

Since the system states correspond to current distributions on the conducting wall and

in the coils, the state space directions, which the system is projected onto during the

isometric truncation procedure, can be interpreted as current patterns. Represented by

state vectors in the original, untransformed coordinate system, these current patterns

are given by the columns of the “pattern matrix”

Π = XT, (3.24)

which comprises the preliminary transform to open-loop eigenvector coordinates and

the subsequent orthogonal transform. The column vectors of Π = (π1 π2 . . . πN) can

be used for visualisation of the patterns and are orthonormal with respect to the “ohmic

loss” scalar product: πT
i R0πj = δij. The leading patterns can be interpreted as being

the most important physical processes involved in the control system.
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In the following, A will denote both the full-sized, transformed system matrix and its

truncated counterpart. The distinction between the two will be explicitly noted wherever

necessary.

4. Concepts for controller optimisation

The question remains, what is “optimal stability”? When attempting to stabilise a

parametrised matrix, two basic objectives are obvious: On the one hand, it is desirable

to obtain good asymptotic stability. That means, all eigenvalues lie in the left complex

half-plane and are comfortably bounded away from the imaginary axis, so that initial

perturbations decay reasonably fast as t → ∞. On the other hand, the stability

should be robust with respect to uncertainties in the parameters, or, more generally, to

imperfections in the mathematical model. Assuming that such uncertainties are reflected

by uncertainties in the matrix elements, robust stability means that, if the matrix A

is stable, then (A + E) should be stable for any matrix perturbation E of “moderate

strength”. Unfortunately, achievement of the first objective does not necessarily imply

achievement of the second. A large distance of the eigenvalues from the imaginary axis

does not ensure robustness if the eigenvalues are very sensitive to perturbations of A.

Eigenvalues of normal matrices, i. e., matrices with an orthogonal eigensystem, are

most insensitive. If the matrix is nonnormal, which is the case for the RWM problem

with feedback, the sensitivity can increase dramatically. Furthermore, there is a second

unfavourable feature: if A is stable, but nonnormal, then ||etA|| may be much greater

than unity for some t > 0 (this holds for any matrix norm, but the matrix 2-norm is used

throughout this study). This means that the initial state at t = 0 can be chosen in such

a way that it exhibits strong transient growth before it eventually decays [17] (of course,
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not all possible initial states suffer from transient growth, in general). Systems which

are theoretically stable might be practically unstable if the transient amplification is

too strong. This fact gives rise to a third objective in matrix stabilisation: the transient

peak, i. e., the supremum of ||etA|| for t > 0, should be kept at a moderate level.

In the following, these three objectives are put into quantitative terms. In subsection

4.1, measures to assess the asymptotic stability of a matrix are introduced. Following

[17], measures of robust stability are derived in subsection 4.2, which are based on

the central concept of matrix pseudospectra. In subsection 4.3 it is explained how to

tackle the problem of transient peaks, which turn out to be related to pseudospectra, as

well. Finally, the numerical realization of these concepts in the OPTIM code is briefly

explained in subsection 4.4.

4.1. Measures of asymptotic stability

The traditional measure of asymptotic stability is the spectral abscissa σ(A), that is,

the largest real part of all eigenvalues of A:

σ(A) = max
i=1,...,N

Re γi. (4.1)

Minimising σ(A) under variations of the parameters upon which A depends gives the

best available asymptotic decay rate of initial disturbances. However, this function

“sees” only the leading eigenvalue(s) (those with largest real parts), and in many cases

several eigenvalues are simultaneously on the leading position when the optimal solution

has been found, thus giving the “least stable subspace” a rather high dimension. In such

cases, it may be possible to push some of these eigenvalues much further to the left in the

complex plane under additional parameter variations without affecting other eigenvalues
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very much. Therefore, a second function η(A) which accounts for all the eigenvalues, but

gives more weight to the leading ones, has been implemented into OPTIM in addition

to σ(A):

η(A) =

N
∑

i=1

exp(Re γi). (4.2)

Here, this function is given the name exponential spectral function. Minimising η(A)

establishes a compromise in attempting to shift all eigenvalues as far as possible to

the left. Neither σ(A) nor η(A) guarantee a high level of robustness of the stability

after optimisation, because eigenvalue sensitivity is not taken into account. However,

under the assumption that the sensitivity of the optimal solution is similar in both

cases, optimisation of η(A) appears to be likely to produce somewhat more robust

results, because generally most of the eigenvalues should have a greater distance to the

imaginary axis than they would have after σ(A) optimisation. But that assumption

might be not true.

4.2. Eigenvalue sensitivity and robust stability

To assess the robustness of stability it is necessary to consider the sensitivity of

eigenvalues. An elegant way to capture the sensitivity of the entire spectrum is given

by the definition of the ε-pseudospectrum γε(A):

γε(A) = {z ∈ �
: z is an eigenvalue of A + E

for some E ∈ �
N×N with ||E|| < ε}. (4.3)

While the eigenvalue spectrum of A is a discrete set of points in
�

, γε(A) is an open

set in
�

containing the spectrum. Since (4.3) involves a matrix norm (in this study,

the 2-norm), the ε-pseudospectra depend on the state space coordinate system. This
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is exactly the reason why the similarity transform underlying the model reduction was

demanded to be orthogonal.

One might immediately ask why the perturbations E are allowed to be complex. In

physical systems, perturbations are generally real, not complex. Indeed, the real

structured pseudospectrum, which is obtained when replacing E ∈ �
N×N by E ∈ � N×N

in (4.3), attracts more and more interest in the control theory community. But

considering complex pseudospectra instead of real ones has certain advantages. The

former are easier to deal with than the latter, both theoretically and practically. More

important, however, is the fact that complex pseudospectra provide insight in the

transient behaviour of the system, as it will be discussed in subsection 4.3, while

real pseudospectra do not. Finally, a system proven to be robust under complex

perturbations will certainly be robust under real ones.

Based upon the concept of complex pseudospectra, the robustness of a stable system A

can be measured by the complex stability radius ρ(A):

ρ(A) = sup{ε : A + E is stable ∀ E ∈ �
N×N with ||E|| < ε}. (4.4)

In other words, ρ(A) is equal to that particular ε for which the closure of γε(A) touches

the imaginary axis.

Another measure of robustness is the spectral abscissa of the system A if subjected

to a worst case perturbation E smaller than a given ε. This measure is denoted the

ε-pseudospectral abscissa σε(A) and corresponds to the largest real part of all points on

the closure of γε(A):

σε(A) = sup{Re z : z ∈ γε(A)}. (4.5)
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Both functions, ρ(A) and σε(A), are implemented in OPTIM and can be chosen as

objective for optimisation. The consequences of the choice of ε when optimising σε(A)

will be briefly discussed in the following subsection.

4.3. Transient growth

There are various theorems relating the transient behaviour to pseudospectra. An

important one is the following lower bound for the transient peak [17]:

sup
t≥0
||etA|| ≥ σε(A)

ε
∀ε > 0. (4.6)

That means, if the ε-pseudospectrum extends significantly into the right complex half-

plane for some ε so that σε(A) > ε, then there is transient growth. Furthermore, it is

shown in [17] that, for large values of σε(A)/ε, ||etA|| grows exponentially at least with

a rate close to σε(A) for small t. The larger the value of σε(A)/ε is, the longer this

behaviour continues.

It follows from these results that it is necessary, albeit not sufficient, to keep σε(A)/ε

at a minimum for all ε in order to diminish transient growth. This can be attempted

by minimising σε(A) for ε significantly larger than ρ(A), at the expense of robustness.

The choice of ε requires some experimentation. If ε is chosen too large, the optimal

solution may even be unstable. Generally, optimising σε(A) for ε > ρ(A) corresponds

to a tradeoff between robustness and favourable transient behaviour, whereas the

optimisation for 0 < ε < ρ(A) is a compromise between robustness and asymptotic

stability.
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4.4. Functionality of OPTIM

The OPTIM code package offers four different features to be applied to parametrised

matrices A: i) Optimisation of stability under parameter variations by means of the

algorithm described in section 5, ii) computation of pseudospectra for a given parameter

set, iii) computation of ||etA|| on a given time interval 0 ≤ t ≤ T and for a given

parameter set, and iv) simple evaluation of a chosen objective function for a given

parameter set. In principle, all these functionalities can be applied to the reduced as

well as to the full-sized model. The code is fully parallelised based upon the PBLAS

and ScaLAPACK libraries for use on a distributed-memory architecture. It has to be

noted, however, that the order of the reduced model used in this study is so small

that parallelisation is not efficient, so that the optimisations are carried out on a single

processor only. But the computations made for the full system (pseudospectra, ||etA||

calculations, evaluations of objective functions, see section 6) take full advantage of

the parallel execution on 32 processors. Due to its modular structure, the code is

not restricted to the RWM stabilisation problem presented here, but can readily be

applied to any user-implemented parametrised matrix and therefore offers a wide area

of application in control theory and related fields.

Let p = (p1 p2 . . . pP ) be the vector of parameters which A depends on, A = A(p).

When optimising the stability of A, one of the following four objective functions can be

chosen for minimisation, cf. (4.1), (4.2), (4.4), and (4.5):

F1(p) = σ[A(p)],

F2(p) = η[A(p)],

F3(p) =











σ[A(p)] , A(p) is unstable

−ρ[A(p)] , A(p) is stable,
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F4(p) = σε[A(p)]. (4.7)

By the case differentiation, F3 becomes a function which is continuous everywhere in

the parameter space. To evaluate F1 and F2, the eigenvalue problem of A has to be

solved. The algorithm to calculate F3 for stable A is closely adapted from the two-step

H∞-norm computation method described in [32]. Namely, it can be shown, by means

of the alternative definition (4.8) of γε(A) introduced below, that ρ(A) is equal to the

reciprocal of the H∞-norm (1.4) of the “transfer function” G(z) = (A − z � )−1. F4 is

computed in terms of a criss-cross algorithm [33], which is quite similar to the two-step

method.

In the computation of pseudospectra, an alternative definition of γε(A) is used, which

can be shown to be equivalent to the definition (4.3) as long as the matrix 2-norm is

used there [17]:

γε(A) = {z ∈ �
: smin(A− z � ) < ε} (4.8)

with smin(A − z � ) being the smallest singular value of (A − z � ). By calculating

smin(A− z � ) for various z values on a grid in
�

and visualising them in a contour plot,

one obtains different ε-pseudospectra boundaries given by the corresponding ε-contours.

An efficient method for this computation is used, which has been adapted from [17, 34],

but with the inverse iteration step replaced by an explicitly restarted Lanczos procedure

as described in [35] to improve convergence in the case that the smallest singular values

are densely spaced.

In the computation of ||etA||, the matrix exponential is evaluated by means of the scaling

and squaring method as described in [36], which involves a Padé approximation of the

exponential.
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5. Optimisation method

In general, all the objective functions in (4.7) have the unfavourable property of

being not smooth everywhere. Even though these functions are continuous, their

gradients can be discontinuous or may even diverge on sub-manifolds in parameter

space. Conventional nonlinear optimisation methods are likely to get stuck near such

manifolds, and a special algorithm is required to successfully minimise functions like

(4.7). The gradient bundle method [37, 38] implemented in OPTIM fits this purpose very

well and will be briefly described below. Like other optimisation methods, it requires

the gradient of the respective objective function, and it is therefore highly beneficial to

derive analytic expressions for the gradients of (4.7) which are valid everywhere except

on sub-manifolds such as mentioned above.

The functions F1(p) and F2(p) are related to the eigenvalues of A(p). It can be inferred

from (4.1) and (4.2) that the components of their gradients are given by

∂F1

∂pj

= Re
∂γm

∂pj

, (5.1)

where γm is an eigenvalue of A with maximum real part, and

∂F2

∂pj

=
N
∑

i=1

Re
∂γi

∂pj

exp(Re γi), (5.2)

j = 1, . . . , P . For the derivatives of the eigenvalues with respect to the parameters,

first-order perturbation theory yields

∂γi

∂pj

=
zH

i (∂A/∂pj)xi

zH
i xi

, (5.3)

where xi is the right eigenvector and zi the left eigenvector of A associated with

the eigenvalue γi which has to be nondegenerate [39]. Finally, the matrix derivative
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(∂A/∂pj) needs to be determined. The parameter dependence of the transformed

feedback matrix F̌, which contributes to A according to (3.23), can be compactly written

as F̌ =
∑P

i=1 piF̌i, where the F̌i’s are the transformed basic feedback matrices. A short

calculation gives

∂A

∂pj

= ( � + τ F̌)−1F̌j( � − τA). (5.4)

The components of the gradient of F3 are given by

∂F3

∂pj

=











∂F1/∂pj , A(p) is unstable

−(∂A/∂pj) · Re(υωH) , A(p) is stable,

(5.5)

where υ and ω are the left and right singular vectors belonging to the smallest singular

value of (A − z � ) and z ∈ �
is a point where the pseudospectrum γρ(A) touches the

imaginary axis [16, 40]; z is computed automatically as a by-product of the algorithm

which evaluates ρ(A). The product (∂A/∂pj) · Re(υωH) is a “matrix scalar product”

defined as an ordinary scalar product while interpreting the matrices as vectors with

N2 components. Similarly, the gradient components of F4 are computed as

∂F4

∂pj

= (∂A/∂pj) ·Re

(

1

υHω
υωH

)

. (5.6)

Again, υ and ω are the left and right singular vectors corresponding to the smallest

singular value of (A− z � ), but z is now a point on the closure of γε(A) with maximum

real part [16, 40], automatically determined during σε(A) computation.

In principle, the gradient bundle method is similar to the simple steepest descent

algorithm. In both methods, each iteration consists of determining a search direction

in parameter space, followed by a line search along this direction in order to find a

significantly lower objective function value. In the case of steepest descent, the search
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direction is simply the negative gradient evaluated at the current point in parameter

space. The gradient bundle method additionally accounts for gradients evaluated at

some other points in the neighbourhood. The search direction is defined to be the

negative of the shortest vector on the convex hull of all gradient vectors. If the objective

function is smooth in the neighbourhood of the current parameter point, all gradient

vectors will be much the same, and the search direction will resemble the steepest

descent. But if the current parameter point is close to a manifold where the gradient is

discontinuous, gradients will be sampled from both sides of that manifold. The resulting

search direction vector will then be aligned mostly parallel to the manifold, but still

directed towards decreasing function values. This prevents the procedure from being

forced to make tiny steps or getting stuck at the manifold. A well developed theory

guarantees convergence against a local minimum of the objective function [37, 38]. In

OPTIM, the required convex hull computations are arranged by calling the external

program LRS [41]. The shortest vector on the respective convex hull is determined by

a suitable quadratic programming subroutine [42].

The algorithm version implemented in OPTIM differs from the original one [37, 38] in

two small, but noteworthy details. First of all, in the original procedure the additional

gradients are evaluated at 2P points randomly chosen within some sampling diameter

around the current point in parameter space. In OPTIM, the gradients are computed

at the vertices of a simplex with given edge length, positioned in such a way that the

current parameter point coincides with the barycentre of the simplex. This involves only

P +1 instead of 2P additional gradient computations and therefore gives a considerable

speedup. The convex hull problem is simplified by this means, as well. Despite the

smaller number of points, the probability that information from both sides of a critical

manifold is accounted for is still very high. To further stabilise the procedure, the
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simplex is always rotated in a different, but deterministic manner in each iteration.

Secondly, the selection of the “neighbourhood size” (simplex size or sampling diameter)

and the termination criteria in OPTIM are somewhat different from the original. Like

in the original, the simplex size is decreased by a prescribed factor if the convex hull

happens to be very close to the origin or contains it, or if the line search step becomes

too small. But what is new is that the simplex is also slightly enlarged from iteration

to iteration unless a prescribed maximum size is already reached. Thus, the simplex

size is dynamically adapted to the local scales on which the objective function varies

significantly. The program terminates when the simplex size is already at a prescribed

minimum, and a further shrinking is requested.

Finally, the implementation of constraints, such as those discussed in subsection 2.3,

should be mentioned. In OPTIM, constraints are realized in terms of user-implemented

penalty functions to be added to the objective function, and their respective gradients.

These penalty functions should be identically zero in the allowed parameter domain and

become increasingly positive the more the constraints are violated. The gradients must

exist almost everywhere, but may be discontinuous on sub-manifolds.

6. ITER-like example

In the following, the derived methodology is applied to an ITER-related example.

Because the principal aim of this paper is to demonstrate the capabilities of the method

and of the code package and to gain general, conceptual insights rather than to produce

precise results directly relevant to the ongoing ITER design, some simplifications are

made in order to obtain a test case allowing for good visualisation and simple analysis,

and requiring only moderate numerical effort.
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The chosen plasma equilibrium is the steady state scenario 4 from the ITER design,

with β set to 2.29%. Without a conducting wall, this equilibrium is unstable to external

kinks with n = 1 only. Toroidal Fourier indices higher than n = 1 will not be included

in the expansion of the plasma state, and the feedback control will also act on n = 1

only. In the strict sense, the 3D conducting structures break the axisymmetry and the

different n’s become dynamically coupled, so that it might be possible that the feedback

system drives intrinsically stable RWMs with n > 1 unstable. But this possibility is not

investigated in this study as the entire analysis is restricted to n = 1.

While a nested double wall is scheduled for ITER, the conducting wall model used here

accounts only for the interior wall and also neglects some other geometric details. The

effects of the exterior wall on the RWMs are minor, and a single wall greatly facilitates

the visualisation of current patterns. Figure 1 displays the poloidal cross section of the

configuration including the plasma, wall, coils, and sensors. The 3D triangular mesh

of the conducting wall and the feedback coils are shown in figure 2. The holes in the

wall correspond to the various ports which penetrate the ITER wall. The original wall

will be made of steel with conductivity σ = 1.212 · 106 Ω−1m−1 and thickness d = 0.06

m. Since the thin-wall approximation is used in the STARWALL code, it is the surface

conductivity σd which is accounted for. The coils are assumed to be made of copper

(σ = 6 ·107 Ω−1m−1) with quadratic cross section having an edge length of 0.1 m. In the

computations, the coil resistances are set accordingly. The coils are located inside some

of the equatorial ports, equidistantly spaced by 40 degrees in the toroidal direction, and

grouped into a single toroidal array, i. e., K = 1. Two neighbouring coils are missing in

the array due to collision with neutral beam injection devices, so that only seven coils are

remaining. This feedback coil set is one of several sets which have been under discussion

in the ITER design process. The recent final decision gave preference to a different coil
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Figure 1. Poloidal cross section showing the geometry or position of the plasma

boundary, the conducting wall, the feedback coils, and the sensors.

Figure 2. Triangular mesh of the conducting wall, and the feedback coil set. The

plasma is also shown. The image on the right hand side differs from the one on the

left by toroidal rotation of the device by 180 degrees.
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set which will be mounted inside the wall, but the set used here is most suitable for

the visualisation of coil currents. The 18 sensors also form a single array (L = 1) and

are positioned at equidistant toroidal angles, centred between the equatorial ports and

mounted inside, but very close to the wall (see figure 1). The sensors are oriented in the

vertical direction and therefore measure the poloidal component of the magnetic field

perturbation. Poloidal sensors were shown to be superior to radial sensors in several

studies [4, 7, 43, 15]. The indices k, l, n are omitted in the following because, in this

simple test case, they take the value 1 only.

The solution of the open-loop eigenvalue problem A0xi = γixi, i = 1, . . . , N , where

N = 5190, results in two unstable RWMs x1, x2 with growth rates γ1 = 21.9 s−1 and

γ2 = 21.7 s−1, whereas all other modes x3, . . . ,xN are stable. The wall current patterns

corresponding to x1 and x2 are shown in figure 3. The two patterns have a helical

n = 1 structure and are very similar, but toroidally phase shifted against each other

by 90 degrees. The eigenvalues γ1 and γ2 are not perfectly degenerate because the

axisymmetry is broken due to the presence of the holes and, what is more important,

due to the two missing coils (the coils act as short-circuited passive conductors in the

open-loop computation).

The model reduction procedure yields a collection of current patterns π3, . . . , πN

spanning the stable subspace of A0, which constitute all except the first two columns

of the pattern matrix Π as defined by (3.24). Note that the first two columns of Π

correspond to the unstable RWMs, i. e., π1 = x1 and π2 = x2. Each pattern πi,

i = 3, . . . , N is associated with a variance fraction λi−2, or “importance measure”, as

computed during the solution of the eigenvalue problem (3.20). The twelve leading stable

patterns π3, . . . , π14 and their corresponding variance fractions λ1, . . . , λ12 are displayed

in figures 4 and 5. As explained in the following, several different physical processes can
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x1 (γ1 = 21.9 s−1) x2 (γ2 = 21.7 s−1)

Figure 3. Current patterns corresponding to the two unstable RWMs x1 and x2,

represented by lines of equal current potential φ, cf. (2.1). The wall currents flow

parallel to the lines, and the current density is proportional to the line density. Blue

lines circumvent areas of low φ, and red lines enclose areas of high φ, where the

rotational direction of the currents is opposite to the areas of low φ. In both cases,

toroidal rotation by 180 degrees (not shown) results in virtually the same pattern

structure, but with reversed sign, reflecting the n = 1 structure of the modes. The

angle of view is the same as in the right panel of figure 2.

be readily identified in these patterns, and it appears plausible that these processes are

the most important ones involved in the RWM feedback control problem. Concerning

their variance fractions, the first four patterns π3, . . . , π6 are well separated from the

others. Altogether, they comprise four processes, namely, (i) an n = 1 pattern of coil

currents, (ii) the corresponding counterpart toroidally rotated by roughly 90 degrees,

(iii) a pattern of small scale, dipole-like eddy currents localised in the neighbourhood

of the sensors and modulated sinusoidally with “wave number” n = 1 in the toroidal

direction, and (iv) the corresponding pattern toroidally rotated by 90 degrees. While

π3 is an almost pure coil current pattern, π4, π5 and π6 are linear combinations of the

remaining coil and eddy current processes. The importance of the coil current patterns

is clear since these are just the actuator patterns generated by the gain matrices (2.11)

and (2.12). But the small eddy currents are also very important because they produce

a strong n = 1 signal detected by the sensors. It can be expected that such current

patterns provoke an unwanted, fierce response of the feedback system, and it will be
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shown later in this section that this is indeed the case. The patterns π7 and π8 represent

the small-scale part of the image currents associated with the excitation of the coil

currents. Another small-scale eddy structure near the sensors can be found in π9 and

π10, whereas π11 and π12 mainly represent the large-scale part of the image currents

excited by the coils. Finally, π13 and π14 are almost purely large-scale n = 1 patterns,

probably strongly interacting with the plasma.

As already implied by the values given in figures 4 and 5, the variance fractions λi

fall off rapidly as i increases. This indicates the model reduction being very efficient.

The truncation limit Nred (reduced model dimension) is set to the value for which

λNred−2 > 10−12 > λNred−1 holds. This results in Nred = 56, allowing for both very fast

optimisation runs and excellent reproduction of the control system properties, as shown

below.

In the following feedback computations, the time delay (2.23) is set to τ = 0.1 ms. The

feedback optimisation is conducted subject to the constraint that the effective current

in each coil must not exceed the prescribed value Imax = 74 kA to be substituted into

the inequality (2.19). By this choice and by the estimate Smax = 1.5 mT [9] as an RWM

detection limit, the saturation current gain magnitude

I = 9

√

1
2
(α2 + β2)

R + R̃
, (6.1)

corresponding to the left hand side of (2.19), is limited to twice the minimum gain

needed to obtain stabilisation. The chosen value of Imax is not inconsistent with the fact

that the coils in the set were designated to carry a total current of about 300 kA, where,

however, a large portion of this current was intended to be used for ELM suppression.

As an additional constraint, the time constant T = L/(R + R̃) of the coils is demanded
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π3 (λ1 = 33.9%) π4 (λ2 = 22.8%)

π5 (λ3 = 18.7%) π6 (λ4 = 17.6%)

π7 (λ5 = 2.68%) π8 (λ6 = 1.75%)

Figure 4. Stable current patterns π3, . . . , π8 represented by current potential isolines

in the same way as the unstable RWMs in figure 3. These patterns explain variance

fractions λ1, . . . , λ6 as indicated. Coil currents are visualised by colouring of the coils.

The intensity of the colour corresponds to the strength of the current, and the choice

of blue or red colour indicates the direction of the coil current in the same way as the

rotational direction of wall currents is represented by the colouring of the equipotential

lines. Like in the case of RWMs, toroidal rotation of these patterns by 180 degrees

results mainly in a sign reversal (not shown).
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π9 (λ7 = 0.892%) π10 (λ8 = 0.887%)

π11 (λ9 = 0.239%) π12 (λ10 = 0.171%)

π13 (λ11 = 0.108%) π14 (λ12 = 0.0970%)

Figure 5. As figure 4, but showing the stable current patterns π9, . . . , π14 and their

variance fractions λ7, . . . , λ12.
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to be not smaller than Tmin = 1 ms, cf. (2.17). This choice of a minimum value ensures

that the approximation used in deriving the effect of the time delay τ (section 2.4) is

justified. Furthermore, the combination of the two constraints renders the set of feasible

parameter values bounded and ensures convergence of the optimisation algorithm. A

voltage constraint like (2.18) is not used here.

Each of the four objective functions (4.7) is minimised in subsequent OPTIM runs.

Optimisation of F4 = σε(A) is performed setting ε = 2ρopt after having obtained an

optimal complex stability radius ρopt from the minimisation of F3.

Since the minima found in these nonlinear optimisation problems generally cannot be

guaranteed to be global, the computations are repeated for each objective using several

different starting parameter sets. Optimisations are started with the initial value of R̃

chosen such that T = 100 ms, 30 ms, 10 ms, 3 ms, and 1 ms, and the voltage gains α, β

set to zero. The result with the lowest objective value is considered the best available

one and is retained for further analysis, respectively, and all other runs are discarded.

Each of the four optimal solutions is further examined in terms of the values of all four

objective functions, and concerning its eigenvalues, pseudospectra, and ||etA|| curves for

t between 0 and 0.1 s. All these quantities are computed for both the full and the reduced

model in order to show sufficient agreement, so that the chosen reduced model size is

ensured to be large enough. Based on all these analyses, the four objective functions

will be judged with respect to their capabilities to produce controllers achieving good

asymptotic stability, or robust stability, or moderate transient behaviour.

The sets of parameter values α, β, R̃ resulting from the optimisations are listed in table 1,

together with derived quantities which are somewhat easier to interpret, namely, the coil

time constant T , the saturation current gain I as defined by (6.1), and the toroidal phase
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optimal α [V/mT] β [V/mT] R̃ [mΩ] T [ms] I [kA/mT] ϕ [◦]

F1 0.372 0.638 0.117 36.2 36.6 59.6

F2 19.7 -18.9 4.64 1.00 37.3 -43.8

F3 34.1 -11.5 4.64 1.00 49.3 -18.7

F4 29.4 20.8 4.64 1.00 49.3 35.3

Table 1. Optimal parameter values α, β, R̃ obtained after optimisation of the

objective functions F1 through F4. Derived from these values, the following quantities

are also listed: the coil time constants T = L/(R + R̃) corresponding to R̃, where

L = 4.65 µH, R = 10.9 µΩ, the saturation current gain magnitude I as defined by

(6.1), and the toroidal response phase ϕ = arctan(β/α). Note the constraints T ≥ 1

ms and I ≤ 49.3 kA/mT.

angle ϕ between the measured n = 1 perturbation and the coils’ n = 1 response pattern.

The four different solutions differ strongly from each other concerning the response

phase, and also considerably concerning the current gain magnitude. Furthermore, the

F1-optimal solution is characterised by a slow response (large T ), whereas the response

is fast in the other three cases.

The values of all functions F1 through F4 evaluated using the full model for all four

parameter sets can be found in table 2. For the reduced model, the values coincide with

those computed with the full model up to a relative error of about 10−3 in the worst

case (the F1 value after optimisation of F1), but to 10−4 or less in all the other cases

(not shown). The F2 values are the only exception. They are considerably higher in

case of the full model because much more eigenvalues are contributing to the sum (4.2)

which are, however, largely invariant under parameter variations. Of course, the F1-

optimal solution exhibits the best asymptotic stability, but the latter is not much worse

in the other cases. Robustness, as expressed by the F3 value, varies strongly among

the different cases. Expectedly, the F3- and F4-optimal solutions are considerably more

robust than the other two. Robustness is by far the weakest after F2 optimisation. Not

surprisingly, optimising F4 leads to a slightly less robust result than optimising F3, but
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optimal F1 [s−1] F2 F3 [s−1] F4 [s−1]

F1 -7.41 22.5 -0.97 15.9

F2 -6.26 21.2 -0.29 357.7

F3 -6.26 21.4 -2.70 166.5

F4 -6.28 21.8 -2.37 12.0

Table 2. Values of the functions F1 through F4 as indicated by the column label,

evaluated for the respective parameter set optimising the function corresponding to

the row label, substituted into the full model. When evaluating F2, the eigenvalues

have been scaled to internal, dimensionless units.

this is compensated to some extent by improved transient behaviour, as it will be shown

below.

Figures 6, 7, 8, and 9 show spectra and pseudospectra for all four parameter sets

substituted into the reduced as well as the full model. These plots reveal the sensitivity

of individual eigenvalues as well as the sensitivity of the system’s stability as a whole.

For example, the F3 values given in table 1 can also be crudely estimated by inspection of

figure 6. Furthermore, as already discussed in subsection 4.3 and also examined below,

the pseudospectra parts in the right complex half-plane are related to the transient

behaviour.

Comparing for each parameter set, respectively, the pseudospectra for the two models,

one finds virtually perfect agreement in the right half-plane and in the neighbourhood

of eigenvalues with large imaginary parts (corresponding to rotating, damped modes),

which turn out to be the most sensitive ones. Noticeable deviations are found only in

regions close to the negative real axis, far away from the imaginary axis, where lots of

eigenvalues of the full model are missing in the reduced model. But these deviations

are unimportant, since these eigenvalues have small imaginary parts, indicating that the

corresponding eigenmodes are likely to be largely unaffected by the feedback system.

Furthermore, they decay rapidly. The exclusion of these eigenmodes from the reduced
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Figure 6. Spectra and boundaries of ε-pseudospectra γε(A) after optimisation of the

objective functions F1 through F4 and substitution of the optimal parameter values

(table 1) into the reduced and the full model, as indicated; ε-values as given by the

contour labels in units of s−1. Black dots correspond to eigenvalues. Note that all

the spectra and pseudospectra are symmetric with respect to the real axis because the

system matrix A is real.
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Figure 7. As figure 6, but for a larger domain in the complex plane and for the

function F2 only.
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Figure 8. As figure 6, but for a larger domain in the complex plane and for the

function F3 only.
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Figure 9. As figure 6, but for a larger domain in the complex plane and for the

function F4 only.

model shows that the reduction method works as intended. The reduction is well suited

for the pseudospectral approach, since the reduced model reproduces accurately the

locations and sensitivities of the “most dangerous” eigenvalues. Since the optimization

runs are finished within minutes in the simplified test case presented here, is is to be

expected that the method can readily be applied to realistic ITER geometry with high

level of detail. It is noteworthy that the truncation criterion used here (include all

patterns whose variance fraction is greater than 10−12) is extremely conservative and

can be considerably relaxed in any case when the reduced models are found to be too

large.

In the case of the F1-optimal parameter set, the ε-pseudospectra cover a strikingly small

domain even for large ε values, compared to the other parameter sets. The eigenvalues

are not extremely sensitive. Estimating the ratio on the right hand side of (4.6) by

inspection of the contours for some of the larger ε-values given in figure 6, one finds

values exceeding unity, but not by a large amount. It follows that the transient peak
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does not necessarily need to be immoderate. However, the eigenvalues close to the

imaginary axis are not insensitive enough to obtain very robust stability.

The solution after optimising F2 is characterised by two extremely sensitive complex

eigenvalue pairs with large magnitude of imaginary parts (see figure 7), which deteriorate

the robustness and also the transient behaviour. E. g., for ε = 1 s−1, γε(A) overlaps

a large region in the right half-plane due to the strong influence of the dangerous

eigenvalues. By estimating σε(A) for ε = 1 s−1 from figure 7 and considering (4.6),

one finds that some initial states must exist which are transiently amplified at least by

a factor of about 80.

Optimisation of F3 and F4, respectively, results in a complex, sensitive eigenvalue pair

with large imaginary part, as well (figures 8 and 9). These eigenvalues, however, have

been pushed far enough to the left so that robustness is not affected by them. But in the

case of the F3-optimal parameter set, the sensitive eigenvalue pair causes a significant

protrusion of γε(A) into the right half-plane for ε > ρ(A) and thus determines σε(A)

for these ε values. A large transient peak can be expected. For the F4-optimal solution,

the sensitive pair is located so far on the left so that no influence on σε(A) for any ε

value considered in figure 9, and the transient amplification could be more moderate.

The ||etA|| curves obtained for each optimal parameter set substituted into the full

model are displayed in figure 10. The corresponding curves for the reduced model (not

shown) are indistinguishable from those shown in the figure. Together with the excellent

agreement concerning the objective function values and pseudospectra, this shows that

the reduced model size has definitely been chosen sufficiently large. The ||etA|| curves

confirm the predictions made above. The transient amplification is quite modest for F1.

On the other hand, ||etA|| decays much slower than in all the other cases. For F2, the
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Figure 10. Transient amplification (||etA|| curves) after optimisation of F1 through

F4 and substituting each respective optimal parameter set into the full model.

transient behaviour is disastrous. There are amplifications by a factor of more than 170

and, in addition, the ||etA|| curve is comparatively broad. In the F3-optimal case, the

peak is sharper, but the amplification factor still exceeds 80. Finally, the peak value is

alleviated to about 30 for F4, which, however, is still somewhat unsatisfactory.

In order to understand which physical processes are responsible for transient growth, the

initial state which suffers the strongest transient amplification in the F3-optimal case

is presented in figure 11 as a current pattern. This state vector is given by the leading

eigenvector of (etA)TetA with t being equal to the time where ||etA|| attains its maximum.

The vector has been normalised to unity. The main feature of the current pattern is

a structure composed of small-scale eddy currents, toroidally modulated with n = 1,

which closely resembles the corresponding structures contributing to the stable current

patterns π4 through π6 (figure 4). For the other parameter sets, the corresponding

equivalents to the state shown in figure 11 are very similar (not shown), except that a

significant RWM contribution is admixed in the F1 case. The mechanism of transient

amplification is therefore much the same in all four cases: The small-scale eddies generate

a strong n = 1 sensor signal resulting in a vigorous response of the coils and an erroneous,
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Figure 11. Normalised initial state which suffers the strongest transient amplification

in the F3-optimal case.

rapid excitation of a high-amplitude RWM, which has to be controlled afterwards. This

behaviour can be observed in a video sequence (evolution_smalleddy.mpg, 2.8 MB)

showing the time evolution starting from the initial state displayed in figure 11 and using

the F3-optimal feedback controller. Note that the normalisation of the coil colouring in

the video is the same as in figure 4 in order to visualise the coil current distribution also

in the later stage of the evolution. In the early stage, the colour range is “overdriven”,

i. e., the coil currents are much stronger than indicated by the colours.

For comparison, another video (evolution_rwm.mpg, 2.8 MB) shows the evolution for

the same controller, but with a pure RWM (the normalised state x1, see left panel of

figure 3) as the initial condition. Significant transient amplification (increase of the

overall current intensity) is also present here, but it is much less severe than in the case

of the small-eddy initial state. Interestingly, in both time evolutions the damped, slowly

rotating RWM is superposed by a rapidly rotating, strongly damped mode in the initial

phase of the evolution. This mode has a frequency of about 180 Hz and corresponds

to the eigenvalue pair with large imaginary part magnitudes (the eigenvalue with large

positive imaginary part is visible in figure 8).
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Since the physical mechanism of transient amplification has now been revealed, new

strategies can be developed to avoid transient amplification while retaining much of the

robustness, or even improve the latter. These strategies can be used as an alternative,

or in addition, to optimising F4 for large ε. Four different strategies, denoted A, B, C,

and D in the following, shall be tested here: (A) use the constraint T ≥ 30 ms, (B)

shift the sensors from the radial position R = 8.9 m to 8.6 m, (C) keep the sensors

at their original position (R, Z) = (8.9 m, 0.45 m) and add an additional array of 18

sensors at the same toroidal and radial positions, but at Z = 0.0 m, (D) shift both

sensor arrays to R = 8.6 m. The motivation of keeping the feedback response slow,

as done in case A, is to prevent the response growing large before small eddies as

shown in figure 11 decay. Shifting the sensors away from the conducting wall decreases

the strength of the eddy-generated magnetic field at the sensors. Finally, the main

intention of adding the second sensor array is to improve robustness rather than to

decrease transient amplification. Observability is enhanced by the fact that not only

the poloidal field is measured, but also the poloidal derivative. Therefore, two sensor

arrays should do better in distinguishing RWMs from intrinsically stable plasma modes

than a single array. But it is also hoped that a double array is somewhat harder to

be misled by small-scale currents in the wall than a single array, so that the transient

behaviour should also benefit from the introduction of the second array.

The different approaches are tested by optimising F3 for all cases A through D subject

to the same current constraint Imax = 74 kA as before, and subject to T ≥ 1 ms

for the cases B through D. For C and D, the additional sensor array increases the

number of free parameters from 3 to 5. The optimal F3 values are −2.27 s−1 (A),

−4.28 s−1 (B), −3.99 s−1 (C), and −5.31 s−1 (D). The corresponding ||etA|| plots are

displayed in figure 12. Using the slow-response constraint (case A) dramatically reduces
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Figure 12. Transient amplification for strategies A through D, see text.

the transient peak, but at the cost of robustness and the decay rate of the ||etA|| curve.

Compared to the F3-optimal standard case shown in figure 10, the peak value is reduced

substantially in case B, but only slightly in case C. In case D, it is considerably larger

than in case B, but D is more robust. Compared to the standard case, both strategies B

and D lead to a considerable improvement of both robustness and transient behaviour,

whereas strategy C is less efficient. The transient behaviour might still be considered

not entirely satisfactory even for case B, but it can be further improved at the expense of

robustness, by combining, e. g., strategy B with slowing down of the feedback response

(like in strategy A) or optimising F4 for ε larger than the optimal complex stability

radius.

7. Summary and discussion

A novel approach to the numerical treatment of stabilising RWMs in tokamaks by

means of magnetic field sensors and active feedback coils has been presented. Instead

of characterising the control system in terms of its input-output behaviour, as usual

in control theory, the analysis has been focused on the internal dynamics of the
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system. This approach is led by the insight that the state space representation of the

system, which emerges from physical modelling and therefore exists for its own sake,

contains much more information than needed to generate a particular input-output

behaviour (many different systems can have the same input-output characteristics).

This information surplus is exploited to analyse quantitatively, by means of a physically

based measure, the control system’s sensitivity to uncertainties of the model, or, in other

words, the robustness of the system’s stability with respect to changes of the system.

In this approach, the choice of the coordinate system used to define the system’s state

space is of particular significance. While the coordinate system is unimportant to

the input-output characteristics, it defines a metrics in the state space, a measure of

difference between system states. The basic assumption of this study is the special

interest in a particular state vector norm which is typically based on physically

measurable quantities. This norm is considered distinguished compared to all the

other possible choices of norms. The induced metrics enables the investigator to decide

whether the difference between system states is small or large. Therefore it can also be

decided whether a change of the system (represented by changes of the system’s matrix

elements) can produce a large change in the tendency of the system state or not. The

corresponding measure is the matrix norm which is vector-bound to the state vector

norm of interest.

The control system model is formulated in terms of a parametrised matrix. The

parameter values describe the rule how the active coils react to the sensor signals. These

parameters can be varied in order to stabilise the system and optimise the system’s

stability with respect to certain criteria. To make such a parameter optimisation

computationally feasible it is inevitable to reduce the dimension of the control system

model while retaining the characteristics of its response to the feedback. Powerful
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standard methods which serve this purpose are available in the literature, but they are

based on oblique transformations. They do not preserve the state space metrics and

are therefore not suitable for use in combination with the methodology of this study.

For this reason, a novel, highly efficient orthogonal model reduction procedure denoted

“isometric truncation” has been designed and utilised in this work.

For optimisation of the feedback parameters, the OPTIM code has been developed.

Four different objective functions given by (4.7) are available which can be chosen to

be optimised. Two of them, F1 and F2, can be considered as measures for asymptotic

stability and take only the eigenvalues of the parametrised matrix into account. The

other two functions, F3 and F4, are related not only to the eigenvalues but also to

their sensitivity. Therefore, they act as measures for the robustness of the stability.

They involve the matrix norm mentioned above and are in close relationship to matrix

pseudospectra. The ε-pseudospectrum of a matrix is the union of eigenvalue spectra

occurring for all perturbed matrices where the perturbation is smaller than ε. Optimising

F4 for a suitably chosen ε value may help to attenuate possible transient amplification

of initial states.

The objective functions are not everywhere smooth, in general. Non-standard techniques

are required for their optimisation. The method implemented in the OPTIM code is

based on sampling gradients from the neighbourhood of the current point in parameter

space.

For a simple, ITER-like test case, the feedback parameters have been optimised

with respect to F1, F2, F3, and F4, respectively. The four resulting, feedback

controlled systems have been compared with respect to asymptotic stability, eigenvalue

sensitivity, robust stability, and transient behaviour by inspecting the values of the
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different objective functions, the eigenvalues, pseudospectra, and ||etA|| plots. The

solutions which have been optimised with respect to F1 and F2 are characterised by

inferior robustness. The F2-optimal solution has extremely sensitive eigenvalues and

a catastrophic transient peak. Optimising F3 produces a result which is by far more

robust. Finally, the F4-optimal system is slightly less robust but exhibits less severe

transient amplification than the F3-optimal case. The asymptotic stability of the latter

two cases is not substantially worse than in the former two cases.

As a physical mechanism of the transient amplification, small-scale eddy currents in

the conducting wall parts in the neighbourhood of the sensors have been identified.

Based on this finding, additional strategies to mitigate the transient amplification have

been developed and tested, namely, slowing down the response of the feedback system,

moving the sensors away from the wall, and using an additional sensor array. All these

strategies are successful to some extent and can be combined with each other. Taking

these actions can either degrade or improve robustness. Testing such strategies in the

case of a realistic ITER geometry is left for a future study.

It has been convincingly shown that it can be extremely dangerous to be satisfied with

merely having stabilised the RWM control system. Inspecting the system’s eigenvalues

alone and finding that all of them are located well in the left complex half-plane tells

nothing about the sensitivity of eigenvalues, robustness of the stability, and possible

transient amplification. Pseudospectra plots are a useful tool to get an impression of the

eigenvalue sensitivity. Computation of the complex stability radius (i. e., F3) provides a

quantitative measure of robustness. Plotting ||etA|| reveals possibly dangerous transient

amplification. It appears recommendable to use these tools routinely when designing

RWM feedback controllers, and to use objective functions like F3 or F4 for optimisation.
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To the authors’ knowledge, initial conditions which are not RWMs have not yet

been considered in any other RWM stabilisation study, and the possibility of severe

transient amplification of these states has not yet been recognised by the fusion research

community. On the other hand, it has to be noted that it cannot be inferred from this

study to which extent the transient growth as predicted by ||etA|| is indeed relevant.

The question remains if the states which are significantly transiently amplified, like the

one shown in figure 11, are excited at any time in a “real world” situation. Since such

states project mainly onto the stable subspace of the open-loop system, they can be

expected to be driven only by physical processes not included in the model (see also

the discussion concerning transient amplification of the sensor signal in subsection 2.3).

Again, nonlinear, forced-dissipative MHD simulations would be required to estimate the

significance of such “external” processes. Anyway, if the transient amplification will be

found to be an issue, strategies like those developed in this study could be useful to

mitigate this problem to some extent.
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