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It is shown that the problem of neoclassical transport at low collisionality in a perfectly

quasi-isodynamic (or omnigenous) stellarator can be reduced to the corresponding prob-

lem in a tokamak. In fact, the distribution function consists of two parts: one that can

be calculated exactly (for any collision operator) and does not carry any net parallel

current, and one that is proportional to the total toroidal current and is determined by

an equation that is identical to that solved in tokamak theory. Results from the latter

can therefore be carried over to the corresponding stellarator situation. Specifically, if

the total toroidal current enclosed by a flux surface vanishes, then the net bootstrap

current on that surface also vanishes. It is therefore consistent to optimise a stellarator

in such a way that the bootstrap current and neoclassical transport are simultaneously

minimised.
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1



1 Introduction

An important line of stellarator optimisation is the quest for quasi-isodynamic configu-

rations [1]. In a quasi-isodynamic magnetic field the cross-field drift vanishes on a time

average, i.e., the field is omnigenous [2], and the trapped particles precess poloidally

around the torus rather than toroidally (as in tokamak) or helically. The largest stel-

larator under construction, Wendelstein 7-X, is nearly quasi-isodynamic (particularly

when the plasma pressure is high), and further optimisation studies have shown that

quasi-isodynamicity can be achieved to a very high degree of accuracy [3].

The other main line of stellarator optimisation is the search for quasi-symmetric

configurations [4, 5, 6]. Such magnetic fields are symmetric in Boozer coordinates [7],

and have neoclassical properties that are identical to those in a tokamak [8]. Under a

suitable transformation of variables, the drift kinetic equation is isomorphic to that in

an axisymmetric magnetic field. The computation of neoclassical transport, bootstrap

current, current-drive efficiency, zonal-flow damping etc can therefore be reduced to

the corresponding calculations in a tokamak field.

In the present paper, we study the neoclassical properties of quasi-isodynamic plas-

mas in the long-mean-free-path regime. It was argued in Ref. [3] that the bootstrap

current should vanish in this limit if the total current also vanishes and if the collision

operator is approximated by its pitch-angle-scattering component. This is valuable

since an important element of quasi-isodynamic stellarator optimisation is to reduce

parallel currents as much as possible, in order to make the magnetic field structure

insensitive to plasma pressure. Here we show that the bootstrap current in a quasi-

isodynamic field actually vanishes exactly for any collision operator at long mean-free

path, if the net toroidal current vanishes. In fact, it turns out that the distribution

function (and therefore all neoclassical transport coefficients determining cross-field

fluxes, bootstrap current etc) consists of two terms. The first one is independent of the

collision operator and can be calculated exactly. The second term is identical to that

in a corresponding tokamak, but is multiplied by a coefficient proportional to the net

toroidal current and therefore vanishes in a current-free stellarator.

In the next section we review some properties of omnigenous magnetic fields that

we need for solving the kinetic equation in the following section. Our conclusions are

summarised in the final section.
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2 Quasi-isodynamic magnetic fields

An omnigenous magnetic field is defined as a field where no particles drift off flux

surfaces on a time average [2]. Thus, the radial drift velocity should vanish on an orbit

average. In particular, this must hold for trapped particles, whose turning points thus

stay on the same flux surface as they bounce back and forth. In general, they undergo

precession on the surface, however, and there are three topological possibilities for how

this can occur: the precession must be in the poloidal, toroidal, or a helical direction.

As already mentioned, a quasi-isodynamic magnetic field is defined as an omnigenous

field with poloidal trapped-particle precession.

Omnigenous magnetic fields have two remarkable properties that we shall use [9].

The first one is that the mimimum and maximum values of the field strength are

the same for each field line on the same flux surface. Thus, if we write the field as

B = ∇ψ ×∇α, where ψ is the toroidal flux and α = θ − ι(ψ)ϕ, with θ and ϕ poloidal

and toroidal angles, then
∂Bmax

∂α
=
∂Bmin

∂α
= 0,

whereBmax(ψ, α) andBmin(ψ, α) are the maximum and minimum magnetic field strength

on the field line labelled by (ψ, α). In a quasi-isodynamic field, the curves B = Bmax

and B = Bmin form poloidally closed contours on each flux surface. For simplicity, we

shall assume that the magnetic field only has a single maximum and minimum in each

period of the stellarator. The generalisation to the case of several maxima and minima

is trivial. The second property of omnigenous fields that we shall use is the fact that

line integrals along the magnetic field of the kind

∫ l+

l
−

f(ψ,B)dl

are independent of field line, if the integration is taken between points l−(ψ, α,B) and

l+(ψ, α,B) with equal field strength B on either side of the minimum,

l−(ψ, α,B) < l−(ψ, α,Bmin) = l+(ψ, α,Bmin) < l+(ψ, α,B),

see Fig. 1. This result was proved by Cary and Shasharina in the appendix of Ref. [9],

and thus means that
∂

∂α

∫ l+(ψ,α,B)

l
−

(ψ,α,B)
f(ψ,B)dl = 0 (1)
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Figure 1: Magnetic field strength versus arc length.

for arbitrary f(ψ,B).

It is useful to use (ψ, α,B) as independent coordinates within each period of the

stellarator. Of course, each B then corresponds to two points, l− and l+, which we

shall refer to as the two branches of the field. The Jacobian is

(∇ψ ×∇α) · ∇B = B · ∇B, (2)

and for later use we also note that

(

∂r

∂α

)

ψ,B
= −

∇ψ ×∇B

B · ∇B
. (3)

When taken once around the torus poloidally, the line integral of the magnetic field is

equal to µ0 times the enclosed toroidal current,

∮

B · dr =

∮

B ·
∂r

∂α
dα = µ0J(ψ).

and it follows that there must exist a function h(ψ, α,B) such that

B ·
∂r

∂α
=
µ0J(ψ)

2π
+
∂h

∂α
. (4)

It is straightforward to show that the function h can be chosen not to depend on the

branch,

h(ψ, α,B)|l
−

= h(ψ, α,B)|l+ .
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To this end, consider a line integral of B along a closed curve, lying on a flux surface,

defined by two lines of constant α and two lines of constant B on either side of Bmin,

as in Fig. 2. Let the two former curves be denoted by C1 and C3, and the two latter

ones by C2 and C4. Since there is no enclosed current

∮

C1+C2+C3+C4

B · dr = 0,

and because of Eq. (1),
∫

C1

B · dr = −

∫

C3

B · dr,

we have
∫

C2

B · dr = −

∫

C4

B · dr.

But Eq. (4) implies

∫

C2

B · dr =
µ0J [α(C3) − α(C1)]

2π
+ h[α(C3)] − h[α(C1)],

so it is clear that h can be chosen to be the same on the C1 and C3 branches.

Bmax

Bmin

Bmax

B

c1

c2

c3
c4

Figure 2: The curve C1 + C2 + C3 + C4 lies on a flux surface and therefore does not

enclose any current. The arcs C1 and C3 coincide with field lines, while C2 and C4 are

curves of constant field strength |B| on either side of |B| = Bmin.

It is interesting to note that combining Eqs. (3) and (4) gives

−
(B ×∇ψ) · ∇B

B · ∇B
=
µ0J(ψ)

2π
+
∂h

∂α
.

It was shown in Ref. [10] that a magnetic field is quasisymmetric if, and only if, the

left-hand side of this equation is a flux function. In the present context quasisymmetry

therefore corresponds to h = 0.
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3 Neoclassical transport

When expanded in the smallness of the gyroradius, the drift kinetic equation for each

species a becomes in first order

v‖∇‖fa1 + vd · ∇fa0 +
eav‖∇‖φ1

Ta
fa0 = Ca(fa1) + S, (5)

where the differentiations are carried out at constant unperturbed energy, mav
2/2 +

eaφ0(ψ), and normalised magnetic moment, λ = v2
⊥/v

2B. The electrostatic potential

is a flux function in lowest order but may vary in first order, φ = φ0(ψ) + φ1(ψ, θ, ϕ).

We have included a source term, S, on the right-hand side of Eq. (5) to represent

contributions from neutral-beam injection, RF heating and current drive etc, but will

assume that they are weak enough that the lowest-order distribution function remains

Maxwellian. The transport and currents driven by S then add linearly to those driven

by radial gradients, which are our focus here.

Because the orbit average of the radial drift velocity vanishes by assumption, we

can write

vd · ∇fa0 = −v‖∇‖Fa,

for some function Fa that is odd in v‖ and satisfies

∇‖Fa = −(b ×∇ψ) · ∇

(

v‖
Ωa

)

∂fa0
∂ψ

, (6)

where b = B/B and Ωa = eaB/ma. We can now write Eq. (5) as

v‖∇‖

(

fa1 − Fa +
eaφ1

Ta
fa0

)

= Ca(fa1),

and expand ga = fa1 − Fa + (eaφ1/Ta)fa0 = ga0 + ga1 + . . . as usual in the smallness

of the collisionality. In lowest order, then, we have ∇‖ga0 = 0, and ga0 is determined

from the next-order constraint

〈

B

v‖
Ca(Fa + ga0)

〉

= 0 (7)

for circulating particles, λ < 1/Bmax, while it vanishes in the trapped region, λ >

1/Bmax. Angular brackets denote the flux-surface average, defined as

〈· · ·〉 =

∮

dα

∫ l+(Bmax)

l
−

(Bmax)
(· · ·)

dl

B
/

∮

dα

∫ l+(Bmax)

l
−

(Bmax)

dl

B
.
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If the winding number ι(ψ) is irrational, the average in Eq. (7) is equivalent to an

integral along the orbit over a large number of periods. In Eq. (7) it is understood that

λ is kept constant in v‖ = σv[1 − λB(l)]1/2, with σ = ±1.

We now solve Eq. (6),

(b · ∇B)

(

∂Fa
∂B

)

ψ,α,v,λ
= −[(b ×∇ψ) · ∇B]

∂

∂B

(

v‖
Ωa

)

∂fa0
∂ψ

,

recalling Eqs. (2) and (3), which imply

∂Fa
∂B

= B ·
∂r

∂α

∂

∂B

(

v‖
Ωa

)

∂fa0
∂ψ

,

so that

Fa = −
∂fa0
∂ψ

∆a,

where

∆a = −
µ0J(ψ)

2π

v‖
Ωa

+
∂

∂α

∫ Bmax

B
h
∂

∂B′

(

v′‖
Ω′
a

)

dB′, λ < 1/Bmax (8)

for passing particles and

∆a = −
µ0J(ψ)

2π

v‖
Ωa

+
∂

∂α

∫ 1/λ

B
h
∂

∂B′

(

v′‖
Ω′
a

)

dB′, λ > 1/Bmax (9)

for trapped ones. Here Ω′
a = eaB

′/ma, v
′
‖ = σv(1− λB′)1/2, and we have used Eq. (4).

The first term on the right of Eqs. (8) and (9) is similar to that in the corresponding

tokamak calculation while the second term only arises if the parallel variation of B

depends on the field-line label α. However, the contribution from this term to Eq. (7)

vanishes, so that

∮

dα

∫ l+(ψ,α,Bmax)

l
−

(ψ,α,Bmax)
Ca(Fa)

dl

v‖
= µ0J(ψ)

∫ l+(ψ,α,Bmax)

l
−

(ψ,α,Bmax)
Ca

(

v‖
Ωa

∂fa0
∂ψ

)

dl

v‖
.

This is, in fact, the crucial step of our analysis, and follows from the fact that since

∂/∂α commutes with the collision operator [11], the quantity

∮

dα

∫ l+(ψ,α,Bmax)

l
−

(ψ,α,Bmax)
Ca

(

∂H

∂α

)

dl

v‖

vanishes for any function H(ψ, α,B, v, λ, σ) because of the Cary-Shasharina theorem

(1). As a result, the constraint (7) determining ga0 becomes

∫ l+(Bmax)

l
−

(Bmax)
Ca

(

µ0Jv‖
Ωa

∂fa0
∂ψ

+ ga0

)

dl

v‖
= 0, (10)
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which is identical to that solved in neoclassical theory for tokamaks. Indeed, in the

tokamak case the magnetic field is B = I(ψp)∇ϕ+∇ϕ×∇ψp, where ψp is the poloidal

flux, and the distribution function is determined from [12]

∫

Ca

(

−
Iv‖
Ωa

∂fa0
∂ψp

+ ga0

)

dl

v‖
= 0.

which coincides with Eq. (10) if µ0J is replaced by −qI, where q = ι−1 = dψ/dψp. Note

that ga0 is proportional to J(ψ) and vanishes identically in a current-free stellarator.

We are now in a position to calculate the bootstrap current and cross-field transport.

The parallel current carried by fa1,

ja‖ = ea

∫

v‖fad
3v = jat + jas,

consists of two parts: a “tokamak part”,

jat =
µ0J

2πB

(

dpa
dψ

+ naea
dφ0

dψ

)

+ ea

∫

v‖gad
3v,

and a “stellarator part”,

jas = −πeaB
∑

σ

σ

∫ ∞

0

∂fa0
∂ψ

v3dv

∫ 1/B

0
dλ

∂

∂α

∫ min(λ−1,Bmax)

B
h
∂

∂B′

(

v′‖
Ω′
a

)

dB′, (11)

due to the non-equivalence of different field lines on the same flux surface, ∂/∂α 6= 0.

The “stellarator part” of the bootstrap current does not contribute to the net toroidal

current, which can be seen as follows. Its contribution, Jas(ψ), to the total parallel

current inside a flux surface ψ can be calculated by evaluating the current crossing a

surface of constant B,

Jas(ψ) =

∫

jasb · dS,

where

dS =
∇B

(∇ψ ×∇α) · ∇B
dψdα

and the integral is taken over the area enclosed by the flux surface ψ. The result,

Jas(ψ) =

∫ ψ

0
dψ′

∫ 2π

0

jas
B
dα = 0,

vanishes because of the α-derivative in Eq. (11). (A physical interpretation of this

result is provided in the concluding section.) The net toroidal current inside the flux

surface ψ is therefore given by

J(ψ) =
∑

a

∫

(jatb + ja⊥) · dS + JRF(ψ) + JNBI(ψ),
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where the two last terms represent any RF- and neutral-beam driven currents, and

where the perpendicular current is

∫

ja⊥ · dS =

∫

b × (∇pa + naea∇φ0)

B
· dS.

Using
b ×∇ψ

B
· dS =

∇ψ ×∇B

B · ∇B
·

B

B2
dψdα = −B ·

(

∂r

∂α

)

dψdα

B2
,

we find
∫

ja⊥ · dS = −
µ0

B2

∫ ψ

0

(

dpa
dψ′

+ naea
dφ0

dψ′

)

J(ψ′)dψ′. (12)

The “tokamak part” of the bootstrap current on the surface ψ is proportional to J(ψ)

and therefore vanishes if the net current inside this surface is zero. The same holds

for the diamagnetic current according to Eq. (12), and we conclude that there is no

net pressure-driven current on a flux surface inside which the total toroidal current

vanishes.

The neoclassical transport can be calculated entirely as in a tokamak. The neoclas-

sical radial particle flux is

〈Γa · ∇ψ〉 =

〈
∫

fa1vd · ∇ψd
3v

〉

= −
∑

σ

〈

B

∫ ∞

0
πv3dv

∫ 1/B

0
fa1∇‖Fadλ

〉

.

By using the fact that 〈B · ∇f〉 = 0 for any function f and
〈

B

∫ 1/B

0
fa1∇‖Fadλ

〉

= −

〈

B

∫ 1/B

0
Fa∇‖fa1dλ

〉

,

we can express the particle flux as

〈Γa · ∇ψ〉 =

〈
∫

Fav‖∇‖fa1d
3v

〉

=

〈
∫

FaCa(Fa + ga)d
3v

〉

, (13)

and the heat flux analogously as

〈qa · ∇ψ〉 =

〈

∫

(

mav
2

2
−

5Ta
2

)

FaCa(Fa + ga)d
3v

〉

. (14)

4 Conclusions

In a quasi-isodynamic stellarator, the first-order distribution function of each species

in the limit of long mean-free path consists of two terms: a tokamak-like term and a

term specific to stellarators, i.e.,

fa =

(

1 +
eaφ1

Ta

)

fa0 + fat + fas,

9



with

fat = ga +
µ0J(ψ)v‖

2πΩa

∂fa0
∂ψ

,

fas = −
∂fa0
∂ψ

∂

∂α

∫ min(Bmax,λ−1)

B
h
∂

∂B′

(

v′‖
Ω′
a

)

dB′

The term fat is proportional to the enclosed toroidal current J(ψ) and is determined

by a kinetic constraint (10) that is identical to that solved in neoclassical tokamak

theory. This term therefore coincides with the distribution function in a tokamak with

a similar parallel variation of B. The other term, fas, is due to the fact that this

variation is in general different for different field lines in a stellarator. This term is

however independent of the collision operator and does not carry any net bootstrap

current. It follows that if the total toroidal current enclosed by a certain flux surface

vanishes, then the bootstrap current on that surface also vanishes. In fact, the current

carried by each species then vanishes separately on a flux-surface average. On the

other hand, if the enclosed current does not vanish, then the bootstrap current can be

calculated exactly as in a tokamak.

Although the bootstrap current in a perfectly quasi-isodynamic stellarator coincides

with that in a tokamak, the cross-field neoclassical transport does not. This transport

is tokamak-like in the sense that there is no “1/ν-regime” where the transport is in-

versely proportional to the collision frequency, but the stellarator-specific part of the

distribution function does contribute transports. Like the tokamak-part, it does so at

a rate proportional to the collision frequency. The particle and heat fluxes are given

by Eqs. (13) and (14), respectively. A difference to the tokamak is that the particle

flux is not only driven by collisions between different species, but also by like-particle

collisions [10], even if the magnetic field is perfectly omnigenous. In practice it is diffi-

cult to achieve perfect omnigenity, so remnants of a “1/ν-regime” remains in the radial

transport. The transport rates calculated here represent a lower bound, which can be

approached but never quite achieved in practice. The bootstrap current, however, has

no 1/ν-enhancement and should be more accurately described by our results.

The fact that the “stellarator contribution” to the bootstrap current vanishes can be

understood in terms of particle orbits. In the tokamak, the bootstrap current arises be-

cause of a diamagnetic effect associated with the banana orbits. Particles have positive

parallel velocity (relative to the toroidal current) on the outer leg of banana orbits and
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negative v‖ on the inner leg. This is seen from the first term on the right in Eqs. (8) and

(9), which represents the radial displacement (in terms of ψ) of passing and trapped

particles, respectively. If the enclosed current vanishes, then the these terms vanish

and only the second terms in these equations remain. This is the radial displacement

due to the non-equivalence of different field lines on the same flux surface. Because of

the α-derivative, this part of the displacement changes sign over the flux surface. This

means that the parallel velocity is no longer preferentially positive on the outer leg of

the particle orbits, and there is no net drive for a bootstap current. Geometrically, this

can be understood from the fact that, unlike in a tokamak, the trapped orbits do not

reside only on the outboard side of the torus, but are distributed poloidally around the

flux surface. An explicit example can be seen in Fig. 3c of Ref. [13].

The practical importance of our results is the realisation that two of the optimi-

sation criteria for stellarators of the Wendelstein 7-X type, namely, the simulataneous

minimisation of parallel currents and neoclassical transport, are mutually consistent.

In Wendelstein 7-X, it is intended to use electron cyclotron current drive to cancel

the residual bootstrap current [14, 15]. This is necessary only because the neoclassical

transport optimisation is not perfect. In a strictly quasi-isodynamic device, the boot-

strap current and the toroidal projection of the diamagnetic current vanish exactly on

a flux surface average at low collisionality.
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