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Abstract

The in
uence of a static magnetic island on the behaviour of the electrostatic

turbulence in a tokamak is investigated numerically employing global nonlin-

ear gyrokinetic particle-in-cell simulations. The excitation of turbulence is

modi�ed by the magnetic topology of the island. Low mode numbers in the

energy spectrum of the potential disturbances, corresponding to the island

perturbation, are ampli�ed by nonlinear coupling with the microinstabilities,

particularly in the presence of strong turbulence. The associated large-scale


ows a�ect the transport directly and through strain of small-scale eddies.

The temperature pro�le determined numerically in the island region agrees

qualitatively with analytic estimates; however, quantitative discrepancies are

found.
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I. INTRODUCTION

In the calculation of turbulent transport due to electrostatic or electromagnetic microin-

stabilities in tokamaks, the equilibrium con�guration is usually supposed to be axisymmetric.

However, large-scale magnetohydrodynamic instabilities like the tearing mode 1;2 , leading to

the formation of helical structures (called magnetic islands) that destroy the toroidal sym-

metry of a tokamak, are often observed in fusion experiments. A saturated tearing mode

can lead to a signi�cant degradation of the energy con�ned in the plasma or even cause

disruptive termination of a discharge. For these reasons, tearing modes are an area of very

active research. In many tokamak reactors, the tearing mode is found to be driven unstable

by the decrease of the bootstrap current due to the 
attening of the pressure pro�le inside

the island 3{5 (in this case, the mode is called Neoclassical Tearing Mode, NTM).

It is easy to imagine that the change in the magnetic topology due to the presence of a

large helical perturbation in
uences the dynamics of transport. First of all, since a magnetic

island reconnects the magnetic �eld on both sides of the rational surface where it develops,

it provides a radial magnetic-�eld component, thus leading to the appearence of a huge

radial parallel transport, which is otherwise absent in a tokamak. This is the origin of the


attening of the pressure pro�le within the reconnected region mentioned above. As the

microinstabilities that lead to turbulence are driven by density and temperature gradients,

this 
attening drastically reduces the turbulence level in the island. Finally, the development

and the shape of the turbulent structures can be modi�ed by the helical magnetic �eld

of the mode and by the interaction with the sheared 
ows connected to the large-scale

(island) components of the electric �eld. On the other hand, the turbulence itself a�ects the

dynamics of magnetic islands. First of all, small-scale electromagnetic 
uctuations modify

the seeding and growth processes 6{8 . Moreover, the competition between perpendicular

and parallel transport contributes to determining the pressure pro�le around the island

separatrix 9;10 , in a region which can be as large as the island itself in the early stage of

the island evolution. The shape of the pressure pro�le has a strong impact on the island
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stability, �rst of all because it determines the level of the bootstrap current (and hence

its neoclasical stability 9 ), but also because the island rotation due to diamagnetic e�ects

gives rise to a polarization current 11{13 which is found to be potentially important for the

dynamics of small islands. The behaviour of the island propagation velocity in the presence

of turbulence has been investigated recently employing a Hasegawa-Wakatani model in a

slab con�guration 14 .

A complete kinetic self-consistent solution of the problem of the island evolution in the

presence of turbulence in a realistic tokamak geometry, which involves the resolution of time

scales ranging from those typical of the particle orbits to those characterizing the island

growth, is computationally prohibitive. The size of the problem can be reduced, e. g., by

choosing a 
uid approach to the computation of the turbulent �elds, by simplifying the

magnetic geometry (slab or cylindrical instead of toroidal), or by considering only short

(turbulence-related) or long (island-related) time scales. A \minimal model" for a self-

consistent description of turbulence and island dynamics has been put forward in Ref. 15 ,

which includes also a detailed discussion of the basic features of the mutual interaction

between small-scale and large-scale instabilities typical of this problem.

In this paper, full toroidal geometry and a kinetic description of the ion behaviour are

retained. Toroidicity and kinetic e�ects are known to play a fundamental role in the dynam-

ics of both the turbulence and the tearing mode. On the other hand, in the model adopted

here, the magnetic island is treated as a prescribed static perturbation of the background

axisymmetric con�guration, and its time evolution is disregarded. A particle-in-cell (PIC)

approach is well suited for a direct numerical implementation of this model, since PIC codes

are based on the integration of the trajectories of an ensemble of markers evolving according

to a set of Hamiltonian equations of motion, where the magnetic-�eld perturbation due to

the island can be included in a quite straightforward way. The self-consistent electric �eld

is calculated by solving the Poisson equation on a �xed spatial grid. In the simulations

presented here, performed employing the global gyrokinetic PIC code ORB5 16;17 , only elec-

trostatic microinstabilities are considered. With respect to the considerations made above,
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the model adopted here is used to describe the in
uence of the island on the development

of the turbulence (spectrum, coupling to long-wavelengths modes, shape of the eddies etc.),

to determine self-consistently the heat transport and its dependence on the island size and

geometry and (related to this) to check the assumptions of previous studies on the transport

properties in the island region.

It is noted in passing that a gyrokinetic approach is needed not only to properly treat the

dynamics of the microinstabilities, but also because �nite-orbit e�ects can become essential

for small islands and in any case around the separatrix 18;19 .

In this paper, Sec. II is devoted to a description of the approach used to include an

island structure in numerical simulations based on the PIC method. Some earlier results

on the determination of the balance between perpendicular and parallel transport across a

magnetic island are summarized in Sec. III. The numerical results of the ORB5 simulations

are presented in Sec. IV. Some concluding remarks follow in Sec. V.

II. NUMERICAL SCHEME

A. The particle-in-cell code ORB5

The particle-in-cell method is based on the introduction of an ensemble of \super-

particles", or markers, each one describing a piece of the phase space associated with a

given particle species. The evolution of the markers is determined by the corresponding

equations of motion, which are coupled to Maxwell's equations. The self-consistent �elds

are calculated projecting the charge and current associated with each marker onto a �xed

spatial grid. This approach is implemented in the global gyrokinetic PIC code ORB5, which

provides a numerical solution to the electrostatic approximation of the gyrokinetic equations

in the formulation of T. S. Hahm 20 . The distribution function is split into an analytically-

known time-independent part f0 and a perturbation Æf which is represented numerically.

The gyrokinetic equations of motion for the markers are
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where R is the position of the gyrocentre, vk the velocity component along the magnetic

�eld, b the unit vector along the magnetic �eld B , � the magnetic moment, 
ci the

cyclotron frequency, h�ig the perturbed potential (solution of the Poisson equation) av-

eraged over the gyroperiod, qi and mi the particle's charge and mass, respectively, and

B�
k = B+(mi=qi)vkb�r�b . Since along the orbits df=dt = 0 , Æf must obey the equation
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The Æf method described above can be successfully applied to represent the deviation of

the moments of the distribution function from the \unperturbed" state (when no island is

present), as has been shown previously for the case of drift kinetic simulations 21;22 .

The perturbed potential is obtained as the solution of the Poisson equation
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Æ(R+ �� r)d6Z
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where � is a vector directed from the gyrocentre to the position of the particle and h�i

is the 
ux-surface-averaged potential. The charge connected to each marker is assigned

pointwise to a spatial mesh in order to provide the source term. The computation of the

gyroaveraged density follows an adaptive procedure, in order to have the same number

of sampling points per arclength along the gyro-ring. Once the perturbed gyroaveraged

charge density associated with each marker has been projected onto the (B-spline) basis, the

equation for the components of the potential on this basis reduces to an algebraic matrix
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equation. The same B-spline basis can be used to interpolate the radial magnetic-�eld

perturbation associated with the magnetic island, which is initially assigned on a grid.

B. Including a magnetic island

In the presence of a (static) magnetic island, the tokamak magnetic �eld can be repre-

sented as

B = r t �r�=m+r'�r	he; (6)

where  t is the toroidal 
ux, � = m� � n' is the helical angle ( � and ' being the

poloidal and toroidal angles, respectively, and m and n the poloidal and toroidal mode

number associated to the island) and

	he =  �
 t

qs
+ � cos � (7)

is the helical 
ux (  is the poloidal 
ux and the subscript s denotes that a quantity

is calculated at the resonant (m;n) surface), which can be used to label the perturbed

magnetic surfaces, since B�r	he = 0 . In the limit of vanishing magnetic perturbation, �!

0 , it is easy to show that Eqs. (6,7) reduce to the usual representation of the axisymmetric

tokamak �eld. The last term of Eq.(7) describes the island magnetic �eld, which is therefore

~B = �r'�r cos � = m� sin �r� �r'

where the perturbation strength � is approximated to be a constant. With this assump-

tion, the island �eld is directed along r . This radial component accounts for the most

important modi�cation of particle orbits 23 and has been included in ORB5 by operating

the substitution b! b+ ~b (where ~b = ~B=B ) in the �rst term of both Eq.(1) and Eq.(2).

Fig. 1a is a Poincar�e puncture plot produced by following the orbits of 23 particles

along the torus, the electrostatic potential being switched o�. The dots obtained as the

intersection of the trajectories with the plane ' = 0 show the pattern of the perturbed

�eld lines, which coincides with the contour levels of 	he (for this plot, particles with low
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energy and vk=v ' 1 have been employed to reduce their drift with respect to the 
ux

surfaces). The density pro�le, obtained again in the absence of the electrostatic potential,

is reported in Fig. 1b. Here and in the following, the 
ux-surface averages are performed in

helical cells delimited by neighbouring surfaces of constant 	he , according to the de�nition

hAi = lim
Æ	he!0

R
	he+Æ	he

	he�Æ	he
A d3rR

	he+Æ	he

	he�Æ	he
d3r

: (8)

The density pro�le shown in Fig.1b exhibits a clear 
attening within the island. The contri-

bution of the simulation markers, namely Æn =
R
d
pÆf=V (where d
p is the phase-space

element and V is the volume of the cell) is shown by the dashed line.

In the determination of the balance between parallel and perpendicular transport in the

island region, an important role is played by the ( � -averaged) parallel gradient operator

rk = b � r = kk @=@�j	he
. The parallel wavevector kk de�ned through this expression for

rk is proportional to the distance from the rational surface and to the magnetic shear:

kk = �
m

qR

 �  s

qs

dq

d 
=
�sssn

r2s
(r � rs); (9)

where the �rst expression refers to a full toroidal geometry and the second to a slab or

cylindrical geometry. In Eq. (9), � is the inverse aspect ratio and s = (r=q) dq=dr the

magnetic shear.

III. PARALLEL AND PERPENDICULAR TRANSPORT CLOSE TO THE

ISLAND SEPARATRIX

In the presence of a magnetic island, since the transport along the �eld lines is much

larger than across the �eld, the pressure pro�le can be thought to be a function of the

perturbed magnetic-
ux label 	he introduced above. Under this assumption, the pressure

gradient jumps from a �nite value to zero when the island separatrix is crossed. However,

the ratio between, say, the parallel and perpendicular heat conductivity in a tokamak is

indeed very large (up to �k=�? � 109 � 1010 ) but �nite. As a consequence, a boundary

7



layer appears around the island separatrix, along which the heat is transported from one side

of the rational surface to the other 9;10 . The features of this process have been investigated

solving the steady-state heat di�usion equation 9

�kr
2

kT + �?r
2

?T = 0; (10)

or, alternatively,1 the kinetic equation 10

vkrkf = D?r
2f: (11)

The critical width wc in which parallel and perendicular transport compete is obtained

by equating the two terms of the previous equations. Thus in Eq. (10) one can estimate

�kk
2

k � �?=w
2

c , and assuming r � rs � wc in Eq. (9), the scaling for wc turns out to

be wc=r � (�?=�k)
1=4(1=�sssn)

1=2 . The corresponding estimate derived from Eq. (11),

namely wc � (D?=kkvth)
1=2 , is reduced to the above if a parallel diÆvity Dk � vth=kk

is introduced (see footnote) and again taking r � rs � wc in Eq. (9). In the transition

layer, the temperature is not a 
ux-surface function. The heat is found to be transported

along the layer and to 
ow across the rational surface near the X -point 9 . The analysis

of Hazeltine et al. 10 , moreover, predicts that the jump �f of the distribution function

on both sides of the island should be proportional to the gradient df=dr at the island

separatix, the proportionality factor being approximately given by the width of the critical

layer wc '
q
�?=kkvth . It has to be stressed that, in both approaches, the dependence of

the perpendicular (heat) di�usion coeÆcient on the radial coordinate  and on the helical

angle along the island � has been neglected, in order to obtain an analytic solution of the

starting equation. In the next section, this picture is compared with the results of direct

numerical simulations of turbulent transport.

1It is noted that replacing conduction by convection, i. e. replacing in Eq. (10) the term �kr
2

kT

with vkrkT (which is in turn equivalent to estimating 9 �k � vth=kk ) one obtains an equation

of the same form as Eq. (11).
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IV. NUMERICAL RESULTS

The numerical simulations presented in this section have been performed for a tokamak

with circular concentric 
ux surfaces, major radius R0 = 3:3 m and minor radius a =

0:47 m. A 
at density pro�le is considered, the turbulent transport being caused by an

electrostatic Ion-Temperature-Gradient (ITG) instability. As explained in Sec. II B, 
ux-

surface (\zonal") averages have to be performed between surfaces of constant 	he , which

are not axisymmetric ( n = 0 ) if a magnetic island is present. However, the assumption

that the zonal potential coincides with an n = 0 mode is hard-wired in ORB5 when

adiabatic electrons are considered. Therefore, within the adiabatic approximation, a proper

computation of the zonal 
ows turns out to be extremly diÆcult and is excluded from the

simulations presented here (i. e., n = 0 modes are set to zero). No source terms have

been used, so that the temperature pro�le relaxes according to the level of the heat 
ux.

In simulations of this kind, if the normalized gyroradius �� � �s=a is suÆciently small,

the time evolution of both the temperature and heat 
ux pro�les is slow, so that a \quasi-

steady" state can be identi�ed 24 . This approach has been used in most of global turbulence

analysis and has been chosen as a standard benchmark case for European global codes 25 .

For simulations without zonal 
ows like those described in this paper, a quasi-steady stated

can be reached for �� < 1=200 [see e. g. Ref. 17 ]. In the ORB5 runs analyzed here,

�� = 1=320 . As this corresponds to a pretty low value for the ion temperature, the ion

streaming along the island is not very fast. Typical values of �k=�? are therefore2 in the

range 106 � 107 .

An example of the evolution of the ion temperature pro�le in a typical ORB5 simulation

is shown in Fig. 2. Since the temperature is initialized as a function of the unperturbed


ux coordinate  , each run is started with a turbulence-free phase, in which only potential

perturbations with low mode numbers are allowed. During this time, the ion temperature

2Here, according to Ref. 9 , we estimate �k � vth=kk , see Sec. III
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becomes constant on the perturbed (constant- 	he ) 
ux surfaces and 
attens inside the

island. Outside the island, the temperature gradient increases because the 
ux surfaces are

on averaged \compressed" with respect to the unperturbed magnetic equilibrium. After this

phase, turbulent modes are switched on. Under the in
uence of the turbulent transport, the

temperature gradient outside the island decreases, at a particularly fast rate at the end of the

linear phase (overshoot). At the end of the run, a phase with almost constant temperature

gradients in the island region is observed. It is noted that the gradients are computed in this

�gure as the variation of the temperature with respect to the 
ux-surface averaged value

of the radial coordinate, i. e. with respect to h i . In the calculation of heat conductivity

(de�ned as ratio of heat 
uxes and temperature gradients) presented below, the gradients

are evaluated taking into account that the distance between neighbouring 
ux surfaces is

a function of the helical angle � . Fig. 2b shows the 
attened temperature pro�le at the

end of the turbulence-free phase as a function of the radial ( x -axis) and helical ( y -axis)

coordinates (the inner and outer separatrices are represented by the two vertical thick solid

lines). For plotting reasons, the island is \stretched" along the x -axis at the X -points

( � = �� ). The resulting unphysical cells are displayed in white.

The �rst set of results presented here concerns the development of the turbulence in

the presence of a magnetic island. In Fig. 3, the time evolution of the toroidal energy

spectrum (averaged over the minor radius) is shown for two di�erent values of the island

width. Moving from the linear to the nonlinear phase the spectrum exhibits an inverse

cascade to smaller mode numbers, as usually seen also when the island is absent. The

nonlinear coupling between the \turbulent" modes (high n ) and the \island" modes (low

n ) deserves particular attention. In these simulations with a (3,2) island, a coupling between

mode numbers n1 and n2 in the turbulence spectrum satisfying the relation n1 = n2+2 is

found in both the linear and nonlinear phase. The low- n modes ampli�cation through this

coupling with the small-scale turbulence is more evident when the island is larger. Moreover,

the whole spectrum shifts to lower n for larger islands. In the simulations presented here,

\seed" n = 2 and n = 4 harmonics arise during the turbulence-free phase of the run
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described above; under realistic conditions, in general, the low- n potential associated to

the island rotation with respect to the plasma can play a similar role and interact nonlinearly

with the 
uctuating �eld of the microinstabilities. These low- n �eld components a�ect the

transport in the island region in a twofold way . First of all, they yield a direct transport

signal, in particular where high- n modes have smaller amplitude, for instance inside the

island (an example is shown in Fig. 4). While the direct contribution of the large-scale

modes to the transport across the separatrix is negligible, they are essential for the residual

transport level inside the island and �nally for the shape of the temperature pro�le close to

the resonant surface. As they are generated through non-linear coupling with the background

turbulence, their importance is directly related to the strength of the small-scale modes, cf.

the discussion after Eqs. (12,13) below. The second e�ect of low- n modes on the transport

is that they generate sheared 
ows which strain the turbulent eddies, thus reducing the

transport level. This process, which is closely analog to the familiar e�ect of zonal 
ows on

drift-wave turbulence, is predicted theoretically (see e. g. Ref. 15 ) and is nicely con�rmed

in our simulations.

We now turn to the analysis of the transport in the island region. In the simulations, the

formation of elongated eddies across the X -point region is often observed. These eddies

split when they drift inside the island, where the temperature gradient is much smaller (it

is recalled that the island has a �xed position in these runs). In the region of the plasma

corresponding to the island's O -point ( � ' 0 ), a breaking of the eddies close to the (in

particular inner) separatrix is observed. In this regard, an interesting observation is that

low- n components in the local energy spectrum are usually observed to prevail on the

inner side of the island, whereas they are less strong on the outer side. Correspondingly,

the turbulent eddies are seen to be more pronounced on the outer side. This is a strong

indication that the amplitude of the turbulent modes is regulated by the sheared 
ows

associated with low- n �elds. These qualitative observations are con�rmed by the transport

levels measured numerically. An example is shown in Fig. 5a. Outside the island, in the O -

point region, the E�B transport is strong, consistently with the fact that the 
ux surfaces
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are closer to each other and the temperature gradient is therefore higher. However, close to

the island separatrix, the largest heat 
uxes are often found in the X -point region, whereas

the transport around the O -point is reduced. These features are found in both the linear

and nonlinear phase. The turbulent transport is of course very low in the island core. The

behaviour of the heat 
ux as a function of the helical angle � cannot be explained simply

in terms of the di�erent \distance" of the 
ux surcaces at the O -point as compared to the

X -point (i. e. in terms of di�erent local gradients). This can be seen in Fig. 5b, which

reports the values of the heat conductivity. It is noted, in addition, that the penetration

(spreading) of the turbulent structures into the outer side of the island leads to high values of

the conductivity (relatively high transport in a region of low gradient). The ratio of the heat


ux at the separatrix through X -point ( qX ) and through the O -point ( qO ) is reported

in Fig. 6 as a function of the initial inverse gradient length and of the island width. The

behaviour of qX=qO shown in Fig. 6a is due to the fact that, below a given value of the rT

at the island, the formation of elongated eddies through the X -point mentioned above is

reduced. Moreover, at higher gradients, i. e. when the turbulence is stronger, the large-scale

sheared 
ows become stronger as well. The connected straining of the eddies close to the

island separatrix seems to be more e�ective in the O -point region than in the X -point

region (this result could change in the presence of strong zonal 
ows). The dependence of

the ratio qX=qO on the island width reported in Fig. 6b has been computed for very similar

values of the temperature gradient outside the island. Correspondingly, the ratio between

the energy of small-scale and large-scale modes is comparable. The assumption that the

transport level is determined by the interaction between low- n and turbulent 
ows would

then explain the weak dependence of qX=qO on the island width and be consistent with the

results shown in Fig. 6a.

The analytic predictions on the shape of the temperature pro�le across the island men-

tioned in Sec. III 9;10 are �nally checked against direct numerical simulations of turbulent

transport. The basic picture, according to which the temperature pro�le must exhibit a tran-

sition layer across the island separatrix, where it is not a 
ux-surface function, is qualitatively
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con�rmed. It is recalled that, in addition to the �nite perpendicular transport, �nite-orbit

e�ects also play a role in smoothing the pressure pro�le across the separatrix 21;22 . In the

simulations, the ratio between the radial E�B 
ux

qE =
Z
mv2

2
vE Æf d3v (12)

and the radial component of the parallel 
ux along the perturbed �eld lines

qk;r =
Z
mv2

2
vk~b Æf d3v (13)

is calculated. As expected, inside the island separatrix there is a layer where these 
uxes

are of the same order. Depending on the strength of the turbulence, the ratio qE=qk;r can

be above or below one (as mentioned at the beginning of this section, the parallel streaming

is not very fast in these simulations). In the very centre of the island, this ratio can be

one or two order of magnitude higher than at the separatrix, depending on the temperature

gradients set in the simulations. In the island centre, the parallel transport becomes less

and less e�ective, since kk is proportional to the distance from the rational surface, whereas

turbulent structures can in some case reach the O -point or be transported there by the

diamagnetic rotation of the instability. Moreover, the excitation of low- n modes inside the

island is much stronger if the level of the background turbulence is increased, as discussed

above. A consequence of the fact that large eddies can develop across the X -point is

that heat can be transported across the resonant rational surface without undergoing the

process of crossing the separatrix at the O -point and being transported to the X -point,

which usually considered as the standard process for the transport of heat from one side

of the rational surface to the other 9 . The suggested proportionality between the jump

�T of the temperature pro�le on both sides of the island and the gradient dT=dr at the

island separatrix 10 has been investigated through a scan in the background temperature

gradient for two di�erent sets of simulation parameters. The result of this scan, reported in

Fig. 7, is that the product wc dT=dr increases faster than �T if the temperature gradient

is increased, whereas their ratio is predicted to be constant, cf. Sec. III. One possible
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explanation for this result is that the assumption of uniform (both across and along the

island) heat conductivity is too crude (it is in fact never veri�ed in the simulations). Close

to the island separatrix, �? displays a strong variation as a function of the radius and

in particular of the helical angle, see Fig. 5b. Moreover, �?;X and �?;O vary di�erently

depending on plasma parameters, particularly on the temperature gradient, as shown above.

Whether a di�usive ansatz can be used at all to describe the transport across the island

separatrix is an interesting issue which will be addressed in the future.

V. DISCUSSION AND CONCLUSIONS

The investigation of the interaction between magnetic island and electrostatic drift-wave

turbulence in a tokamak plasma presented in this paper is based on the solution of the

gyrokinetic equation in a toroidal geometry. Emphasis has been placed on the modelling

of the turbulent processes in the presence of a static island. Global electrostatic simula-

tions have been performed employing the PIC code ORB5. PIC codes allow an {at least

conceptually{ straightforward implementation of a magnetic island through a modi�cation

of the equations of motion which take into account the presence of a small radial component

of the magnetic �eld. The development of the turbulence is modi�ed by the MHD mode

through the associated 
attening of the temperature gradient and through the interaction

between large-scale (island) 
ows and small-scale (turbulence) 
ows. These low- n 
ows act

both radially, providing an own transport signal, and azimuthally, straining the small-scale

eddies. Using the terminology of Ref. 15 , the feedback of large scales on small scales occurs

both in position space and in k space. The numerical results obtained in this paper con�rm

the importance of the complex dynamics outlined above. In particular, the inhomogeneous

behaviour of the transport both across and along the island has been stressed. The validity

of a transport model for the island based on the assumption of uniform heat conductivity

has been questioned. More basic questions concerning the di�usive nature of the transport

in the island region remain to be explored.
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As discussed in the Introduction, in this paper we aim rather at an accurate descrip-

tion of small-scale instabilities (through a global toroidal gyrokinetic approach) than at the

resolution of the time scales connected with the island evolution. In this sense, the choice

of a non-rotating island is linked to the fact that the present numerical scheme does not

include the physics required for a self-consistent determination of the island rotation, which

is connected to the dissipative phenomena leading to an \out-of-phase" current in the island

region 26 . Correspondingly, the electrostatic potential associated with the island rotation

cannot be determined self-consistently, whereas it is determined from the Poisson equation

for the turbulent 
uctuations. Anyway, since the island rotation is supposed to occur in the

range of the diamagnetic frequency, its interaction with the drift waves 18 is potentially an

important element for the island stability; moreover, the rotation frequency itself is expected

to by in
uenced by the radial pro�les 14 , as already noted in Sec. I. Similarly, an impor-

tant role in the seeding and in the �rst phase of the island growth is played by small-scale

electromagnetic 
uctuations, which are not retained in the electrostatic version of ORB5

employed here. However, as far as the transport properties of the plasma in the island re-

gion are concerned, an electrostatic approach is suÆcient to address the relevant features of

the process studied here (energy transport generated by small-scale disturbancies, nonlinear

mode coupling, interaction between large and small scales, inhomogeneity of the transport

properties in the island region, etc.).

It is recalled that, in the simulations presented here, the electrons were assumed to be

adiabatic. In ORB5, the adiabatic approximation is implemented under the assumption of

unperturbed 
ux surfaces. For these reason, zonal 
ows were excluded from the computation,

and the calculation of low- n �elds was not exact, in particular for large islands. A way to

overcome this problem, thus obtaining more realistic prediction of the transport level in the

island region, is to employ kinetic electron, which have the correct response to the island

topology. It is important to recall, however, that the physics of self-regulation of turbulent

transport through sheared 
ows connected to large-scale components of the electrostatic

potential is not entirely excluded from our simulations, since the low- n �elds due to the

15



presence of the island provide an e�ect similar to that of zonal 
ows, as mentioned above. In

this respect, on the contrary, the neglect of zonal 
ows in our simulations allows us to discuss

the role of low- n modes on their own. The investigation of the zonal-
ows-physics in the

presence of a magnetic island is planned for the near future. The accurate calculation of the

transport levels is crucial to make more realistic predictions on the stability of small islands

in the presence of signi�cant perpendicular transport and will allow a more quantitative

analysis of threshold models 9 based on the \critical width" wc / (�?=�k)
1=4 mentioned

in Sec. III.
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Figure captions

Fig. 1: ORB5 simulation performed excluding the self-consistent electric �elds to highlight

the motion of the ions along the perturbed �eld lines in the presence of a magnetic island:

Poincar�e puncture plot (a) and radial density pro�le (b).

Fig. 2: Time evolution of the temperature gradient in the island region in a typical ORB5

simulation (a). In the turbulence-free phase, the pro�le 
attens in the centre of the island and

peaks just outside because of the \compression" of the magnetic surfaces. In the turbulent

phase, the pro�le relaxes to a lower value of the gradient. The time is expressed in units

of a=cs (where cs is the sound speed). Temperature pro�le at the end of the turbulence-

free phase (b) as a function of the radial coordinate h
p
 i and of the helical angle �

(where � = �� corresponds to the X -point, � = 0 to the O -point) for a large island

(W=a ' 0:1 ).

Fig. 3: Time evolution of the energy spectrum of the turbulence for a large (W=a ' 0:1 , a)

and small (W=a ' 0:04 , b) island, showing the coupling between large-scale and small-scale

�elds. The y -axis reports the logarithm of the toroidal-mode energy normalized to mic
2

s .

Fig. 4: E�B heat 
ux de�ned in Eq. (12) as a function of h
p
 i and of the helical angle

� for a large island (W=a ' 0:1 ). The transport due to the large-scale �eld components

(with di�erent directions) is clearly visible inside the island.

Fig. 5: Heat 
ux (a) and heat conductivity (b) in the nonlinear phase, for a mid-size island

(W=a ' 0:06 ).

Fig. 6: Dependence of the ratio between the heat 
ux across the inner island separatrix

at � = � ( X -point region) and at � = 0 ( O -point region) on the initial temperature

gradient at constant island width (a) and on the island width at constant temperature

gradient (calculated at the beginning of the turbulence phase) (b).

Fig. 7: Ratio between the \jump" of the ion temperature at the island separatrix and the

19



product of the critical layer wc times the temperature gradient as a function of the initial

temperature gradient.
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