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Abstract

Paraxial WKB (beam-tracing) solutions of a scalar wave equation are compared to the exact

solutions for the two important cases of re
ection from a plasma with linearly-increasing density

and of oblique propagation in the presence of an absorbing half-plane. In these situations, the

beam-tracing technique is close to its limits of validity, yet these conditions are often met in

practical applications. More speci�cally, the �rst case is relevant to re
ectometry diagnostics,

whereas the second case models the absorption of electron-cyclotron beams obliquely launched onto

the resonance layer, as envisaged, for instance, for the ITER upper launcher [M. A. Henderson

et al., Nucl. Fusion 48, 054013 (2008)]. In both cases, the beam-tracing approach is found to

reproduce well the exact behaviour of the wave for experimentally relevant parameter, con�rming

the robustness of WKB-based techniques close to or even beyond their range of applicability. For

the latter case, moreover, the analysis presented here allows an evaluation of the re
ection of part

of the beam by the steep gradients of the absorption coeÆcient at the resonance layer, our results

yielding an upper bound on the amount of re
ected power.
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I. INTRODUCTION

Asymptotic methods are employed to describe the propagation of waves in inhomoge-

neous media in many branches of physics and prove themselves extremely useful also in

fusion research. When the typical inhomogeneity length L characterizing the spatial vari-

ation of the medium is much larger than the wavelength �, it is natural and convenient

to study the asymptotics of the wave �eld in the short-wavelength limit �=L = ��1 ! 0;

this leads to a simpli�ed description of the wave propagation which is known as geometrical

optics [1{3] or WKB approximation (after Wentzel-Kramers-Brillouin). To the lowest or-

der in 1=�, the wave beam is considered as a bundle of independent rays, traced according

to Hamilton's equations in the position-wavevector phase space, the Hamiltonian function

being the dispersion function of the considered wave. The phase (eikonal) of the wave �eld

on each ray amounts to the action of such Hamiltonian system and the amplitude is also

obtained on each ray by solving the appropriate transport equation. The solution of the

wave equation is thus reduced to the integration of a set of ordinary di�erential equations.

This represents a tremendous simpli�cation of the initial problem. At this level, however,

wave e�ects are not retained, so that ray tracing turns out to be unsatisfactory in all those

applications for which di�raction e�ects are supposed to change in an essential way the

behavior of the electromagnetic �eld. The simplest example is the propagation of a focussed

beam, which in a simple ray tracing description exhibits at some point a caustic where its

energy density diverges. Focussed or highly collimated beams are routinely used in fusion

experiments for both heating and diagnostic purposes. For these reasons, more sophisticated

asymptotic techniques that aim at retaining di�raction (the underlying ansatz being usually

a replacement of the real eikonal with a complex eikonal [4{7]) have been developed [8{11].

These schemes are successfully implemented in numerical codes that calculate the propaga-

tion of Lower Hybrid (LH) [12, 13] and especially of Electron Cyclotron (EC) [14{16] waves

in tokamaks.

The basic idea behind asymptotic techniques describing di�raction is that it is suÆcient

to retain wave e�ects in the direction transverse to the propagation of the beam, whereas

such e�ects are neglected in the propagation direction. This introduces a new scale length,

connected to the transverse beam width W , which is ordered �=W � W=L � ��1=2. These

considerations justify an approach to the problem in terms of a parabolic equation [17]. In
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this case, however, the most appealing property of geometrical optics, namely the reduction

of the wave equation to a set of ordinary di�erential equations, is lost. A way to recover this

feature is to make an explicit use of the ordering in semi-integer powers of �, performing a

paraxial expansion of the unknown parameters of the beam around a given curve, usually

identi�ed with the beam axis [10, 11]. The coeÆcients of this expansion can be found

integrating a set of ordinary di�erential equations. This approach is common in the theory

of Gaussian beams [5, 6, 18{20], and it has been developed by Pereverzev [10, 11] for plasma

physics applications where it is known as beam tracing (BT) or paraxial WKB (pWKB).

Although the conditions for the applicability of beam tracing are well satis�ed in fusion

plasmas in several scenarios, it is not diÆcult to imagine situations for which this approach

fails. In this paper, we discuss two examples, particularly relevant under experimental

conditions, for which the use of asymptotic solutions becomes critical [21], namely, the

re
ection from a cuto� layer and the oblique propagation in the presence of an absorbing half-

plane. These two cases are intended to mimic, respectively, the typical set-up of re
ectometry

applications [22] and the case of oblique incidence onto a cyclotron resonance, as envisaged

for instance for the ITER upper EC port [23, 24]. In order to shed light on the actual

behavior of the wave and hence on the adequacy of asymptotic solutions, exact solutions of

the Helmholtz equation have been obtained. As it will be explained later on in the paper,

some aspects of the problem have been simpli�ed to obtain equations which can be solved

exactly with a reasonable computational e�ort. For instance, a planar 2D geometry has been

considered in both cases. In the case of re
ection from a cuto�, the density pro�le is assumed

to vary linearly in space. The resonance layer has been approximated by a half-plane where

a �nite imaginary part is added to the vacuum refractive index. Nevertheless, the peculiar

features of these problems, which make the use of asymptotic techniques questionable, are

retained.

The capability of the beam tracing method of correctly describing the propagation and

absorption of a wave beam in the two cases quoted above has been questioned recently

[25, 26]. Speci�cally, a criticism concerning the validity itself of the pWKB formulation

of Refs. [10, 11] (which is also employed in the present paper) has been put forward in

Ref. [25]. The claim is that the beam tracing equations derived in Refs. [10, 11] would

fail to reproduce the beam pro�le in the case of propagation, e. g., in a \model isotropic

medium with dielectric permittivity increasing linearly". It will be shown here (cf. Sec. III),
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on the basis of analytical and numerical results, that this criticism is completely unfounded,

because it relies on an incorrect interpretation of the beam tracing equations.

As a matter of fact, it can be shown that the beam tracing method reproduces the solution

of a the \parabolic wave equation" (which is, indeed, an equation of Schr�odinger type) with a

quadratic potential [11]. In this sense, solutions of the parabolic equation for a more generic

potential, i. e., beyond the paraxial approximation, could lead to more reliable predictions.

It has been suggested, for instance, that asymmetric beam absorption could indeed lead to

broader absorption pro�les under ITER conditions [26]. While the relevance of such \non-

paraxial" e�ects cannot be excluded a priori, the results obtained with our simpli�ed model

(cf. Sec. IV) do not support this idea, showing that the beam-tracing absorption pro�les

reproduce very well the corresponding pro�les obtained employing the exact wave �eld.

The scalar wave equation which is the starting point of the analysis presented in this paper

is introduced in the next Section along with the corresponding energy continuity equation.

The problem of re
ection of a wave beam from a cuto� layer is analyzed in Sec. III, whereas

the absorption of a wave beam by an absorbing layer for the case of oblique injection is

discussed in Sec. IV. Concluding remarks can be found in Sec. V.

II. BASIC EQUATIONS

The purpose of this paper is the validation of the beam tracing description on the basis

of exact solutions of the relevant partial di�erential equation satis�ed by the wave �eld.

To this aim, as stated in the Introduction, two experimentally relevant wave-propagation

problems have been reduced to a simpli�ed form, for which both exact and beam tracing

solutions can be obtained.

Speci�cally, we consider electromagnetic waves with a �xed frequency ! that are described

by the Helmholtz equation

�u+
!2

c2
n2(x)u = 0; (1)

with a refractive index n that is dependent on a single Cartesian coordinate x. For lossy

media, n2(x) attains complex values, the (positive) imaginary part being the absorption

coeÆcient. This equation can describe waves in isotropic slab-like media or ordinary waves

in anisotropic plasmas with the external magnetic �eld orthogonal to the direction ex.

By applying the Helmholtz operator (1) to exponential wave functions u(r) = eik�r and
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multiplying by the complex conjugate e�ik�r one obtains the local dispersion function,

k2
0
H(x;k) = k2 � k2

0
n2(x); k0 =

!

c
; (2)

which plays a major role in determining the behavior of high-frequency asymptotic solutions

of equation (1), cf. Sec. III B. Since the squared refractive index n2 depends on x only, one

can represent the solution by means of the Fourier transform in (y; z) which gives

@2û

@x2
+
�
k20n

2(x)� k2y � k2z
�
û = 0; (3)

û(x; ky; kz) being the Fourier-transformed �eld. We observe that the essential features of

equations (1) and (3) are captured even if we restrict our analysis to beams comprising

Fourier harmonics with kz = 0 only, so we can simplify the problem and consider the wave

�eld as two-dimensional, i.e., u(r) = u(x; y).

Let us recall that a solution of the Helmholtz equation (1) satis�es the energy continuity

equation

divS = �k0
juj2; 
 = Imfn2g; (4)

where

S =
1

2ik0

�
u�ru� uru��: (5)

The energy conservation law (4) follows directly from the Helmholtz equation (1): one can

multiply by the complex conjugate of the �eld u�, subtract from the result its complex

conjugate and exploit the identity u��u � u�u� = div(u�ru � uru�). Alternatively, one
can note that the 
ux vector (5) is (proportional to) the Poynting vector with E = uez and

ik0B = curlE.

In Sections III and IV two speci�c pro�les of the refractive index n2 will be addressed.

Speci�cally, in Sec. III, n2 is real valued and decreases linearly from positive to negative

values, therefore no absorption takes place and a cuto� layer is present where n2 = 0. In

Sec. IV, we take a piecewise constant pro�le which models a strong wave absorption in

a half-space. In both cases we shall work out the exact solution and describe brie
y the

construction of the corresponding beam tracing solution. In both cases, since the beam

tracing technique is at the limit (or beyond) its formal applicability, the analysis performed

in this paper allows us to determine the reliability of the asymptotic pWKB solutions in

practically signi�cant cases.
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III. REFLECTION BY A LINEAR LAYER

Beam tracing techniques are used in re
ectometry applications [22, 27] since they allow

a very fast determination of the beam path, which would otherwise require a much more

computationally demanding full-wave approach. In a typical re
ectometry scenario, a mi-

crowave beam is launched into the plasma with the frequency tuned so that there exists a

cuto� from which the beam is re
ected; for such beams, however, we are very close to the

limits for the applicability of the beam tracing method, especially near the point where the

re
ection takes place.

The paradigm for the propagation near a cuto� is the linear-layer problem, that is the

Helmholtz equation (1) with the real-valued linear refractive index

n2(x) = 1� x=L; k2(x) = k2
0
(1� x=L); (6)

where L is the scale length of the medium and represents the distance between free space

n2 = 1 and the cuto� n2 = 0.

A. Exact solution

In view of the speci�c form of the refractive index (6), it is convenient to introduce rescaled

coordinates x0 = x=L, y0 = y=L. Correspondingly, we introduce the normalized frequency

� = k0L = !L=c � 1, which is the large parameter of the standard WKB method. The

problem is well studied and described in detail in Ginzburg's book [28]. Following this

reference, we �rst present the exact solution of (1) with (6) by the Fourier integral

uEx(x0; y0) =
�

2�

+1Z
�1

ei�Nyy
0

û(x0; Ny)dNy; (7)

the integration being over the y-component Ny = cky=! of the refractive index vector. On

substituting (7) into (1) one �nds the spectral function û(x0; Ny) as the solution of the Airy

equation in the form

û(x0; Ny) = f(Ny)Ai(��2=3(1� x0 �N2

y )): (8)

where f(Ny) is an arbitrary function, the Airy integral is given by

Ai(��) = 1

�

1Z
0

cos

�
�3

3
� ��

�
d�
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and its argument � = �2=3N2

x is related to the x-component of the refractive index N2

x =

1 � x0 � N2

y . Equation (8) gives a bounded particular solution of the linear layer problem

de�ned within an arbitrary factor f(Ny). The factor has to be chosen in order to pick up

the solution corresponding to the considered physical problem.

In order to understand the physical meaning of the solution (8) we consider the high

frequency limit � = !L=c� 1. Lowest order asymptotic terms of the Airy function Ai(��)
at j�j � 1 give [28, 29]

Ai(��) � ��1=4

2
p
�

8><
>:

2 cos
�
2

3
�3=2 � �

4

�
; for � > 0;

exp
��2

3
j�j3=2� ; for � < 0:

(9)

It is now seen that the expressions in brackets on the right hand side of (9) can be thought

of as �3=2 / R p
1� x0 �N2

y dx
0 = � R Nx(x

0) dx0 and thus coincide with the eikonal of the

geometric-optics solution.

At x0 � 1 � N2

y , when Nx is real valued, the solution is oscillatory. Two real valued

roots Nx = �p1� x0 �N2
y correspond to the waves e�i�

2

3
(1�x0

�N2
y )

3=2
travelling in opposite

directions. Moreover, if the pre-factor f(Ny) in (8) is not even, these two waves are separated

in space. Otherwise, Eq. (8) describes a standing wave. On the other hand, when Nx is

complex valued, i.e., x0 > 1�N2

y , the wave is evanescent. The expression (8) represents the

spectral distribution of the exact solution in each plane x = Const. Any bounded solution

of Eqs. (1), (6) can be represented in this form by an appropriate choice of the arbitrary

function f(Ny). In Sec. III C, this freedom will be used in order to pick up the speci�c

solution with the same asymptotic behaviour as the BT solution. It is also worth to note

here that the phase shift between the incident and the re
ected waves is �=2. This phase

shift is not described by the geometrical optics (in the form used in applications, i.e., without

the Maslov index) but will be found in the BT solution as discussed in the next Section.

B. Beam tracing solution

The beam tracing description of wave beams [10, 11] resembles the paraxial approach to

complex geometric optics, which has been applied to the linear layer problem by Kravtsov

and Berczynski [30].

The very basis of such paraxial techniques is the strong localization of the wave �eld
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FIG. 1: The reference ray obtained from the solution of Hamilton's equations (10) for � = 45Æ,

60Æ, and 80Æ.

around the trajectory of the beam which can be identi�ed with the geometrical optics ray

issuing from the point where the maximum �eld intensity is launched. The ray trajectory

is called reference ray and it is computed by means of Hamilton's equations,

dq�

d�
=

@H

@N�

;
dN�

d�
= �@H

@q�
; � = 1; 2; (10)

where q = (q�) = (x0; y0) is the normalized position, N = (N�) = (Nx; Ny) is the refractive

index vector which plays the role of conjugate momentum, and � is the parameter along

the ray; moreover, H(q;N) = N2 � 1 + x0 is the Hamiltonian (2) normalized to k2
0
. The

initial conditions for (10) are conveniently written in the form q(0) = (x0
0
; y0

0
) = (0; sin 2�),

N(0) = (Nx0; Ny0) = (sin �;� cos �), with 0 < � < �=2 being the beam injection angle, i.e.,

the counter-clockwise angle between the x-axis and the \velocity" vector dq=d� = 2N in

the initial position q(0); the dispersion equation H = 0 is satis�ed by such initial conditions

and, thus, it is satis�ed on the whole solution which reads

x0(�) = x00 + 2Nx0� � � 2;

y0(�) = y0
0
+ 2Ny0�;

Nx(�) = Nx0 � �;

Ny(�) = Ny0;
(11)

where the curve q(�) = (x0(�); y0(�)) is the reference ray together with the carried refractive

index N(�) = (Nx(�); Ny(�)). The reference ray, in particular, amounts to a parabola

symmetric with respect to the x-axis and it is narrower for values of � closer to �=2; in the

limit case � = �=2 the reference ray degenerates to two superposed segments of a straight

line. The \classical" turning point is de�ned by the condition � = Nx0 = sin �. Fig. 1 shows

the reference ray for three values of �.

The main point in the construction of the beam tracing solution is the evolution along

the reference ray of the symmetric complex matrix 	�� = N�� + i���, �; � = 1; 2, which
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satis�es the complex matrix Riccati equation [11, Eq.(97)],

d	��

d�
+

@2H

@q�@q�
+

@2H

@q�@N


	
� +	�


@2H

@N
@q�
+

@2H

@N�@N�

	��	�� = 0; (12)

along with the constraints
@H

@q�
+	�


@H

@N


= 0; (13)

where all the derivatives of the Hamiltonian function H should be evaluated on the reference

ray and the sum over repeated indices is implied. With the solutions for the reference ray

and the matrix 	�� at our disposal, the beam tracing solution for a Gaussian beam is readily

obtained in the form [10, 11]

uBT (r) = u0e
�

R �
0
Tr	��(�

0)d� 0

ei�
� R �

0
N�(�

0)dq�(� 0)+N�(�)�(q
�
�q�(�))+ 1

2
	��(�)(q

�
�q�(�))(q��q�(�))

�
;

(14)

where Tr denotes the trace of a matrix, and � = �(q) is the value of the parameter along

the reference ray corresponding to the point r = Lq where the �eld is evaluated; more

speci�cally, the function �(q) is obtained by inverting the expression q = q(�) + e(�)�,

where (�; �) are viewed as local coordinates around the reference ray, e(�) being a unit vector

skewed with respect to the tangent to the reference ray. There is some degree of freedom

in the choice of the unit vector e(�), and thus in the function �(q), as it is discussed in

details in the appendix along with a convenient choice for the linear layer problem under

consideration.

The physical content of (14) becomes evident upon separating the real and imaginary

parts of 	�� = N��+i���. Then, one can see that the exponential e
���, with � = 1

2
���(q

��
q�(�))(q� � q�(�)), accounts for the Gaussian envelope of the beam, therefore, the matrix

��� encodes the information on the beam width; explicit formulas are given in appendix. On

the other hand, the oscillatory exponential ei�S, with phase S =
R �

0
N�(�

0)dq�(� 0) +N�(�) �
(q� � q�(�)) + 1

2
N��(�)(q

� � q�(�))(q� � q�(�)), describes the fast oscillations of the wave

�eld and its phase-front geometry in terms of the sum of the geometric optics phase on the

reference ray (the action integral for the corresponding Hamiltonian system), plus the e�ect

of the angle between the phase fronts and the direction e(�) (the linear term) and the e�ects

of the curvature of the phase fronts (the quadratic form associated to N��); the quadratic

form N��, in particular, encodes the information on the phase-front radius of curvature as

discussed in appendix. One can also see that the exponential associated to the trace Tr	
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splits into a real amplitude C, which accounts for the amplitude ramp up/down due to the

focussing/defocussing of the beam, times a phase shift factor which is just the Gouy shift

also present in the exact solution, cf. comments at the end of Sec. IIIA.

Let us conclude this section with two remarks on the validity of the beam tracing solution

(14) for the speci�c case of the linear layer problem under consideration.

It is known that the geometric-optics solution of the problem of re
ection from a cuto�

layer exhibits an unphysical singularity near the turning point. In principle, the BT so-

lution (14) does not present this problem. However, some restrictions are also set to the

applicability of the pWKB method, as emerges from the following considerations. The wave

object (14) is an asymptotic solution of the Helmholtz equation (1) in the high-frequency

limit � ! +1, and, since w = O(1=
p
�), uBT collapses on the reference ray in that limit.

For �nite (but large) value of � � 1, i.e., in the applications, uBT solves approximately

the Helmholtz equation (1) in a strip of (�nite) width w about the reference ray, provided

that the local coordinates (�; �) are well-de�ned in that strip; heuristically, this means that

the ratio w=Rray between the beam width and the radius of curvature of the reference ray

should be small enough, speci�cally, w=Rray � 1=
p
� � 1. Even in smoothly inhomoge-

neous media, however, it can happen that Rray is comparable or even shorter than w, and

for such beams the validity of the beam tracing solution (14) becomes questionable. In the

case under consideration, the more the injection angle � is close to �=2, the narrower is the

parabola of the reference ray, making the geometry more and more critical; in the limit case

� = �=2 the beam tracing construction is no longer applicable at all.

At last, let us note that, for the problem under consideration, the only non-trivial second-

order derivatives of the Hamiltonian are @2H=@N�@N� = 2Æ��, hence, the Riccati equation

(12) is the same as the one relevant to the free-space di�raction problem (n(x) � 1), all the

properties of the medium being accounted for by the constraint (13). On the basis of the

formal analogy of (12) with free space propagation, Balakin et al. [25] argued that linear

pro�les of the refractive index cannot be properly described in the beam tracing framework,

cf. also the Introduction; such an argument, however, is 
awed as it does not account for

the constraint (13) which changes the initial conditions in an essential way and couples the

components of the matrix 	��.
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C. Comparison of BT and exact solutions

The aim of this Section is the validation of the beam tracing solution (14) for di�erent

values of the input parameters.

With this aim, the following spectrum of the launched beam is considered,

Û(Ny) = u0

r
2�

��
e�

�
2�

(Ny�Ny0)
2

e�i�Nyy
0

0; (15)

where � = 2=�2 � i� is a complex parameter. The spectrum (15) is just the Fourier

transform of the section x0 = x0
0
= 0 of the launched beam which is taken in the form

u0e
��(y0

�y0

0
)2=�2ei�[Ny0(y

0
�y0

0
)+

1

2
�(y0

�y0

0
)2], �=

p
� being, thus, the normalized width of the beam

section at x = 0 and � the projected curvature of the phase front; it is worth noting that,

because of the di�raction of the beam, � and � are related to the normal width w0 = w(0)

(normalized to L) and phase-front curvature 1=R0 = 1=R(0) (normalized to L) in a non-

trivial way, namely,

� =

p
�

sin �
w0; � = sin2 �

� 1

R0

+
cos2 �

sin �

�
: (16)

The sketch of the derivation of equation (16) is given in appendix along with the precise

de�nitions of the beam width w(�) and phase-front curvature radius R(�).

The particular exact solution corresponding to (15) is obtained by selecting the multiplier

f(Ny) in (8) in such a way that the forward-propagating component, identi�ed through the

asymptotic expansion (9) and evaluated at x = 0, equals the launched spectrum (15); that

yields

f(Ny) = 2
p
��1=6(1�N2

y )
1=4ei

2

3
(1�N2

y )
3=2

�i�=4Û(Ny); (17)

for propagating harmonics (N2

y � 1), and f(Ny) = 0 for evanescent harmonics (N2

y > 1).

As for the beam tracing solution, in order to match the launched beam pro�le it is

convenient to pick up adapted local coordinates; speci�cally, we set, cf., comments after

equation (14) and the appendix, e = (ex; ey) with ex / � cos �(sin �� � � 2=2) and ey /
� � sin �, properly normalized; according to such a de�nition, both the axes f� = 0g and

f� = 2 sin �g coincide with the y-axis, with the latter having opposite orientation, while

f� = sin �g coincides with the x-axis (opposite orientation); it is implied that the coordinates
(�; �) has a local validity near the reference ray; nonetheless, away from the reference ray

the wave �eld is exponentially small.
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With this choice, the section � = 0 of the beam tracing solution (14) matches the launched

�eld provided that 	22(0) = i� 6= 0; the constraints (13) then give the initial conditions

for the remaining components of 	��. As mentioned above, in our special case the Riccati

equation (12) takes the simple form

d	��

d�
+ 2	��	��Æ

�� = 0 (18)

and can easily be solved analytically. On account of (13), one �nds det k	��k =

�i�=(2Nx) 6= 0 and concludes that, in the vicinity of the starting point � = 0, the matrix

	��(0) has an inverse ��
	
� = Æ�� . Multiplying Eq. (18) by �����
 yields d��
=d� = 2Æ�


that gives the general solution ���(�) = ���(0)+2�Æ�� with only one of the set of complex

valued constants ���(0) being independent. Then, matrix 	��(�) is readily computed by

inverting the 2� 2 matrix ���(�). The element 	11(�), in particular, amounts to

	11(�) =
� �N2

y0=Nx0 � (i=2)��1

2� 2 � 2�=Nx0 � i�=�+ iNx0=�
: (19)

When evaluated at the classical turning point � = Nx0, 	11 is directly related to the beam

width w(Nx0) de�ned in the appendix: the only non-zero element of the matrix 	��(Nx0) is

exactly 	11(Nx0) which, therefore, equals 2=(�w
2(Nx0)). The beam width at the turning is

then written analytically as

wtp(�) = w(Nx0) =
4

�

�
1 + �4�2=4

�

� 1

2

cos �: (20)

We can see that wtp decreases as the injection angle approaches the critical value � = 90Æ,

in correspondence of which it equals zero, and, neglecting �4�2=4 � 1, wtp � 1=�, i.e.,

according to the beam tracing solution, an initially wider beam is narrower at the classical

turning point.

We note that both the exact solution (7) and the beam tracing solution (14) are complex-

valued; for the linear layer model, however, the refractive index n2(x) is real, hence, Re(uEx)

and Re(uBT ) are real-valued exact and beam tracing solutions, respectively. In Fig. 2,

these two quantities are represented for typical values of the parameters used in Doppler

re
ectometry on the ASDEX Upgrade tokamak [22]. In Fig. 2a, we can see a non trivial

di�ractive pattern near the turning point of the beam, due to the superposition of the tails

of the wave �eld. The contour plot in Fig. 2 shows a rather good matching of the exact and

beam tracing solutions, in both the phase and the amplitude, yet the di�ractive pattern is
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FIG. 2: (Color online) The normalized exact solution Re(uEx=u0) represented by a density plot

(a), and the contours Re(u=u0) = 0:2 for both the exact and the beam tracing solution (b); the

color code in (a) is cut out for jRe(u=u0)j < 0:2 so that a direct comparison with (b) is possible.

The parameters are typical for Doppler re
ectometry at ASDEX Upgrade: � = 236:65 (!=2� = 64

GHz), � = 62Æ, � = 0:18
p
� (w = 0:18L being the physical beam width), and � = 0:0346.

excluded in the beam tracing solution. This is due to the local character of the beam tracing

construction which is sensitive to the �eld structure near the reference ray only, and, thus,

it cannot account for the superposition of the wave-�eld tails; on the other hand such e�ects

are exponentially small when the curvature radius of the reference ray is large enough.

Before going through a quantitative analysis of such e�ects, further insights are given in

Fig. 3, where the amplitude contours of the beam tracing solution and their (absolute) error

are shown. The external (low-amplitude) contour in Fig. 3a exhibits a bottleneck-like pro�le

near the turning point which corresponds to the absence of the di�ractive pattern; on the

other hand, the inner (high-amplitude) contour shows qualitatively the position and the size

of the caustic where the wave-�eld intensity is stronger. For the purposes of re
ectometry

the caustic is the region where a signi�cant interaction of the wave beam with the underlying

plasma density 
uctuations takes place [31], therefore it is particularly important to estimate

its position and size that are related to the spatial resolution of the re
ectometry diagnostic.
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FIG. 3: (Color online) Contours of the beam tracing amplitude juBT =u0j, (a), and their absolute

error juEx=u0j � juBT =u0j, (b), for the same parameters used in Fig. 2.

The (absolute) error, shown in Fig. 3b, is localized at the turning point mainly due to the

lack of di�ractive pattern in the beam tracing solution.

For a quantitative description of the position and size of the caustic, let us consider a

sample of beams de�ned as follows. The frequency is �xed, � = 200, for all beams in the

sample and so is the focussing parameter, � = �0:05; three values of the initial width

are considered, namely, �=
p
� = 0:1; 0:15; 0:2 and the injection angle sweeps from � = 55Æ

to � = 80Æ with step-size �� = 5Æ. These values range around relevant re
ectrometry

con�gurations. For each beam, the exact solution and the beam tracing solution have been

computed together with a \generalized" version of the beam tracing solution which allows

us to describe the superposition of the incident and re
ected beams, and thus the di�ractive

pattern shown in Fig. 2. The idea of such a generalization is the following (we refer to the

appendix for more technical details). As a consequence of the geometry of the reference ray,

by inverting the relation q�(�; �) = q�(�) + e�(�)� in correspondence of each point q = (q�)

in the plane, one �nds a cubic equation for �(q) which can have either a single real root �(q)

or three real roots �j(q), j = 1; 2; 3; in the regions of the plane where three roots are found,

one can identify the two of them that correspond to the incident and re
ected branches

of the beam, say, �1(q) and �2(q), then, de�ne the generalized beam tracing solution as

14



FIG. 4: (Color online) Amplitude pro�les evaluated on the x-axis, i.e., ju(x; 0)j, according to the

exact (red), beam tracing (blue), and generalized beam tracing (green) solutions for di�erent beam

and injection parameters.

the superposition of the wave �eld (14) with � = �1(q) and � = �2(q), respectively. This

modi�cation does not change the asymptotics for � ! +1, but it can amount to a better

approximation for �nite values of �.

We are particularly interested in the position and width of the caustic region in the x-

coordinates which corresponds to the radial coordinate r, in actual tokamak geometry. For

the cases under consideration, the wave �eld intensity attains its maximum near the x-axis so

that the caustic can be well represented by the section y = 0 of the corresponding solutions.

Fig. 4 shows the amplitude pro�les for the y = 0 sections of the wave �eld, namely, ju(x; 0)j,
for few typical cases out of the considered sample. The amplitude pro�les exhibit a well

marked peak near the cuto� (at x=L = 1), and, depending on the angle, several secondary

peaks which are the consequence of the interference of the incident and re
ected waves.
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From Fig. 4 one can see that the standard beam tracing solution and its generalized form

described above are superposed for low injection angles, as the geometry of the reference

ray yields no multiple values for � where the wave �eld is signi�cant. For higher injection

angles, the generalized beam tracing construction, indeed, matches fairly well the secondary

peaks, yet near the main peak corresponding to the exact caustic it is still superposed to the

standard beam tracing solution: there a single real root �(q) is found (this can be estimated

by the curvature radius Rray of the reference ray at the turning point) and, therefore, both

beam tracing solutions yield the same amplitude pro�le. Increasing the injection angle, the

beam tracing solution near the main peak becomes narrower than in the exact solution and

shifts toward the cuto�. Qualitatively, one can also note that, for all the displayed angles,

� = 55Æ, � = 65Æ and � = 75Æ, the best matching is obtained for the intermediate value of

the initial width �=
p
� = 0:15: this can be understood if we think of interference e�ects near

the turning point that are controlled by the beam width; this is large in correspondence of

both the large and the narrow initial pro�les, in the latter case as a consequence of a strong

di�ractive broadening.

The position of the classical turning point x0
tp
(�) = sin2 � (which in the BT solution

corresponds to the position of the main peak) and the width at the turning point (20) are

�nally compared to the the position xEx of the exact main peak and to the exact width,

which can be estimated as

wEx =

p
2

L

"R
+1

0
(x� xEx)2juEx(x; 0)jdxR

+1

0
juEx(x; 0)jdx

# 1

2

: (21)

When such a de�nition is applied to the beam tracing solution, it yields exactly wtp and this

justi�es the use of Eq. (21). Other possible estimates for the width can be de�ned; keeping

in mind re
ectometry applications, the appropriate estimate of the width should be de�ned

on the basis of the real interaction of the beam with plasma density 
uctuations that are

not included in our model.

The caustic position and width are plotted in Fig. 5. First, we note that, for � ! 90Æ,

both the exact position and width approach a limit value which is independent on the

initial width. The position of the classical turning point is also independent of the initial

width, and reaches the cuto� layer at x=L = 1 for � ! 90Æ. The error on the position,

however, never exceeds few percent. As for the width of the caustic, the relative error can

be signi�cant even for low injection angles, when the initial beam width is too narrow.
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FIG. 5: (Color online) Position of the caustic (left) and its width (right) as a function of the injection

angle � for di�erent values of the initial beam width (solid curves represent the case � = 0:1
p
�,

coarse-dashed curves the case � = 0:15
p
� and �ne-dashed curves the case � = 0:2

p
�). Red curves

correspond to the exact solution, blue curves to the BT solution. Note that the BT curves on the

left are indistinguishable, since in this case the position of the caustic is given by the classical

turning point, which is independent of the beam width.

Looking at the corresponding amplitude pro�le of Fig. 4, one can see that such a di�erence

can be explained by the asymmetry of the exact pro�le which is narrower on the side of the

cuto� layer, therefore, the de�nition (21) slightly underestimates the actual width, being

unable to account for the asymmetry of the exact pro�le. For the cases �=
p
� = 0:15 and

�=
p
� = 0:2 one can see that the beam tracing description yields a reliable value of the

width of the main peak up to � = 65Æ � 70Æ where the relative error is around 30%.

In order to push the beam tracing method to the limits we have also considered few cases

at rather low frequency (� = 50). We �nd qualitatively the same behaviour with the only

di�erence that the error on the position can be signi�cant for high injection angles, that

is, the shift of the exact caustic position with respect to the classical turning point is more

signi�cant at low frequencies.
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IV. ABSORBING HALF-PLANE

A. Exact solution

In order to validate the BT approach for the practically signi�cant case of ECR plasma

heating we consider a solution to the Helmholtz equation (1) with the refractive index given

by

n2(x) =

�
ck(x)

!

�2

= "+ i
4��

!
; k2(x) = k2

0
[1 + i
H(x)] (22)

with k0 = !=c, 
 = 4��=! and both 
 and k0 do not depend on the space coordinates.

H(x) is the Heaviside function. For the sake of simplicity we take " = 1 so that the domain

x < 0 is the free space. Assuming 
 > 0 means that the other half-space x > 0 describes

wave absorption. The exact solution of Eqs.(1),(22) in any half-space can be expressed in

any of the forms

u(�; �) =
1p
2�

1Z
�1

u�(k�)e
i�k��i�

p
k2�k2�dk� =

1p
2�

1Z
�1

u� (k� )e
i�k��i�

p
k2�k2�dk� ; (23)

u(x; y) =
1p
2�

1Z
�1

uy(ky)e
iyky�ix

p
k2�k2ydky =

1p
2�

1Z
�1

ux(kx)e
�ixkx+iy

p
k2�k2xdkx (24)

where u�, uy and ux are arbitrary functions. Two coordinate systems are used in the

representations (23)-(24). One of them (x; y) is aligned with the boundary x = 0 that

separates two half-spaces in Eq. (22). The second (�; �) is oriented along the propagating

beam as shown in Fig. 6.

FIG. 6: (Color online) Wave geometry and the ray coordinate system.

Generally speaking, the proper branches of the square root functions in the exponents of
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Eqs. (23)-(24) have to be selected to describe a bounded solution. However, our discussion is

limited to the practically important case of narrow wave beams, for which only the paraxial

domain jk�j � k0 = !=c is essential. In this case, the contributions of short transverse and

evanescent waves are exponentially small and will be discarded below. It means that the

in�nite integration domains in integrals above can be cut at jk�j � k0, etc. For simplicity

we retain the notation of Eqs. (23)-(24) also in what follows. In addition, appropriate signs

should be selected in the exponents of Eqs. (23)-(24) to describe the incident, re
ected and

the transmitted waves. Moreover, expressions for uy(ky) and other amplitude functions are

di�erent on both sides of the interface surface x = 0. Using the conditions that the solution

u(x; y) together with its �rst derivatives must be continuous at the interface x = 0

u(x; y)

����
x=+0

x=�0

= ux

����
+0

�0

= uy

����
+0

�0

= 0 (25)

we �nd a solution with one arbitrary function u0;y(ky)

u(x; y) =
1p
2�

8>>>>>>><
>>>>>>>:

1Z
�1

u0;y(ky)e
iyky

n
eix
p

k2
0
�k2y + (F (ky)� 1) e�ix

p
k2
0
�k2y

o
dky; if x < 0;

1Z
�1

u0;y(ky)F (ky)e
iyky+ix

p
k2
0
�k2y+ik

2

0

dky; if x > 0:

(26)

where

F (ky) =
2

1 +
p
1 + iB

; B =
k20


k2
0
� k2y

=



cos2 #
: (27)

B. BT solution

The exact solution (26) will be compared with the fundamental mode of the BT

solution[34]

uBT (r) = uBT (�; �) =
A(�)p
w 4
p
�
e
ik0� � �2

2w2
(1� i�)� i

2
arctan �

(28)

where �(�) = �= (k0w
2

0
), w(�) = w0

p
1 + �2(�) =

p
w2
0
+ � 2=(k0w0)2. It is assumed addi-

tionally that, in the absence of absorption, the minimum wave beam waist is given by w0 and

located at the position � = 0 along the reference ray. In coordinates (x; y) the same point is

given by (x0; y0) (in the numerical calculations that follow, the position of the beam waist
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� = 0 is assumed to coincide with the point (x0 = 0; y0 = 0) where the beam crosses the

absorbing half plane, cf. Fig. 7, since an EC heating system is usually designed to achieve

the best focusing in the absorption region). Note that, due to the ordering employed during

the construction of the BT solution, the functions �(�), w(�) and A(�) are de�ned along

the reference ray only, i.e. at � = 0. The BT solution (28) describes a wave beam with

the the group velocity directed along e� = cos# ex + sin# ey. The beam is localised around

the reference ray y � y0 = (x � x0) tan#, has the width w(�) and the amplitude A(�). By

integrating Eq. (28) we �nd

W (�) =

1Z
�1

��uBT (�; �)��2 d� = jA(�)j2
w
p
�

1Z
�1

e
� �2

w2 d� = jA(�)j2 (29)

and note that the absolute value jAj of the amplitude is directly related to the linear density
of the wave energy along the beam W . It remains to determine any of those quantities. The

standard way of doing this would be to solve the transport equation that is attributed to

the second order of asymptotic expansion in powers of the small parameter ��1=2 [11].

To get more insight into the physics properties of the solution we substitute the BT

solution (28) in the energy conservation law (4)

div

���uBT ��2�r� + ��r�
w2
0w

2(�)

��
+ k0
(r)

��uBT ��2 = 0: (30)

The second term in brackets describes the local 
ux across the wave beam axis, i. e. across

direction of the group velocity. Because of the multiplier � it should be scaled as ��1=2 and

therefore contributes to higher order corrections only. This term describes a transversal 
ux

of wave energy. Strictly following the procedure of the asymptotic expansion [11] one has

to discard the discussed term in spite of its clear physical meaning. This would represent

the fact that the paraxial expansion considers the Gaussian wave beam modes as indivisible

physics objects (approximate eigenmodes of the parabolic equation). In this respect the

beam tracing description is similar to ray tracing: the energy 
ux is directed along the

vector of the group velocity e� exclusively. In other words, although an in�nitely thin ray

is replaced with a �nite-width beam its internal structure still remains beyond the scope of

the adopted approximation.

The next simpli�cation of the beam tracing technique results in replacing the two-

dimensional conservation law (30) by an ordinary di�erential transport equation for the
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wave amplitude jAj. The transition is equivalent to integrating the local relation (30) over

any unbounded curve in the (x; y) plane. The result of integration is an ordinary di�erential

equation for the amplitude A(�). Its solution does not depend on the shape of the curve.

To be more precise, the dependence on the integration path shows up in higher orders of

the asymptotic expansion.

In this paper, we want to explore the (experimentally relevant) situation in which absorp-

tion is not small, i.e. cannot be scaled as 
 = O(��1). In this case, one cannot claim that

the result of integration of the second term in Eq. (30) is path independent. Moreover, this

integral cannot be calculated analytically, and to obtain the �eld amplitude A(�) one has

to solve an integral equation. In order to overcome this diÆculty, we select the contours of

integration in Eq. (30) as lines of 
(r) = Const. Then 
(�) can be evaluated on the reference

ray and taken out of the integrand. The resulting equation again acquires the form of an

rdinary di�erential equation for the �eld amplitude that can be easily solved. The energy

conservation law (30) averaged along the contour levels of absorption will be satis�ed.

Before moving to a particular example we summarize the adopted assumptions. First

of all, it is assumed that for this problem the large parameter � can be introduced and

that the usual BT scaling is applicable. Then the beam-like structure of the solution is

mainly retained even in the case of �nite or rapidly varying absorption. This seems to be

reasonable as long as the eigenfunctions are determined by the Hermitian part the original

wave equation (1) and until the absorption exceeds the level of 
 = O(��1=2). Basing on this
property we employ the energy conservation law and derive a special form of the amplitude

transport equation. By this replacement we give to the energy conservation law (that is an

exact relation) more credit than to the standard transport equation (that has been derived

as the second order of the asymptotic expansion). This way of calculating the wave �eld

can be easily extended to arbitrary geometry and is implemented in the beam tracing code

TORBEAM [15].

In order to illustrate the aforesaid and to obtain jA(�)j we apply the integral
R
1

�1

dy to

Eq. (30)
d

dx
W

�
x� x0

cos#

�
+

k0H(x)

cos#
W

�
x� x0

cos#

�
= 0; (31)

where � was replaced by � = (x� x0)= cos# and the relation d� = dy cos# has been taken
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into account. Solution of Eq. (31) reads

W (x) = W0e
�
k0xH(x)= cos # (32)

and with account of Eq. (29) de�nes the amplitude evolution along the wave beam

jA(�)j = A0

8<
: 1; if � < �0

e�
k0(���0); if � � �0;
(33)

where �0 = �x0= cos#, A0 =
p
W0. The BT solution is now completely de�ned. As expected,

the energy 
ux through the plane x = Const remains unchanged until the beam enters the

absorption zone x � 0. Consider again the energy conservation law in the form Eq. (30)

and observe that the second term describes the power deposition density. This suggests to

introduce two quantities

P (x) = H(x)

1Z
�1

ju(x; y)j2dy; P (y) =

1Z
�1

ju(x; y)j2H(x)dx; (34)

that are proportional to the line density of the power absorption. The two quantities (34)

can be associated with the power density deposition within a 
ux surface of a tokamak and

will be discussed in the next Section. The �rst of them is proportional to the power density

W (�) if x � 0.

C. Comparison of BT and exact solutions

In order to evaluate the error introduced by the approximate character of the BT solution

we de�ne the arbitrary function u0;y(ky) in Eq. (26) by the condition

u0;y(ky)dky =
A
p
w0

4
p
�

exp

�
�0

q
k20 � k2� �

1

2
w2

0
k2�

�
dk�; (35)

where

k� = ky cos #� sin#
q
k20 � k2y; dk� =

0
@cos# +

ky sin#q
k20 � k2y

1
A dky: (36)

This condition ensures that the exact (26) and the asymptotic (28) solutions under consid-

eration coincide at k0 !1.

As the �rst illustration we show the contour levels of the absolute value for the exact

solution in Fig. 7a. Unlike all other �gures the coordinates are inverted here (x; y) !
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FIG. 7: (Color online) Contour levels of the wave �eld amplitude. Parameters are selected to

�t the ITER ECRH system: f = 170 GHz, w0 = 1:48 cm, # = 70o, 
 = 0:01 [note that the

beam width as usually de�ned in ITER documents is by a factor
p
2 larger than the beam width

de�ned in Eq. (28)]. The coordinates are inverted to represent the ITER geometry. (a) Contours

of juex(x; y)j, (b) contours of juex(x; y)j � juBT (x; y)j.

(�x;�y) to draw an analogy with the upper-launcher geometry of ITER. First of all, we

note that for zero absorption the wave �eld would be quasi-symmetric with respect to the

point x = y = 0. Because of the large factor k0 = 35:6 in the second term of Eq. (30) even

rather small 
 = 0:01 gives a noticeable exponential decay in the 3rd quadrant (the choice


 = 0:01 gives a good estimate of the absorption coeÆcient for a typical ITER scenario

[33]).

In order to evaluate the error of the BT solution in the next Fig. 7b we plotted the

residual function juex(x; y)j� juBT (x; y)j. In this plot, the resolution is higher than in Fig. 7

by more than two orders of magnitude. This allows one to see the di�erence between exact

and asymptotic solutions. It follows that the overall accuracy of the BT solution is better

than 1%. In particular, it remains at absolutely negligible level in the �rst quadrant where

the incident wave is localized. In this domain the BT approach is justi�ed up to the third

order of the asymptotic expansion. The next observation is the existence of a re
ected wave

that is fully discarded by the BT solution. In Fig. 7b the re
ected wave is seen as a beam
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FIG. 8: (Color online) Function P (y) for di�erent values of 
. Solid red lines correspond to the

exact solution, dashed blue lines to the BT solution.

in the fourth quadrant. Another distinction between the two solutions is observed in the

absorption zone. It is not surprising that errors are of the same order in zones of re
ected

and absorbed waves because they have the same origin and are caused by the discontinuity

in n2 at x = 0. The �eld behaviour in the absorption zone is of our main interest because

according to Eq. (34) the quantity ju(x > 0; y)j2 directly describes the power deposition

pro�le.

If the beam hits the absorption zone in the mid-plane of a tokamak, then averaging over

the 
ux surfaces can be represented by the averaging over the plane y = Const in our

simpli�ed geometry, i.e. described by the function P (x), Eq.(34). Apart from a multiplier,

this function coincides with W (x), that can be easily calculated by means of the simple

formula Eq. (32). If the absorption zone is shifted up or down with respect to the midplane,

then averaging over the 
ux surfaces corresponds to averaging over the plane x = Const, i.e.

described by the function P (y). This function is shown in Fig. 8 for di�erent values of 
.

As seen, for small 
, the pro�les have long tails that are strongly extended to the large

values of y. With increasing 
 the deposition pro�le becomes more localized and its max-

imum moves closer to y = 0. Up to value 
 = 0:1 exact and BT pro�les are practically

indistinguishable (this is found to be the case also when the beam width is varied within a
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FIG. 9: (Color online) Moments of the function P (y) versus 
. Solid red lines correspond to the

exact solution, dashed blue lines to the BT solution.

realistic range of values). If the absorption oceÆcient is increased above 0:1, both pro�les

acquire Gaussian form but start to diverge. This happens because the absorption as de-

scribed by the exact solution starts to decrease due to growth of the re
ection. The beam

tracing solution does not include re
ection and therefore the pro�le P (y) does not change

with further increase in 
 > 0:1.

These properties are summarized in Fig. 9, where the function P (y) is represented by its

moments. As discussed, the distribution width �Y =
p
h(y � Y )2i and its centre Y = hyi,

rapidly reduce from in�nity at low absorption to several wavelengths as 
 reaches values of

order 0.01. However, at this value of 
 the distribution width �Y starts to saturate while

Y continuously decreases. As long as at 
 � 0:01 the distribution pro�le becomes Gaussian

its shape is fully described by these two moments. This behaviour can be easily understood.

Indeed, at large 
 the wave absorption is strong and the absorbed power is concentrated

near the plane x = 0. Its shape must be Gaussian because the wave �eld is continuous and

it is Gaussian at x < 0. Moreover, the width of this Gaussian is de�ned by a longitudinal

(with respect to the group velocity) projection of the transversal width w(�) to the plane

x = 0. This gives the estimate for the asymptotic values of the width �Y ! w0=(
p
2 cos#)

and of the shift Y ! y0 � x0 tan#, the latter in our case being zero.
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ection coeÆcient as a function of 
 for di�erent launch angles.

It follows that the BT solution can serve as a very good approximation to the exact

one unless the re
ection becomes signi�cant. Moreover, it should be emphasized that in

all respects involving absorption our case of discontinuous n2(r) is the most diÆcult for

an asymptotic treatment and one can expect here the least accuracy; in particular, this

case overestimates re
ection. Inverting this statement we conclude that applying the BT

technique to the real plasma one can expect better agreement than in the case considered

here. In order to assess the limits of the BT applicability to EC waves in a tokamak

plasmas and thus a relevance of our study we compare our results with the realistic numerical

modelling [15], [21]. As a characteristic measure for such a comparison one can select the

wave decay length which in tokamaks is usually a few centimeters. This value corresponds

to 
 � 0:01 � 1 and is far below the limit of 
 = 0:1 where some discrepancies can be

observed. In the range 
 � 0:01 all distinctions between the exact and BT solutions are far

below the required accuracy of simulations.

We have still to discuss how this limit in 
 depends on the beam launching conditions.

If we consider the re
ection coeÆcient R as an indicator of BT invalidity, then inspection

of Eq. (27) shows that the wave re
ection depends on the combination 
= cos2 # of the two

parameters 
 and #. In
uence of the angle of incidence # is shown in Fig. 10. It is seen

that the re
ection has to be taken into account when the wave is launched very close to the

26



cyclotron resonance position ! = !Be and propagates nearly vertically. Even for # = 80Æ

and for 
 = 0:01 the re
ection coeÆcient is R = 0:6%. However, this case is unrealistic and

has never been considered as an option. The upper-launcher geometry foreseen for ITER

corresponds to maximum injection angle below # = 70Æ. In this case R = 0:05%. Already

this value is overestimated and has to be reduced if the smooth behaviour of the absorption

coeÆcient is taken into account. We conclude that for typical tokamak parameters all

distinctions between the exact and BT solutions in this range of absorption rates are far

below the signi�cance limit for the problem of interest.

V. CONCLUDING REMARKS

The two wave-propagation problems considered in this paper, namely the re
ection of a

wave beam by a cuto� layer and the oblique propagation in the presence of an absorbing

half-plane, represent two test cases for which asymptotic techniques like paraxial WKB beam

tracing are pushed to their limits of applicability. In the �rst situation, the beam tracing

model does not reproduce the di�ractive pattern originating from a signi�cant overlap of the

injected and re
ected wave �eld. In the second, strong absorption could lead to a breakdown

of the pWKB solution, which does not account correctly for changes occurring on the scale

of the beam width. Moreover, for high values of the absorption coeÆcient, a non-negligible

fraction of the injected power (not described by beam tracing) could be re
ected as the beam

impinges onto the absorption layer. On the other hand, since the conditions mentioned above

are often met in the experiments, the use of asymptotic techniques is highly desirable if they

can be shown to represent a reliable alternative to CPU-intensive full-wave computations.

The results presented in Sec. III-IV show that, for realistic parameters, the pWKB ap-

proach is quite robust. In particular, for the case of re
ection from a cuto� layer, the

location of the caustic is well reproduced by the beam tracing solution, the di�erence with

respect to the exact position being of the order of a few percent for experimentally relevant

injection parameters. If the injection is not too close to perpendicular (� <
�
70Æ), moreover,

also the width of the caustic can be estimated employing paraxial beam tracing, the relative

error being in this case of the order of 30%, for instance, for parameters corresponding to

the typical setup of Doppler re
ectometry at ASDEX Upgrade. Also in the case of oblique

injection onto an absorbing half-plane, deviation of the BT power-absorption pro�le with
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respect to the exact one is found only at very high values of the absorption coeÆcient and

is basically due to the power re
ected at the interface with the absorbing region. Of course,

our model does not entirely reproduce the typical conditions of oblique ECRH in ITER.

The real injection geometry (where a nonzero toroidal injection angle is foreseen) is not

included. Moreover, the absorption coeÆcient has been assumed to be constant. These ap-

proximations, however, do not seem to impair the capability of our approach to give a good

qualitative description of the basic features of the process. In particular, the assumption

of a constant absorption coeÆcient represents a worst-case scenario for an estimate of the

re
ected power at the resonance, so that our �nding of negligible re
ection should be veri�ed

in ITER.

The analysis presented in this paper has been partly motivated by a recent work of Balakin

et al. [25, 26]. In particular, a statement about the applicability of the pWKB description

to the case of beam re
ection by a linear layer has been shown here to be clearly incorrect.

Non-paraxial e�ects for the power-absorption pro�le, which have been found to be negligible

within our model, deserve a careful investigation under more realistic ITER conditions. The

\quasi-optical" description put forward in Ref. [26] (and references therein) does not resolve

the issue because it relies on heuristic considerations rather than on a rigorous asymptotic

analysis, an accurate benchmarking of the model should be addressed. Although a thorough

analysis of such a description is far beyond the aim of this paper, here we mention a few points

that should be carefully scrutinized. The derivation of the relevant equations of the \quasi-

optical" method [26] consists in two main steps: (i) the derivation of the scalar equation for

the considered wave mode and (ii) the approximation of such an equation by an evolutionary

partial di�erential equation. In (i), one has to put a system of (pseudo-)di�erential operators

into diagonal form: this is a well known problem, cf. Ref. [32] for a quantum mechanical

application, and such a diagonalization procedure can be rigorously carried out under rather

restrictive conditions, e.g., for weakly non-Hermitian and slowly varying media, that break

down exactly at the resonance layer where the absorption coeÆcient varies signi�cantly in

a short range. As for (ii), the derivation of the evolutionary equation is carried out on the

basis of heuristic modelling, and such a procedure do require further work toward a precise

asymptotic theory controlled by a well-de�ned explicit parameter.
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APPENDIX A: LOCAL COORDINATE SYSTEMS AND BEAM PARAMETERS

In this appendix we give a mere summary of technical details about the construction

of the beam tracing solution and the encoding of the information on the beam width and

curvature of the phase fronts in the complex matrix 	��. We refer to the original papers

on the beam tracing method [10, 11] for the proofs. Let us discuss these issues in full

generality, i.e., in the three-dimensional space, and then specialize the results to the cases

under consideration.

In the beam tracing method one takes advantage of local coordinates constructed around

the reference ray. The �rst coordinate is always given by the parameter � along the reference

ray; then the system is completed by adding two transverse coordinates (�1; �2) de�ned as

follows. In each point q(�) one chooses a plane which represents a beam cross-section; let it

be spanned by two unit vectors fe1(�); e2(�)g. Then local coordinates are de�ned by

q� = q�(�) + e�i (�)�
i; (A1)

where the sum over repeated indices is implied with Greek indices for quantities in the phys-

ical space and Latin indices for quantities on the transverse cross-sections. Mathematically,

the only required condition is that fdq(�)=d�; e1(�); e2(�)g must constitute a set of three

linearly independent vectors throughout the reference ray; this is enough for the Jacobian

of the transformation to be non-zero on the reference ray, and, thus for (�; �1; �2g to consti-
tute well-de�ned coordinates in a small neighbourhood of the reference ray. In applications,

however, we need the coordinate system, at least, in a whole neighbourhood of radius w

which requires that the selected beam cross-section should not be too far from the normal

cross section, i.e., vectors ei(�) should be nearly orthogonal to the group velocity dq=d� .

Once the local coordinates have been �xed, the calculation of the function � = �(q) in

the beam tracing solution (14) requires just the inversion of (A1) which can be carried out

by algebraic means.

It is clear, however, that, there are many possible choice of such coordinate systems,
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yet one can prove that the di�erence of the corresponding beam tracing solutions is of

order O(1=
p
�). Among all possible coordinate systems of the form (A1), a special one,

beam coordinates, can be identi�ed, which is related to the solution of the matrix Riccati

equation (12). For its de�nition, we need to recall few mathematical properties of equations

(12) and (13):

(i) the constraints (13) are consistent with the Riccati equation (12), i.e., if (13) is satis�ed

at � = 0, then it is satis�ed for any � � 0;

(ii) a symmetric initial datum yields a symmetric solution;

(iii) if ���(0) is positive (resp., non-negative) de�nite, then ���(�) is positive (resp., non-

negative) de�nite for any � � 0;

(iv) let e�� =
��dq
d�

���1 dq�

d�
be the unit tangent vector to the reference ray and e�i be two

unit vectors normal to it; then (13) determines the components ~	�� = e�� e
�
�	�� and

~	�i = ~	i� = e�� e
�

i 	��, the only remaining unknown components being ~	ij = e�i e
�

j	��.

Due to their physical meaning, cf., comments after equation (14), we are particularly

interested in symmetric solutions with ��� non-negative de�nite. Indeed, the Gaussian

envelope of the beam is � = 1

2
���(q

� � q�(�))(q� � q�(�)) and since the vector q � q(�)
belongs to a cross-section that amounts to � = ~�ij�

i�j, where ~�ij = Im~	ij, and this must

be a positive de�nite symmetric quadratic form. Moreover, we can always select e1 and e2

so that ~�ij is diagonal and this de�nes the beam coordinates. In such a reference frame ���

is diagonal with eigenvalues f0; 2(�w2

1(�))
�1; 2(�w2

2(�))
�1g where wi(�) are the two normal

width of the beam cross-section (normalized to the scale length L).

We conclude that the beam coordinates are those for which the information on the beam

width is made explicit, i.e., beam coordinates follow the rotation of the beam throughout

the propagation. In addition, this also gives the rule to compute the normal beam width

from the matrix ���.

Analogously one could as well select e1 and e2 so that the real part ~Nij = Re~	ij is

diagonal and the eigenvalues are 1=R1(�) and 1=R2(�), with R1(�) and R2(�) being the two

normal radii of curvature of the phase front (a two-dimensional surface). This provides a

way to compute the radii of curvatures from the matrix N��, yet the resulting system of

coordinates is somewhat less fundamental as it does not diagonalize the whole matrix N��.
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For the two-dimensional models considered in this paper, the algebra of local reference

frame simpli�es considerably. Equation (A1) reads8><
>:
x0 = x0(�) + ex(�)�;

y0 = y0(�) + ey(�)�;
(A2)

where (x0; y0) are Cartesian coordinates normalized to L and we have only one transverse

direction given by e(�) =
�
ex(�); ey(�)

�
. The calculation of the function �(q) can be carried

out by multiplying the �rst equation in (A2) by ey and the second one by ex and subtracting

the results with the result,

ey(�)(x
0 � x0(�))� ex(�)(y

0 � y0(�)) = 0: (A3)

With the choices of Sec. IIIC, equation (A3) amounts to a cubic equation for � which, for

(x0; y0) �xed, can have either one real root (plus two complex roots) or three real roots. In

the �rst case � is just given by the only real root, while in the second case, we pick the root

for which the distance jq� q(�)j is minimum; that yields a smooth local coordinate system

around the reference ray. The generalized beam tracing solution addressed in Sec. IIIC takes

into account the existence of multiple real roots. Speci�cally, where three real roots �1; �2,

and �3 are found with, say, �1 < �2 < �3, then �1 corresponds to the incoming branch of the

beam, while �3 corresponds to the re
ected branch; the generalized beam tracing solution is

obtained as the sum of two wave-objects of the form (14) obtained with � = �1 and � = �3,

respectively. By the analysis of the discriminant of the cubic equation (A3) one can see

that around the classical turning point only a single real root is found, thus, the generalized

and the standard beam tracing solutions should agree near the turning point as obtained

numerically.

As for the calculation of the normal beam width and phase-front curvature in the two-

dimensional case, it is enough to compute beam coordinates due to the low dimensionality

of the problem; those are given by the unit transverse vector e / (�dy0(�)=d�; dx0(�)=d�).
Then, Re~	22 = e�e�N�� = 1=R, where R = R(�) is the radius of curvature (normalized to

L) of the phase front at q(�); on the other hand, Im~	22 = e�e���� = 2=(�w)2, where w(�)

is the e�1-width (normalized to L) of the beam cross-section at q(�). At � = 0 the matrix

	�� depends only on the parameter � = 2=�2� i� de�ned in (15), and, after some algebra,

the foregoing relations yield equations (16) that relates the two parameters � and � to the
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initial beam width w(0) and phase-front curvature 1=R(0) both normalized to L.
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