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Abstract 

Reconnection of semi-collisional, low- β plasmas is studied numerically for two model problems 

using a two-field description of the plasma including electron pressure effects (and hence kinetic 

Alfvén-wave dynamics). The tearing unstable Harris-sheet, with the global parameters of the GEM-

challenge case shows a linear growth of the peak reconnection rate with the drift parameter sρ when 

this scale is significantly larger than the resistive skin depth, and the island is smaller than the Harris 

sheet current layer width.  As exemplary for a driven, rather than a spontaneous reconnection situation 

we study as second model system two coalescing islands, starting from a non-equilibrium situation. 

The peak reconnection rate again increases initially linearly with sρ but saturates and becomes 

sρ independent for larger values. In this saturated regime, no flux pile-up occurs, and the reconnection 

is limited by the rate of approach of the two coalescing islands. The qualitative differences between 

spontaneous and driven reconnection cases, and their scaling behaviour are best understood by 

considering the reconnection rate as a triple product of outflow Mach number, outflow to inflow 

channel width ratio, and magnetic energy density at a height sρ  above the X point.  

 

I. Introduction 

Reconnection is a ubiquitous problem of plasma physics and central to the understanding of the 

conversion of magnetic into thermal and kinetic energy in astrophysics, space science and 

magnetic confinement research. Generally the observed rates of reconnection cannot be explained 

in terms of a simple resistive MHD model. Starting in the 90ies it has been shown by several 

authors (e.g. [1-4]) how two-fluid effects can significantly accelerate reconnection, by mitigating 

the constraints on the plasma flow in the proximity of the reconnection line (X-point). The basic 

topological problems, the constraints arising from purely resistive reconnection and the effects of a 

more generalized Ohm´s law can be understood and quantified by 2-D simulations, although 3-D 

effects and turbulence may still play a major role in the immediate neighbourhood of the 

reconnection line. 
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Two-fluid effects, dominating in various plasma regimes are the Hall effect, electron pressure 

gradient effects and electron inertia, introducing, respectively, the ion inertial length 

iApii Ccd Ω== ω , the drift scale iies mT Ω=ρ  and the electron inertial skin depth 

pee cd ω= . Here and henceforward ipepi Ω,,ωω denote ion and electron plasma and the ion 

cyclotron frequency, and the Alfvén speed. We focus in the following on plasma conditions 

relevant to standard aspect-ratio tokamaks, where the Hall effect is unimportant, and on 

phenomena proceeding at a slow enough rate γ so that the resistive skin depth 

AC

γμηδ ores 2= (with η  the resistivity) is larger than the electron inertial one. This is in contrast to 

most other reconnection studies, notably the coordinated benchmark effort GEM [1], which were 

motivated by space and astrophysical contexts and concentrated on high β  plasmas where the Hall 

effect is dominant. 

 

Reconnection phenomena have been idealized into two extreme situations, where the reconnection 

either itself determines the rate and geometry of the macroscopic developments (spontaneous 

reconnection) or where the rate of flux change is externally imposed (forced reconnection). Sample 

realisations of these two situations are, on one hand the tearing instability of the Harris sheet [1], 

and the Taylor problem [2] on the other. Ultimate aim of simulations of idealized situations is the 

quest for universally valid scalings of the dependent parameters of the problem on (mainly) 

sid ρη ,, . In the case of Hall-MHD several, apparently contradictory conclusions have been drawn 

in this regard [2-4] which, however, have recently been argued to be motivated by the differing 

formulations of the problem [5].  

 

To try to shed light onto effects that can possibly lead to a variation of the apparent scaling with 

the dispersion-inducing parameter ( or id sρ , respectively), we have conducted simulations for a 

coalescing island case, where we are able to show a continuous variation of the dependence of the 

reconnection rate on sρ  when changing from a situation where plasma flow and reconnection in 

the X-point vicinity are rate- determining, to one where the finiteness of the drive leads to a 

saturation of this dependence. 

 

To contrast this behaviour to one of essentially spontaneous reconnection, and to connect to the 

results of other groups for a much more extensively studied situation, we also show first the results 
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of our model and code for the Harris-sheet geometry used in the GEM-challenge simulations (Ref. 

[1] and papers summarized therein). 

 

II. Physics Model and Governing Equations 

A 2-D slab-simulation of reconnection capturing features of a tokamak plasma with a sheared 

magnetic field is conveniently carried out in a coordinate system with one axis (z in our notation) 

aligned with the unperturbed magnetic field at the resonant surface. At low β  the strong parallel 

field then justifies an incompressible plasma description, with zoBzBB =∇⋅≈
ρρ

. A set of equations 

used for treating such plasmas in the semi-collisional regime are those of the four-field fluid-drift 

model derived in Refs. [6] and [7]   for a cold-ion, isothermal electron plasma ignoring electron 

inertia. It consists of four time-dependent partial differential equations for the magnetic flux 

function ψ  , the z-component of vorticity zoz Bue φω 2∇=×∇⋅= ⊥
ρρ  (with φ the electrostatic 

potential), the electron pressure  and the parallel flow velocity .  In the absence of a 

background density gradient, the effects of parallel sound dynamics are also negligible [8], 

allowing further to neglect  and to set  . The resulting set of  2-field 

equations is thus given by 

ep //u

//u φρ 2
//

2
// ∇∇=∇ ese enp

ψ
μ
ηωρψ 22 ∇=∇⋅−

o
s B

dt
d ρ

          (1) 

ωμω 21
∇=∇⋅− z

io

jB
mndt

d ρ
          (2) 

together with 

zo jμψ −=∇2             (3) 

and 

ωφ zoB=∇2             (4) 

using ∇⋅+∂∂= utdtd ρ , the ansatz ψ∇×∇−∇= zzBB zo

ρ
 and φ∇×∇= z

B
u

zo

1ρ . 

 

The set is equivalent to the one used in Ref. 9. 

 

Our dimensionless units are based on one characteristic length of the computational regime L0, a 

magnetic field value in the poloidal plane  and the constant mass density ,  giving 

dimensionless units (here designated by an asterisk, which we drop, however, after this section)  as 

oB iomn
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( ) ( ),*,*,*,*,* oooAooAoo LBBBBCuuLrrCLtt ψψ =====
ρρρρρρ ( )zoAoo BCL*φφ = , oss L*ρρ = , 

( )Aooo CLμηη *= , ( )Aooio CLmn*μμ = , with ioooAo mnBC μ= . The choice of reference 

magnetic field is motivated by the fact that enters the dimensionless equations only through zoB

sρ , so that a normalisation of B
ρ

in terms of a poloidal component, and, in particular, of the Alfvén 

speed in terms of this (poloidal)  gives more physical insight. would enter only in the 

conversion of our dimensionless electrostatic potentials 

oB zoB

*φ  into dimensional ones. 

 

Mainly for numerical reasons, we include both resistivity and viscosity as dissipative terms, 

chosing in general the magnetic Prandtl number ** ημ equal to one. Scans against the resistivity 

are thus generally also scans against , with the Hartmann number given by 2−Ha ημoo LBHa = . 

 

 

III. Computational Method 

The above set of equations consists of diffusive and convective terms. For the diffusive terms 

(resistivity and viscosity) we use an unconditionally stable Alternating Direction Implicit scheme, 

whereas the convective terms are treated explicitly by a leapfrog scheme alternating between the 

vorticity and the magnetic flux equations.  The time-step is therefore constrained by a Courant 

Levy condition: ( )xBuxt xs Δ+Δ<Δ ρ  which takes into account the dispersive properties of the 

waves.  To avoid grid oscillations in regions of steep gradients it was found necessary to use an 

Arakawa scheme for the Poisson brackets that is fourth order accurate in space and conserves 

rigorously energy and squared vorticity [10]. 

 

Production runs were carried out with a grid of 400x200 points using mesh refinement in the X-

point proximity with homomorphic grid functions: for the cases reported here, we used minimum 

step sizes  and (for large 4102 −⋅=Δy sρ ) , respectively. For low values of the 

dissipation coefficients, 4

31025.1 −⋅=Δx
th order derivative terms  in the form of hyper-resistivity and hyper-

viscosity, respectively, had to be added to the R.H.S. of Eqs (1) and (2) to keep gradients to the 

scale of the grid [11]. We demonstrated (and describe below) that the resulting reconnection rates 

and the macroscopic flows and fields were independent of the numerical coefficients used for these 

hyper-resistivity and –viscosity terms.  
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IV. Results of Simulations 

The most important results of our simulations are the geometrical patterns of magnetic and flow 

fields, and the reconnection rates as function of time or reconnected flux. The latter representation 

allows particularly well to separate the effects of reconnection from those of drive, as for self-

similar geometries (and, obviously, in the linear case) equal reconnected flux would imply equal 

forces exerted onto the plasma perpendicular to any reference flux surface taken as boundary of the 

reconnection zone. It is therefore particularly indicated for simulations starting from an unstable 

near-equilibrium state, like our (or the GEM) Harris sheet cases. 

 

 

IV.A. The Harris Sheet 

To connect to the extensive information gained from the GEM benchmark exercise, we have 

studied, as a first problem, the Harris sheet magnetic configuration, albeit assuming – to be 

consistent with our ordering – a strong guide field, and consequently a constant density. We also 

based dimensionless quantities on a macroscopic length  , rather than on an intrinsic plasma 

parameter (  in the GEM-convention), leading to conversion factors  

oL

id

( ),i
SGLGEM dLηη = ( ),i

SGLGEM dLψψ = ( )i
SGLGEM dLtt = SGLGEM ψψ && =,   

between the dimensionless parameters of the GEM case and the present paper (SGL). In our units 

and coordinates, the unperturbed Harris-sheet field configuration is given by 

( ) ( 039.0tanh yyBx = )

( )

, with an initial seed perturbation specified as 

( ) ( ) yxtyx ππψ coscos0078.00,, == . For the GEM standard parameter set ( ) 8.12=GEM
idL . With 

different dispersive terms in our two-fluid formulations, only the purely resistive MHD case can be 

used for a direct comparison. We chose, for this reason our reference values of η  so as to 

correspond to a case studied in Ref. [13]. The results, both for the reconnected flux as function of 

time and for the topology of the flux function agree very well, over the whole period described in 

Ref. [13] ( in our units of Alfvén transits through the periodicity length in y-direction). As 

noted by the authors of [13]

6.15* ≤t
 , the early growth rate of the perturbation agrees also well with the 

prediction of classical [14] linear tearing mode theory, taking the value of of the Harris sheet for 

vanishing island width,  although the requirements for its validity (

Δ′

restearIw δδ << , with 

γηδ
γ

ηδ =
Δ′

= restearIw ,,  the island, the tearing-layer and the resistive-layer width) are not met 

by the parameters and the initial conditions ( ).035.0,035.0,078.0 === restearIw δδ  One would, 
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after the adjustment of the simulations to the “inconsistent” initial conditions rather expect a 

Rutherford-regime [15] like behaviour with the energy flux into the island region balanced by the 

Ohmic dissipation. Due to the large initial island size (comparable to the current layer width of the 

Harris sheet), however, simulations are from the very beginning in the saturation regime. The 

reconnection rate should therefore rather be compared with the expression 

( ) ( ) ( 0
''

0001 '822.1 www ψη )ψ Δ=&  , which, taking  the analytic formula of Biskamp [16] for  

 and ψ( )( ) 1020 ==Δ′ twI 0’’( )=11.2,  gives a rate by a factor of  2.5 smaller than 

observed.  

( 0=twI )

 

Figs.1.a –c show the poloidal magnetic flux contours during three characteristic phases, at times 

between the initial state and t= 17.5. (Calculations were continued till t=83.7 but with no further 

qualitative changes.) During early phases, the neutral sheet along the y = 0 line extends in the x-

direction between two Y-type reconnection points, which coalesce forming an X-point at later 

times. Tables 1 and 2 give some quantitative results of our Harris-sheet simulations, and among 

others, also the ratio of the current sheet width (taken at half the maximum value of ) in y zj )( jδ  

and x-direction   at the two instances of Fig.1b,c corresponding  to reconnected fluxes  of 

0.038 and 0.066, respectively. (Note that our definition of reconnected flux 

)( jL

( ) ( )tttrec ,pointO,0,0)( −−= ψψψ includes already the flux implied as reconnected by the initial 

conditions.) The ratio jj Lδ is very small, with jδ  microscopic and of the order of the resistive 

layer width, and macroscopic and of the order of the geometrical dimensions. In the scans with 

constant magnetic Prandtl number, the maximum of the reconnection rate 

jL

recψ& scales, to very good 

approximation, like η1 (Fig.2).  

 

Starting from this reference case we introduced the electron pressure, and hence a finite value of 

the drift parameter sρ . The latter was chosen, for the cases discussed below as 0.018, 0.036, 0.072, 

respectively. The largest sρ case corresponds to the same ratio of microscopic ( sρ or , 

respectively) to macroscopic dimensions (lateral and vertical elongation of box and current 

sheet width 

id

yx LL ,

currδ ) as the GEM reference case, although the effect mitigating reconnection is a 

different one [17] (kinetic Alfvén in our vs. Whistler waves in the GEM-case), and the 

characteristic length appearing in the GEM-case pii cd ω= is the ion gyroradius based on the 

Alfvén (rather than the ion acoustic) speed.  Tables 1 and 2 give a list of characteristic quantities 
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derived from the calculations for the different cases for the two values of the reconnected flux: 

038.0=recψ  and 0.066, respectively.  In case of a one-to-one correspondence between 

reconnected flux and island shape and width, equal reconnected flux recψ  would correspond to 

equal energy input into the tearing zone magWδ  per unit reconnected flux recδψ  , and remains at 

least a well-defined reference situation in the general case.   

 

Introduction of electron pressure effects has been found in Refs. [9,18] to allow, like the Hall 

effect, for a decoupling of plasma flows and field lines over a spatial scale of the order sρ . This 

can be seen from the fact that the term ( ) ψωρψωρψ ∇⋅∇×−∇⋅=∇⋅−∇⋅ zss euBu ρρρρ 22 can be re-

written in the form ψ∇⋅vρ , with  

( ) ( )φρφωρν 222 ∇−∇×−=∇×−= szzs eeu ρρρρ ,         (6) 

with ν
ρ the field line convection velocity, and  its stream function. Whereas the 

reconnection rate for the spontaneous (self-regulating) Harris sheet case in resistive MHD is 

controlled by resistivity, for large enough 

φρφ 22∇− s

sρ  it becomes independent of η  (or Hartmann number), 

as is shown in Fig. 2 for the intermediate case ( 036.0=sρ ). As requirement for this insensitivity, 

we found that the resistive skin depths γηδ =res , at the actual recrec ψψγ &=  determined by the 

simulations, should be small compared to sρ . This condition is well satisfied for 072.0,036.0=sρ  

(see Tables 1 and 2) but not for   018.0=sρ . 

 

Fig. 3 shows the reconnection rate recψ& as a function of time and reconnected flux for the cases of 

Tables 1 and 2. As found in the GEM-studies, the reconnection rate is strongly increased by the 

decoupling of plasma flow and field line convection. This is the case already from the very 

beginning of each simulation, but recψ& shows a further strong increase at an instant in time 

occurring later for smaller sρ . The time of this increase is not related simply to the amount of 

reconnected flux, but rather to a characteristic change in field line geometry. Early in the 

calculations, all cases show two Y-type reconnection regions, merging later into a single X-point. 

This behaviour is qualitatively quite similar to the one described in Ref. [18]. Fig. 4 shows the flux 

pattern for the three different sρ - cases at a total reconnected flux 038.0=recψ  and 066.0=recψ . 

The “mixed” case sρ = 0.018 (with sres ρδ ≈ ) at the earlier time exhibits still two distinct Y-type 

reconnection regions and only a moderately enhanced reconnection rate recψ& . Reconnection is 
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already strongly enhanced for the larger sρ -values. In particular, however, flux surfaces in these 

latter cases have already developed X-type reconnection geometry. This X-type flux surface 

geometry extends however only over a local region with an approximate height sρ , linking, on 

larger scales, to the remnants of the original Y-type flux surface structure. At later times, this two-

region feature of the geometry disappears, as can be seen from the flux patterns at recψ  = 0.066. 

Remnants of the two-region structure are still visible at this  recψ -value in the reconnected regions 

of the sρ = 0.072, as the reconnected flux value is reached earlier at the higher sρ . The sudden 

strong increase of the reconnection rate recψ& in the finite sρ -cases appears to be linked to the 

expansion of the X-point geometry over a vertical height sρ corresponding to the region of 

decoupling of plasma flow and field convection.  

  

Tables 1 and 2 list some further parameters quantitatively characterizing the geometry of the 

reconnection region at the time-instances corresponding to the two reconnected flux values of Fig. 

4:  the time at which this reconnected flux value is reached, the local field line angle α at the X-

point, jj Lδ  , and the ratio of the plasma flow channel width in y- ( uδ ) and x–direction ( ). For 

characterizing this flow channel we take the stream-line tangent to y = 

uL

sρ  and use its closest 

approach to y = 0 and  x = 0, respectively, as definition of uδ  and  . (This definition can 

obviously not be used for purely resistive-MHD: as, close to the line of stagnation, the ratio 

uL

uu Lδ   

depends, however, little on the actual stream-line chosen, we take in this case simply the innermost 

stream-line plotted).  

 

 

With increasing sρ  (and concomitantly increasing reconnection rate) the current sheet at the X-

point contracts dramatically in vertical, but in particular also in x-direction. At high values of sρ , 

hyper-resistivity and hyper-viscosity are required to suppress grid oscillations, but the 

reconnection rate becomes independent of their numerical values, if they are chosen low enough. 

In general we use a hyper-viscosity coefficient equal to that of hyper-resistivity, but we have 

verified the independence of the reconnection rate by varying the two coefficients also separately. 

When the reconnection rate becomes independent of resistivity, the current layer assumes an 

apparently universal aspect ratio ( ≈jj Lδ 0.1), also found in our simulations regarding coalescing 

islands and for the same geometry in Ref. [9]. Over a distance ( ) suuLx ρδ≤ , y ≤ the electron sρ
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pressure term ωρ ∇⋅− Bs

ρ
2  dominates over convection by the plasma flow ψ∇⋅uρ  among the 

different contributions to the electric field ψ&, and determines it in the axis vicinity, in a similar 

form as in simulations of corresponding Hall-mitigated reconnection described in Ref. [11]. 

 

The field line angle, at the X-point in the outflow direction, after its formation, continues to open 

up till the “nose-like” structure extending over a vertical region sρ≈  has disappeared. A given 

angle α is reached at a lower reconnected flux value, and in particular much earlier, for the larger 

sρ -values, although even the resistive MHD at later times shows a similar flux pattern. Our case 

of Tables 1,2 with sρ = 0 was continued to t = 84, when α  reached 46o.  

 

The decoupling of  field lines and plasma flow over a progressively larger region is evident in the 

comparison of the stream function φ  for the plasma flow with that for the field line convection: 

 (Fig. 5) for the case of largest φρφ 22∇− s sρ , near the reconnection rate maximum (at 

066.0=recψ ). The finite electron pressure term eliminates the need for the plasma streamlines to 

converge near the X-point to conserve the convected flux in spite of the reduction of B  in its 

proximity [19]. As we discuss further in the conclusions, once an X-point is formed, the ratio of in-  

to outflow velocity outin uu - equal to uu Lδ  in Tables 1 and 2 – is closely linked to the field line 

angle of the separatrix. For such cases both uδ and  uL  are roughly proportional to sρ , as found by 

Shay et al. [3]. The outflow velocity is however significantly smaller than the reference Alfvén 

velocity, as other forces besides inertia (notably the hydrostatic pressure difference between the O-

point and the upstream region present already in the equilibrium phase) balance the major part of 

the upstream magnetic pressure.  

 

The most important macroscopic result of these simulations is the observed dependence of 

reconnection rate recψ& on sρ . The reconnection rate has a broad maximum as function of  the 

reconnected flux, which for all three finite sρ -cases occurs approximately for the reconnected flux 

value of 0.066.  The maximum reconnection rate increases about linearly with sρ  between the 

cases with sρ = 0.018 and 0.036 and weaker up to 0.072. A uniform scaling across the whole 

tested range is, however, not to be expected, as the half-width of the island is approximately equal 

to the largest value of sρ . A quantitative analysis of the magnetic flux and the plasma flow 

patterns reveals that a major contribution to this scaling comes from the shift in the location of 
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plasma flow/field decoupling away from the X-point. As can be seen from the stream-lines in Fig. 

5 the plasma in-flow along the x=0 line is nearly constant over a significant range of y, and varies 

also significantly less than the reconnection rate between the three cases (from = 0.02 for yu sρ = 

0.018 to 0.045 for sρ = 0.072). The value of sρ determines the location of plasma-field decoupling, 

as can be seen particularly well from the stream-lines of the advection flow (Fig. 5) which start 

converging towards the X-point at a height increasing  with sρ . At this location they take over the 

magnetic flux frozen so far into the plasma flow and carry it further to the X-point: 

( ) recsxy Bu ψρ &≈ .  

 

IV.B. Coalescent Islands Case 

 

To approach the situation of driven reconnection, where the rate of energy input into the 

reconnection zone is externally imposed, we simulated as second problem, the coalescent island 

case in the form studied in Ref. [9]. Although also this problem concerns an energetically closed 

system (in the sense that the boundary conditions correspond to vanishing Poynting flux and 

perpendicular plasma flow), it starts far from force equilibrium.  

 

The first phase of development is therefore characterized by the conversion of magnetic energy 

into kinetic energy, and is relatively independent of reconnection (a situation prevailing also, to a 

much lesser extent, and only over a short period, in the Harris sheet case, when we start the 

unstable development with a relatively large amplitude). In our normalisation, the duration of this 

phase is about , and for sufficiently low resistivity and viscosity conserves the sum of kinetic 

and magnetic energy (Fig. 6). At the onset of reconnection therefore not only magnetic energy, but 

a significant amount of accumulated kinetic energy is available for its drive. 

1≤t

 

For our simulations we initiate calculations with a current distribution given by  

( )( )( )2222),( dyxrjyxj moz −+−⋅=  , for ( )( )222 dyxrm −+>  and 

0),( =yxjz  , for ( )( )222 dyxrm −+≤  

and the flux distribution obtained by solving Ampere´s law with the boundary conditions 

( ) ( ) ( ) 00,,01,,0,1 =∂∂==± yxxy ψψψ . The plasma is initially assumed to be at rest, and the 

stream function of its flow satisfies at all times ( ) ( ) 0,1,,0,,1 =±=± txty φφ . The intial conditions 

are thus symmetric about both the x=0 and the y= 0 lines. To allow, at later times, spontaneously 
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arising, asymmetric tearing of the current sheets along the x-axis, we solve the equations in the 

region . The current density is normalized so that (initially) ( 10,11 ≤≤≤≤− yx ) oBB =max . For 

all cases reported here, d = 0.3 and  the initial flux value at the O- and X- points are 0.32, and 

0.213, respectively, corresponding to a total flux available at t =0  for further reconnection of 

0.107. 

 

Due to the initial non-equilibrium and the large kinetic energy acquired by the plasma prior to 

reconnection, the dynamics of the system, at later stages is multifaceted. Fig. 7 gives flux contours 

at different times, for the case with  and 410−== μη sρ =0.032. Even after complete reconnection 

is achieved, at  , the stored kinetic energy can lead to a tearing of the plasmoid and, again, the 

formation of separate island regions along the x-axis, coalescing again later. For this reason, we 

limit quantitative comparisons to phases where less than half of the available flux is reconnected. 

Fig. 8 shows the reconnection rate 

1≈t

recψ& as a function of time and  of reconnected flux, for different 

values of sρ , at constant . For these and smaller values of the dissipation coefficients 

we have verified that the reconnection rate becomes independent of 

410−== μη

η and μ . Larger dissipation 

coefficients – for constant magnetic Prandtl number – at finite sρ were actually found to reduce the 

reconnection rate, as viscosity damps the velocity shear which otherwise allows the decoupling of 

plasma flow and field convection in the X-point vicinity. Reconnection rates of Fig. 8 are much 

higher than in the corresponding cases of the Harris sheet (Fig. 3) showing a much stronger drive. 

For the same reason also the plasma outflow velocity is much closer to the Alfvén speed. 

 

Fig. 9 shows flux contours, and overlaid, colour-coded, the magnitude of the plasma flow velocity 

u  at a reconnected flux ( ) 253.0=trecψ , for some of the cases of Fig. 8. Increasing sρ  results in a 

widening of the outflow zone, with steep gradients of u  across the separatrix flux surface. 

Quantitative information on characteristic parameters for these cases is given in Table 3. The 

reconnection rate grows linearly with sρ  between 0.0033 and 0.01 and then weaker than linearly 

up to 0.02.  Beyond that value it saturates. In the region of linear growth, recψ& agrees well with the 

trend that would be expected from a Sweet Parker like argument, namely proportional to  

outinuu uuL ∝δ . For these values of sρ , the outflow velocity equals the reference Alfvén 

velocity (taking ( sxref BB )ρ,0= ) For larger sρ , the ratio of the flow sheets uu Lδ continues to 

increase with sρ , but accompanied by a decrease in the outflow velocity. Beyond 02.0=sρ these 
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two trends compensate: the outflow velocity adjusts to the channel width and  so as to 

maintain the reconnection rate invariant. In this situation we have obviously arrived at conditions 

of truly “forced” reconnection, where external conditions (in this case produced by the acceleration 

of the two islands towards each other during the frozen-in-field phase) impose the reconnection 

rate. The plasma flow velocity and the flow channel geometry have then to adjust in order to 

accommodate the imposed, nearly constant reconnection rate in spite of the variation of 

refB

sρ .  

 

 

 

V. Discussion 

 

The two model problems dealt with in our simulations exhibit a range of different scaling trends 

with the parameter governing the plasma/magnetic field decoupling (in our case the drift parameter  

sρ ). Starting point for any unified interpretation of  the quasistationary behaviour, is the relation 

( ) ( ) ( ) inrefrefyrefxrecz uByuyBE ⋅=⋅≈= ,0,00,0 ψ&  describing advection of frozen-in flux by the 

plasma flow, in the upstream region, prior to the plasma/magnetic field decoupling. 

Incompressibility relates this inflow to the outflow velocity  

( ) ( ) ( ) ( ) ( ) ( ) outrefrefrefxrefrefinrefy uLxuLuyu ⋅=⋅== φφδφφδ /0,/,0  where ( ) ( ) uurefref LL δφφδ =  is the 

ratio of outflow to inflow width of the channel formed by a stream line refφφ =  passing close to the 

X-point. Following Ref. [3] we refer to the Alfvén-speed, based on the reference field , to 

write  

outu refB

( ) 2
refuuArec BLM δψ =& ,          (7)  

and to discuss the results in terms of the three contributing factors ( ) 2,, refAuu BMLδ .  

For finite sρ , once an X-point is formed, the maximum velocity shear is across the separatrix, and, 

with increasing sρ , the point of effective decoupling moves upwards, leading to a concomitant 

increase in  uδ and . The ratio uL uu L/δ  is thus linked to the separatrix geometry near the X-point, 

and the variation of uu L/δ is strongly linked to the global field structure. In the Harris-sheet case, 

the sudden increase in reconnection rate evident in Fig. 3 happens simultaneously with the opening 

up of the separatrix over a height of the order sρ . If the geometry is strongly constrained by global 

properties - like in the Harris-sheet case  -  the ratio uu L/δ  tends to a constant, like also  in the 

double tearing mode - cases reported in Ref. [3]. For the sρ = 0.072 case (corresponding to the 
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GEM standard data-set convention) reconnection proceeds so fast, that the original (rather large 

amplitude) perturbation has not been damped out by the time of Fig. 4, and the X-point angle 

overshoots this general trend (Table 2).  

The reference value should be linked to the location of decoupling of the plasma flow and the 

field line convection (e.g. 

refB

( ) ( )refxrefx yuyv ,0,0 ≈ , as proposed by Ref. [3]). The upward shift of this 

location, to increasing values of ( )yBx ,0 , in fact explains a significant part of the observed sρ -

scaling in our Harris sheet case, as can be understood also from the magnetic field profiles shown 

in Fig. 10a.  

The relation of the reconnection rate to an expression like Eq. (7) is more robust regarding the 

linear factor derived from the frozen-in condition, than the second one, derived from the 

variation of the Alfvén-velocity. The variation of the outflow velocity (respectively of , once 

we have chosen a definition of reference field ) is dominated by the global dynamics of the 

problem. In the case of an “embedded” reconnection this manifests itself in a variation of the 

hydrostatic pressure difference between the in- and outflow region, which is not explicitly 

computed in incompressible calculations, but is, of course, nevertheless present and has to be 

included (together with the sometimes significant contribution of magnetic tension 

refB

AM

refB

( )∫ ⋅∇⋅− uudBB ρρρ
 to the integral of the momentum equation along a stream-line) in the Sweet-

Parker pressure balance. This is evident, of course, in spontaneous reconnection, starting from an 

equilibrium with (in slab geometry) ( ) =+ pB oμ22 const.  In our Harris sheet case, in fact, even 

at later times, the Alfvén-Mach number referred to either the asymptotic field or a reference 

field 

( 1,xBx )

)( sxB ρ,0 , remains below 0.3 for all instances in our simulations. The situation is very 

different in our coalescent island simulations, where the starting state is far from equilibrium, 

leading initially to a strong acceleration of the plasma. Flux pile-up occurs therefore in front of the 

reconnection zone, on a spatial scale commensurable with sρ (Fig.10b). The outflow Mach number 

– referenced to ( sxB )ρ,0  - is of the order 1, and the reconnection rate  - for the large sρ -values 

approaches a self-regulated state, in which separatrix geometry, field-strength in the pre-

reconnection region, and Mach-number adjust to give a reconnection rate imposed by the 

dynamics (i.e. the approach velocity) of the two converging plasma blobs, nearly independently of 

sρ . 

The scaling of reconnection rate with sρ is therefore a complex one, with differences between the 

spontaneous and driven situation, but varying also with sρ (and its relation to macroscopic scales) 
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itself. We characterize, in the following, this behaviour by the contributions to the three factors 

( ) 2,, refAuu BMLδ , and distinguish, for each problem three regimes, corresponding to increasing 

values of sρ : (1) the transition from purely resistive to drift parameter dominated regime, (2) an 

intermediate regime, where a scaling of ( )dtd recψ ~ sρ  is observed, and (3) a regime of 

saturation.  

In the Harris sheet case (Tables 1 and 2), uu L/δ  makes a sudden jump in the transition from the 

resistive to drift parameter dominated case, but varies then only slowly (as discussed above, the 

high sρ -case is an exception, as the magnetic field structure still shows remnants of the starting 

perturbation – see Fig. 4f). The outflow Mach number referenced to the field at the nominal 

decoupling point 

refB

( s )ρ,0 varies also relatively little, so that the dominating contribution in Eq. (7) 

comes from the variation of  , which is primarily due the upwards shift of the reference point 

(see Fig. 10a).  

refB

In the coalescent island case (Table 3) , uu L/δ  (and recψ& ) show a strong increase from ρ =0.0033 

to 0.01, and a smaller rate of increase further on. The outflow Mach number, based on is 

initially constant and close to 1, but decreases slightly when the 

refB

sρ -dependence of recψ& saturates. 

The profiles of  in Fig. 10b show that the spatial maximum of the upstream magnetic field 

shifts away from the X-point with increasing 

( yBx ,0 )

sρ and decreases in magnitude. Due to the strong 

dynamics of this system, selecting a particular instance in time (or reconnected flux) is difficult 

and possibly misleading: Fig. 8b shows, however, quite clearly the saturation of ( )srecrec ρψψ ,& with 

sρ  over an extensive range in reconnected flux. 

The actually observed reconnection rates, for each of the two model problems correlate quite well 

with the expression Eq. (7) (see last columns of Tables 2 and 3), but the ratio 

( )( )2
refuuArec BLM δψ&  varies significantly between the Harris sheet and the coalescing island case, 

and differs, in particular in the former case, significantly from 1. The two main reasons for this are, 

that at the reference point ( s )ρ,0  the electron pressure term makes already a large contribution to 

the magnetic field convection, and that the assumption of quasi-stationarity ( ( ) ( )ttyx recψψ && =,, ) is 

only approximately satisfied.  

 

The question of the existence of a universal reconnection rate (as debated in Refs. [1-5]) can 

be discussed at hand of Eq. (7), and in the light of our results for the two model problems 
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considered. If one assumes a strong drive ( )1≈AM and normalizes by  as suggested in 

[3], the reconnection rate will still scales with the in/out flow ratio 

2
refB

uu L/δ . Only if the  

magnetic geometry is very robust and does not change with sρ  in the vicinity of the X point - 

like for the example discussed in [3] and for the GEM challenge - this ratio, and hence the 

reconnection rate  normalized by will remain independent of 2
refB sρ . In the case of truly 

forced reconnection, where the rate is externally imposed by the boundary conditions [5] and 

kept fixed in a variation of sρ , all three factors can adjust to match the imposed rate: our 

coalescent island case approaches this limit for the largest two sρ -values. 

 

Although the parameter ordering for our simulations ( )sresed ρδ << is relevant for certain 

tokamak applications, the results do not have a direct applicability to problems of this device, but 

are intended rather to contribute to the general understanding. Reconnection problems in tokamaks 

span a broad spectrum ranging from both spontaneous to forced reconnection. In the case of 

classical tearing modes, the energy inflow into the tearing layer per unit reconnected flux is given 

by recrecrecon ddW ψψ Δ′=  , and is imposed by the field changes in the ideal plasma region, 

whereas the rate of energy input (the divergence of the Poynting 

vector ( )dtddtdW recrerecrecon ψψψ ⋅Δ′= 2 ) is then determined by the reconnection rate itself. On the 

other hand the growth of secondary islands at rational surfaces ( ) nnq 1+= – forming the possible 

seed for neoclassical tearing modes (NTMs) – by MHD activities connected to sawteeth, or the 

response to suddenly applied resonant perturbations are cases of a driven reconnection, where the 

primary drive (e.g. the growth of the 11=nm  mode) is hardly affected by  the back-reaction. The 

latter and similar problems, for rotating plasmas will be examined in the future with the code 

described in Ref. [20], with a similar two-fluid physics model in cylindrical geometry, but 

including density gradients and hence diamagnetic drifts.  
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TABLE 1: Characteristic results of Harris sheet simulations with and different 
values of drift parameters for 

4102 −⋅== μη
038.0=recψ : time of attainment ( ), instantaneous reconnection rate 

(

t

dtdψ ), island width ( ), field line angle at X-point (Iw α ), resistive layer width ( γηδ =res ), 
ratio of current sheet widths ( jδ / ), ratio of outflow to inflow channel width jL ( )uu Lδ .  

ρs [10-2] t dΨrec/dt wI α [ο] δres  δj/Lj δu/Lu

0 3.8  0.006 0.19 Y-g. 0.035 0.03 0.08 

1.8 2.1  0.014 0.21 Y-g. 0.020 0.03 0.09 

3.6 1.3  0.074 0.21 20 0.011 0.12 0.18 

7.2 0.6  0.092 0.18 34 0.009 0.10 0.30  

 

 

 

 
TABLE 2: As Table 1, but 066.0=recψ . In addition, values for the outflow velocity (uout), the 
reference magnetic field strength (BBref) and the fraction of Alfvén velocity (MA) are given 
together with the normalised reconnection rate 2

refB/(recψ& δu/Lu MA ). 
 

ρs [10-2] t  dΨrec/dt wI α  [ο] δres  δj/Lj δu/Lu uout Bref MA  
Auu

rec

ML/B2
refδ

ψ&

0 7.2 0.006 0.29 Y-g. 0.040 0.03 0.1 0.07 - - - 

1.8 3.8 0.036 0.25 20 0.019 0.03 0.19 0.10 0.55 0.18 3.5 

3.6 1.65 0.084 0.25 34 0.012 0.10 0.21 0.18 0.67 0.26 3.4 

7.2 0.95 0.134 0.25 42 0.010 0.10 0.30 0.15 0.7 0.21 4.3 
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TABLE 3: Characteristic results of coalescent island simulations with and 
different values of drift parameters for 

410−== μη
253.0=recψ : time of attainment ( t ), instantaneous 

reconnection rate ( recψ& ), ratio of outflow to inflow channel width ( )uu Lδ , (spatial) maximum 
of outflow velocity ), the reference magnetic field strength (BBref),  the fraction of Alfvén 
velocity (MA) and the normalised reconnection rate 2

refB/(recψ& δu/Lu MA ). 
 

ρs [10-2] t recψ&  δu/Lu uout, max BBref MA

Auu

rec

ML/B2
refδ

ψ&  

0 2.0 0.05 0.06 1.0 - - - 

0.33 1.55 0.08 0.075 1.0 1.1 0.9 0.98 

1 1.2 0.2 0.36 0.77 0.77 1.0 0.94 

2 0.92 0.25 0.43 0.63 0.86 0.73 1.08 

3.3 0.85 0.25 0.53 0.52 0.84 0.62 1.08 
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Figure Caption 
 

 
Fig. 1: Flux contours during the Harris sheet reconnection for the resistive MHD case 
( ) at three characteristic times, corresponding to reconnected fluxes of (a) 4102 −⋅== μη

)8.3(038.0 == trecψ   , (b) )2.7(066.0 == trecψ  , (c) )5.17(102.0 == trecψ   
 
Fig. 2: Maximum reconnection rate as function of resistivity, at constant magnetic Prandtl 

1=ημ  for vanishing and finite ( 036.0=sρ ) drift parameter.   
 
Fig. 3 (Color online): Reconnection rate dtd recψ (equal to the z-component of the electric 
field at the X-point) as function of time (a) and of the reconnection rate (b) for the Harris 
sheet case, at different drift parameters sρ , for  . 4102 −⋅== μη
 
Fig. 4 (Color online): Flux surface for the Harris sheet case, for different, finite values of 

sρ (a,d: 0.018, b,e: 0.036, c,f: 0.072) at equal amount of reconnected flux (left: recψ = 0.038, 
right: recψ = 0.066). The vertical bar gives the extension of sρ . 
 
Fig. 5 (Color online): Iso-contours of the flow stream function (or electrostatic potential) φ  
(a) and of the stream function  for the flux advection velocity φρφ 22∇− s vρ (b) for the Harris 
sheet case, for 072.0=sρ  at recψ = 0.066. 
 
Fig. 6 (Color online): Sum of magnetic and kinetic energy for the coalescent island case, for 
the resistive MHD case and magnetic Prandtl number 1=ημ , and different dissipation rates. 
 
Fig. 7: Magnetic flux at different times during the coalescent island simulations, for 

 , 410−== μη 032.0=sρ . 
 
Fig. 8 (Color online): Reconnection rate dtd recψ (equal to the z-component of the electric 
field at the X-point) as function of time (a) and of reconnected flux (b) for the coalescent 
island case, at different drift parameters sρ , for . 410−== μη
 
Fig. 9 (Color): Magnetic flux (iso-contours) and magnitude of plasma flow velocity uρ  
(colour coded) for the coalescent island case at fixed reconnected flux 253.0=recψ , at 
different drift parameters sρ , for . 410−== μη
 
Fig. 10 (Color online): Magnetic field strength along the y-axis Bx(x=0,y) for the Harris sheet 
(a) and the coalescent island case (b) for different values of the drift parameter sρ . 
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