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Abstract

In the context of gyrokinetic flux-tube simulations of microturbulence in magnetized toroidal

plasmas, different treatments of the magnetic equilibrium are examined. Considering the Cyclone

DIII-D base case parameter set [Dimits et al., Phys. Plasmas 7, 969 (2000)], significant differences in

the linear growth rates, the linear and nonlinear critical temperature gradients, and the nonlinear

ion heat diffusivities are observed between results obtained using either an s − α or an MHD

equilibrium. Similar disagreements have been reported previously [Redd et al., Phys. Plasmas 6,

1162 (1999)]. In this paper it is shown that these differences result primarily from the approximation

made in the standard implementation of the s − α model, in which the straight field line angle

is identified to the poloidal angle, leading to inconsistencies of order ε (ε = a/R is the inverse

aspect ratio, a the minor radius and R the major radius). An equilibrium model with concentric,

circular flux surfaces and a correct treatment of the straight field line angle gives results very close

to those using a finite ε, low β MHD equilibrium. Such detailed investigation of the equilibrium

implementation is of particular interest when comparing flux tube and global codes. It is indeed

shown here that previously reported agreements between local and global simulations in fact result

from the order ε inconsistencies in the s−α model, coincidentally compensating finite ρ∗ effects in

the global calculations, where ρ∗ = ρs/a with ρs the ion sound Larmor radius. True convergence

between local and global simulations is finally obtained by correct treatment of the geometry in

both cases, and considering the appropriate ρ∗ → 0 limit in the latter case.
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I. INTRODUCTION

Among different potential technological alternatives for achieving thermonuclear fusion

as an energy source, the Tokamak, based on an axisymmetric magnetic confinement of a

plasma, has been one of the most studied devices. In a fusion reactor, the energy and

particle confinement times need to be long enough to obtain a positive energy balance be-

tween injected energy for heating the system and energy produced by fusion processes in

the plasma. Energy and particle losses observed in magnetic fusion experiments are however

well above those predicted considering purely collisional processes. This so-called anoma-

lous transport is believed to result primarily from small scale instabilities, referred to as

microinstabilities, which are driven by temperature and density gradients. Understanding

microturbulence is therefore of major interest, as the associated transport, which directly

depends on these gradients, determines the minimum size of a magnetic confinement-based

fusion reactor. This microturbulence is widely studied via numerical simulations based on

the nonlinear gyrokinetic equations [1–3].

Since microinstabilities tend to have much longer wavelengths parallel than perpendicular

to the equilibrium magnetic field, the computational effort can be significantly decreased by

using a reduced simulation domain consisting of a narrow tube, elongated along a given field

line, together with a field-aligned coordinate system. In such flux-tube simulations [4–7], a

further local limit ρ∗ = ρs/a→ 0, with a the minor radius and ρs the ion sound Larmor ra-

dius, is assumed and radial variations of density and temperature, as well as their gradients,

are in particular neglected. This approach is to be distinguished from global simulations,

where the full Tokamak volume is considered and radial profiles of equilibrium quantities

are taken into account.

In order to gain confidence in the turbulent transport level predicted by gyrokinetic simu-

lations, benchmarking the various existing codes for defined sets of physical parameters is

required. The Cyclone base parameters were derived from a DIII-D discharge in Ref. [5] and

have been widely used in the past years for carrying out such validations and comparisons

between different codes.

The aim of this work is to discuss and explain differences observed in gyrokinetic flux-tube

computations when using different magnetic equilibrium models. We investigate in partic-

ular these differences for the Cyclone base case parameter set considering its importance as
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a benchmark. Furthermore, we address and clarify the fact that some previous comparisons

between local and global simulations have been misinterpreted due to such equilibrium is-

sues.

In Ref. [5], flux tube results were obtained with various codes, all using the same reduced

s−α equilibrium model [8], which provides a simple, comprehensive, analytic model of essen-

tial magnetic equilibrium features and avoids having to interface with an MHD code. This

model consists of circular shifted flux surfaces, with s the shear and α the Shafranov shift

between the centers of consecutive magnetic surfaces, resulting from the pressure gradient

(note that for the Cyclone benchmark, low pressure is assumed and α is set to zero). How-

ever, it has already been pointed out previously that these simulations may differ strongly

from results obtained using a more realistic magnetic equilibrium: In Ref. [9], both s − α

and true MHD equilibria were considered, and significant differences in the corresponding

linear gyrokinetic results were observed. These discrepancies were however assigned to the

remaining Shafranov shift present in the low pressure MHD equilibrium plasma, which had

been neglected in the s− α model. Furthermore, it was also noted in Ref. [10] that results

with an s − α model significantly differ from those obtained with a Miller [11] geometry

in the limit of circular parameters and no Shafranov shift, but no actual explanation was

provided.

In this work, we show that the above mentioned differences in fact mainly result from the

approximation made in the standard flux-tube implementation of the s−α model, in which

the straight field line poloidal angle (essential for a flux-tube model using a field-aligned coor-

dinate system) is identified to the geometrical poloidal angle, which leads to inconsistencies

of order ε (ε = a/R is the inverse aspect ratio, a the minor radius, and R the major radius).

Indeed, as shown in this paper, results with a low β, circular boundary MHD equilibrium

are well recovered when using a model with circular, concentric magnetic flux surfaces which

correctly treats the straight field line angle. Moreover, this model is straightforward to im-

plement. Note that this rather technical aspect concerning order ε inconsistencies is to be

distinguished from physical finite ε effects as those described in [12].

Considering the importance of the Cyclone case as a reference benchmark it appears essen-

tial to shed light on these geometry issues, since they in particular lead to a coincidental

agreement between flux tube results with s−α equilibrium and global results with a correct

treatment of the equilibrium at finite ρ∗ = 1/180, as shall be clearly illustrated in this work.
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This particular value of ρ∗ is in fact consistent with the DIII-D discharge from which the

Cyclone case is inspired. It is shown in this paper that a true agreement can be achieved

when the flux tube and global simulations both correctly treat the equilibrium, and when

the global computation is carried out for conditions approaching the ρ∗ → 0 limit, intrinsic

to the flux tube implementation.

The remainder of this paper, which can be viewed as a contribution to the current emphasis

on validation and verification of fusion-relevant simulations [13], is organized as follows. In

Section II, the gyrokinetic equations in general axisymmetric geometry, as implemented in

the GENE [6, 14] code, are presented. In Section III, the different geometrical models which

have been considered for the simulations are discussed: 1) An ideal MHD equilibrium pro-

vided by the CHEASE code [15]. 2) An ad-hoc, circular, concentric magnetic flux surface

model which provides a simple correction to the flaws of the s − α implementation. 3) A

reminder of the standard s− α implementation pointing out its order ε inconsistencies. In

Section IV, we present a detailed comparison between linear and nonlinear flux tube simu-

lations using the different geometrical models. These results are obtained with the GENE

code, and confirmed in the linear regime by simulations carried out with the GS2 [4, 16] and

GKW [17] codes considering both s − α and MHD equilibria. In addition, simulations are

carried out with GENE using the reduced ad-hoc circular concentric model, which correctly

treats the straight field line angle. The linear flux tube results are then compared with

global simulations using the GYGLES [18] code, and agreement in the linear growth rate of

ITG modes is shown when geometry is correctly implemented and in the appropriate limit

ρ∗ → 0 for the global code. Conclusions are drawn in Section V.

II. THE GYROKINETIC EQUATIONS FOR GENERAL AXISYMMETRIC

EQUILIBRIA

The simulations presented below are based on the Eulerian flux tube code GENE [6, 14],

which solves the nonlinear, electromagnetic, multi-species, gyrokinetic equations on a fixed

grid in phase space. In this paper, only electrostatic modes with one ion species and adiabatic

electronic response are considered, and therefore the equations are expressed in this limit.

We consider a Clebsch-type [19] field-aligned (x, y, z) coordinate system in which (x, y) is

the plane perpendicular to the magnetic field B = B0∇x×∇y, x is a magnetic flux surface
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TABLE I: Normalization of independent variables.

t̂ x̂ ŷ ẑ v̂‖ µ̂

cst/L⊥ x/ρs y/ρs z v‖/vTj µB0/Tj

TABLE II: Normalization of dependent variables.

f̂j0 f̂j1 Φ̂

fj0v
3
Tj/n0 (fj1v3

Tj/n0)(L⊥/ρs) (eΦ1/Te)(L⊥/ρs)

label (radial coordinate in units of length), y labels the field lines on a given flux surface

(binormal coordinate in units of length), z is an angle-like variable labeling the position

along the field line (parallel coordinate), and B0 is a reference magnetic field amplitude.

In the following, we thus present the electrostatic subset of the gyrokinetic equations as

implemented in the GENE code, involving a number of terms which depend on the magnetic

equilibrium. The ion particle distribution function fi is split into an equilibrium part f0i

and a small fluctuating part f1i, fi = f0i + f1i, where

f0i(v‖, µ) =
n0

(2πTi/mi)
3/2

exp

[
−
miv

2
‖/2 + µB

Ti

]
,

is a local Maxwellian with density n0 and temperature Ti. The fluctuation f1i depends on

the (x, y, z, v‖, µ) phase space coordinates and time t, where v‖ is the velocity parallel to

the magnetic field, and µ = miv
2
⊥/(2B) is the magnetic moment. The normalizations of

the different quantities, chosen such that each normalized quantity is of order unity, are

defined in Tables I and II, where vT i =
√

2Ti/mi and cs =
√
ZiTe/mi are, respectively, the

ion thermal and sound speed, ρs = cs/Ωi is the ion Larmor radius evaluated with the sound

speed, and L⊥ is a reference macroscopic length scale. In addition, gradients of equilibrium

quantities are normalized to L⊥ and one defines B̂ = B/B0. Using this coordinate system

and normalizations, the gyrokinetic equation for ions reads :

∂f1

∂t
+
[

1

Ln
+

1

LT
(v2
‖ + µB − 3/2)

]
f0
∂Φ̄1

∂y

+

[
∂Φ̄1

∂x

∂f1

∂y
− ∂Φ̄1

∂y

∂f1

∂x

]

+
1

B

µB + 2v2
‖

σ
(KxGx +KyGy) +

v2
‖β

σB

dp

dx
Gy
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+ α
v‖
JB
Gz −

µα

2JB

∂f1

∂v‖

∂B

∂z
= 0 . (1)

As in Eq. (1), note that we shall drop the subscript labeling species-dependent variables

as well as the hat for the normalized quantities so as to lighten notations. Here one has

defined Gj = ∂jf1− (σ/v‖)∂jΦ̄1∂f0/∂v‖ for j = (x, y, z), αi = vT i/cs, and σi = ZiTe/Ti. The

gyro-averaged electrostatic potential is denoted Φ̄1 = J0(λ)Φ1, where J0 is the zeroth-order

Bessel function and λ2 = k2
⊥(2µ/B). The second term of Eq. (1) contains the equilibrium

gradients driving term, with 1/LT = −d lnT/dx and 1/Ln = −d lnn/dx, it is followed by

the nonlinear E × B drift term. The term containing Kx and Ky, as well as the following

finite pressure term (dp/dx is the radial derivative of the total plasma pressure) combine the

magnetic curvature and ∇B drift effects. The coefficients Kx and Ky are given by

Kx = −g
xxgyz − gyxgxz

B2

∂B

∂z
,

Ky =
∂B

∂x
− gxygyz − gyygxz

B2

∂B

∂z
,

with the metric tensor elements gij = ∇ui · ∇uj , ui, uj = x, y, z. The pressure term is

normalized to p̂ = p/pref , and β is defined as β = 2prefµ0/B
2
0 , where pref is a reference

pressure and µ0 the vacuum permeability. The last two terms of Eq. (1) are related to

particle trapping in the low magnetic field region of the magnetic confinement, and both

include the Jacobian J = Jxyz = [(∇x×∇y) · ∇z]−1.

The self-consistent electrostatic potential Φ is obtained by solving the gyrokinetic quasi-

neutrality equation (in normalized units) :

Z2τ [1− Γ0(b)] Φ1 = πZB
∫
J0(λ)f1dv‖dµ− (Φ1 − 〈Φ1〉) , (2)

with τ = Te/Ti, b = [1/(Z2
i τB

2)]k2
⊥, k2

⊥ = gxxk2
x + gyyk2

y + gxykxky, Γ0(b) = exp(−b)I0(b) the

scaled modified Bessel function, and 〈Φ1〉 the poloidal flux surface-averaged value of Φ1. The

term on the left hand side of Eq. (2) is the polarization density, the first term on the right

hand side is the perturbed ion gyro-density, and the second term is the linearized adiabatic

electron response.

The magnetic equilibrium thus enters the problem via the magnetic field amplitude B(z),

the Jacobian J(z), the curvature terms Kx(z) and Ky(z), the pressure gradient dp/dx, and

the metric tensor elements gij(z) appearing in the quasi-neutrality equation through the

perpendicular wave number k⊥. Note that the pressure term is not taken into account in

the following since low β equilibria are considered.
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III. EQUILIBRIUM MODELS

In this section, the different models which have been considered for describing the back-

ground magnetic equilibrium are presented.

A. Interface with the MHD equilibrium code CHEASE

One option in the GENE code is to obtain the relevant geometrical coefficients from real-

istic equilibria via an interface with the MHD equilibrium code CHEASE [15], which solves

the Grad-Shafranov equation. CHEASE provides equilibrium quantities in the straight field

line coordinate system (Ψ, χ, φ), where Ψ is the poloidal flux function, χ is the straight field

line poloidal angle, and φ is the toroidal angle. These quantities are then transformed to

the field-aligned coordinate system (x, y, z) used in GENE according to the relations

x =
q0

r0B0

Ψ− x0, y =
r0

q0

(qχ− φ)− y0, z = χ, (3)

where r0 is taken here as the geometrical radius at the equatorial midplane of the magnetic

surface considered in the flux tube computation, B0 is a reference magnetic field, q0 is

the safety factor at the considered flux surface, and (x0, y0) define the center of the flux

tube. The metric tensor in (x, y, z) coordinates is expressed in terms of the metric tensor in

(Ψ, χ, φ) coordinates using the relations

∇x = q0/(r0B0)∇Ψ ,

∇y = (r0/q0) [q′χ∇Ψ + q∇χ−∇φ] ,

∇z = ∇χ , (4)

which leads to :

gxx =
(

q0

r0B0

)2

gΨΨ, gxy =
1

B0

(
q′χ gΨΨ + q gΨχ

)
,

gyy =

(
r0

q0

)2 [
(q′)2χ2gΨΨ + 2 qq′χ gΨχ + q2gχχ + gφφ

]
,

gxz =
q0

r0B0

gΨχ, gyz =
r0

q0

(
q′χ gΨχ + q gχχ

)
,

gzz = gχχ, (5)

with q′ = dq/dΨ. The other required quantities are ∂B/∂x = (r0B0/q0)∂B/∂Ψ, ∂B/∂z =

∂B/∂χ and Jxyz = B0J
ΨχΦ, where Jabc = [(∇a×∇b) · ∇c]−1. In the local approximation,
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FIG. 1: Circular flux surface and (r, θ,Φ) coordinates

which underlies flux tube simulations, one neglects the x-dependence of all equilibrium

quantities across the simulation domain. All geometrical coefficients therefore only need to

be known on the magnetic surface of interest (x = x0), and are thus only functions of z in

the axisymmetric system considered here. Axisymmetry of the considered equilibria indeed

translates into the independence with respect to y of the coefficients. The CHEASE code

has been modified to directly provide these coefficients on the z-grid required by GENE,

i.e. an equidistant mesh along the straight field line angle χ, and no further interpolation

is required, thus taking advantage of the high precision cubic Hermite representation used

in the equilibrium code. For the simulations in this paper, the MHD equilibria have been

computed by prescribing the analytical shape of the last flux surface, together with pressure

and current profiles. Note that the GENE interface with the CHEASE code is an alternative

to its interface with the TRACER [20] code to obtain geometrical coefficients for realistic

geometry.

B. Model with circular concentric flux surfaces

In addition to the CHEASE interface, one also considers an ad-hoc, analytical, axisym-

metric, magnetic equilibrium model assuming circular, concentric flux surfaces. It is derived

using the (r, θ, φ) coordinates (see Fig. 1), where (r, θ) are poloidal coordinates in the (R,Z)

plane such that R = R0 + r cos θ and Z = r sin θ, φ is the toroidal angle, and (R,Z, φ)

are cylindrical coordinates. The poloidal flux function Ψ is prescribed to depend only on r,

Ψ = Ψ(r), and one assumes that dΨ/dr = rB0/q̄, where q̄(r) is an ad-hoc profile related

to the true safety factor q(r), as shown below in Eq. (6). The length R0 thus appears as

the major radius at the magnetic axis, i.e. at r = 0. The toroidal magnetic component is
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prescribed to be given by Bφ = R0B0/R, with R = R0(1 + ε cos θ), where ε = r/R0 is the

inverse aspect ratio of a given magnetic surface. This leads to a magnetic field representation

B = ∇φ×∇Ψ +RBφ∇φ = R0B0/R [eφ + r/(R0q̄)eθ], where eφ and eθ are the unit vectors

along the toroidal and poloidal direction, respectively. The safety factor profile q(r) is then

given by

q(r) =
1

2π

∫ 2π

0

B · ∇φ
B · ∇θ

dθ =
q̄(r)√
1− ε2

. (6)

The straight field line angle χ is defined such that (B · ∇φ)/(B · ∇χ) = q, which leads to

the relation dχ/dθ = B · ∇φ/(qB · ∇θ). Integrating over θ yields

χ(r, θ) =
1

q

∫ θ

0

B · ∇φ
B · ∇θ′

dθ′ = 2 arctan

√1− ε
1 + ε

tan

(
θ

2

). (7)

This leads to the following metric tensor in (Ψ, χ, φ) coordinates:

gΨΨ =
B2

0 r
2

q̄2
, gχχ =

1

r2

[
R2

0 q̄
2

R2 q2
+
ε2 sin2 χ

(1− ε2)2

]
,

gΨχ = −B0 ε

q̄

sinχ

(1− ε2)
, gφφ =

1

R2
,

gΨφ = gχφ = 0 . (8)

The geometrical coefficients are then written in the (x, y, z) coordinate system using Eqs. (5)

and (8). Even though simulations presented in the following use the exact expressions, we

explicit here the corresponding metric coefficients to first order in ε:

gxx = 1 , gxy = ŝχ− ε sinχ ,

gyy = 1 + (ŝχ)2 − 2 ε cosχ− 2 ŝχ ε sinχ ,

gxz = −ε sinχ

r0

, gyz =
1− 2 ε cosχ− ŝχε sin χ

r0

,

gzz =
1− 2 ε cosχ

r2
0

. (9)

where the magnetic shear is ŝ = (r/q)dq/dr = (r2B0)/(qq̄)q′ and from Eq. (7) one has

χ = θ − ε sin θ +O(ε2).

C. s− α model

Finally, let us review the standard implementation of the so-called s−α model for α = 0.

One again considers a circular, concentric, magnetic surface geometry as in the previous
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model. The (x, y, z) coordinates are defined as in Eq. (3) except for the straight field line

angle χ which is approximated to the geometrical angle θ so that y = (r0/q0)(qθ − φ) − y0

and z = θ. Despite this approximation, (x, y, z) is still considered here as a field-aligned

coordinate system. The metric coefficients to first order in ε are :

gxx = 1 , gxy = ŝθ , gyy = 1 + (ŝθ)2 , gxz = 0 ,

gyz = 1/r0 , gzz = 1/r2
0 . (10)

A comparison with Eq. (9) exhibits differences of order ε between the two models, which

points out that the approximation concerning the straight field line angle is only valid in the

limit of an infinite aspect ratio tokamak (ε = 0). Nevertheless, in order to retain trapping

effects, the magnetic field amplitude is still defined for this model as

B

B0

' Bφ

B0

=
R0

R
= 1/(1 + ε cos θ) , (11)

thus keeping finite aspect ratio terms. On the other hand, from the definition of the field-

aligned coordinate system, one has B = B0∇x × ∇y, which, from the metric coefficients

(10) implies

(B/B0)2 = (∇x×∇y)2 = (∇x)2(∇y)2 − (∇x · ∇y)2 = gxxgyy − (gxy)2 = 1 . (12)

Comparing Eq. (11) with Eq. (12) underlines an inconsistency of order ε in the s−α model,

namely the metric is computed as if ε = 0 but the magnetic field amplitude still retains an

ε dependence. As will be shown in Sec. IV, this inconsistency leads, for finite ε cases, to

significant differences between microturbulence simulations considering the s−α model and

simulations using either an MHD equilibrium or the previous concentric, circular model.

IV. CYCLONE TEST CASE

In the following, Cyclone-like parameters [5] are considered, namely ni ≡ ne, Te/Ti ≡ 1,

q = 1.42, ŝ = (ρ/q)dq/dρ = 0.8, and ε0 = r0/R0 = 0.18. Here, the normalized radial

variable is defined for the MHD equilibrium as ρ =
√

Φ/Φe, Φ is the toroidal flux, and Φe

is the value of the toroidal flux at the edge. For the ad-hoc circular and s− α models, one

identifies ρ = r/a. The gradient values are defined at ρ = ρ0 = 0.5 as R0〈∇ lnTi〉 = 6.96,
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R0〈∇ lnn〉 = 2.23, where 〈A〉 =
∫
AJdχ/

∫
Jdχ is the flux surface average of A. Note that

the parameter LT i in Eq. (1) is estimated as follows :

〈∇ lnTi〉 = 〈|∇x|〉d lnTi
dx

= −〈|∇x|〉
LT i

⇒ 1

LT i
= −〈|∇ lnTi|〉

〈|∇x|〉
, (13)

with a similar relation for Ln.

We shall first focus on flux tube computations and then compare these results to correspond-

ing global ones.

A. Linear flux-tube results

Before considering nonlinear results, we first compare linear simulations using the three

different equilibrium models described in Section III. Figures 2 and 3 respectively show

the linear growth rates and real frequencies of toroidal-Ion Temperature Gradient (toroidal-

ITG) modes as a function of the poloidal wave number ky in units of ρs, where ρs has been

evaluated with Te(ρ0) and the magnetic field B0 on axis. The results have been obtained

from the flux-tube codes GENE, GS2 and GKW (formerly known as LINART [17]) using

an MHD equilibrium or the usual s−α model, as well as from a GENE simulation using the

corrected circular model. The MHD equilibrium used here is computed with the CHEASE

code such that the last closed flux surface is circular and the Cyclone local parameters are

matched at ρ0 = 0.5. The pressure profile is chosen such that the value of β = 〈p〉2µ0/B
2 is

small (∼ 10−5), where 〈p〉 is the volume-averaged pressure, and the current profile is set in

order to obtain the required value of the shear ŝ at ρ0. The growth rates and frequencies are

of the order of the ion diamagnetic frequency which itself is of order cs/Lref , where Lref is

a characteristic gradient length of the system. Choosing Lref = Ln, frequencies and growth

rates are thus normalized to cs/Ln. This is the same normalization as considered in Ref. [5],

which facilitates comparisons.

As clearly appears in Figs. 2 and 3, significant differences are observed, in agreement with

[9], when comparing results using the reduced s − α model or the MHD equilibrium, and

in particular the maximum linear growth rates differ by almost a factor of two. However,

when using the analytical circular model, agreement with the MHD equilibrium case is

reached within 10%. This latter point clearly shows that the differences observed in this

finite aspect ratio circular cross section geometry between simulations considering either the
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FIG. 2: Growth rate as a function of the poloidal wave number ky of linear ITG modes for the

Cyclone test case considering three different equilibrium models: MHD (circles: GENE; crosses:

GS2; triangles: GKW), s − α (diamonds: GENE; squares: GS2), and ad-hoc circular concentric

(stars: GENE).

FIG. 3: Real frequency spectra of linear ITG modes for the Cyclone test case considering different

equilibrium models. Same labels as in Fig. 2.

s − α or a realistic MHD equilibrium mainly result from the inconsistencies of order ε in

the s − α model pointed out in Sec. III C. By exchanging one geometrical term at a time

in GENE’s equations between the s − α model and the circular analytic model, it can be

shown that the differences result primarily from the discrepancies in the gyy and Ky terms.

In Fig. 4, the most relevant geometrical coefficients are plotted as a function of χ for the
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FIG. 4: Geometrical coefficients for different equilibrium models : MHD (solid line), s−α (dashed

line), and ad-hoc circular concentric (dash-dotted line).

different equilibrium models described in Section III. The gyy and Ky terms present the

largest relative differences in the vicinity of χ = 0 where ITG modes balloon. Furthermore,

we note that the difference in the gxx term does not have a significant effect on the linear

results, since it is the mode with kx = 0 which is the most unstable, corresponding to the

perpendicular wave number k2
⊥ = gyyk2

y.

GENE simulations using the three different equilibria have also been compared for various

values of the temperature gradient while keeping all other parameters as in the Cyclone

test case. In Fig. 5, the maximum linear growth rate over all ky for ITG modes is given

with respect to the normalized, flux surface-averaged temperature gradient R0〈∇ lnTi〉. The

linear critical temperature gradient obtained when using the s − α model is found around

R0〈ln∇Ti〉 = 4, which is in agreement with Ref. [5], and is decreased to R0〈lnTi〉 = 3

for realistic MHD equilibrium models as observed in Ref. [9]. We note again that the

MHD results are well recovered using the circular ad-hoc equilibrium. This observation is of

particular importance when using critical gradient values in semi-empirical transport models

[21].
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FIG. 5: Growth rate of the most unstable ITG mode as a function of the ion temperature gradient

for MHD (circles), ad-hoc circular concentric (stars), and s− α (crosses) equilibrium models. All

other parameters as in the Cyclone test case.

B. Nonlinear flux-tube results

As in the linear case, nonlinear simulations considering Cyclone test case parameters show

strong discrepancies between results using s − α and MHD equilibria, while computations

using the corrected circular model recover well those obtained with the MHD equilibrium.

Nonlinear simulations with the three different equilibria have been compared for Cyclone

base parameters, with a numerical resolution nx×ny×nz×nv‖×nµ = 128×48×16×32×8

and a perpendicular flux-tube box of dimensions Lx × Ly = 118 ρs × 96 ρs. Figure 6 shows

the ion heat diffusivity time trace. When using the MHD equilibrium, the time-integrated

ion heat diffusivity χi is estimated at χi Ln/(ρ
2
scs) = 4.1 (corresponding to χi/χGB = 3.3,

using the standard Gyro-Bohm normalization χGB = ρ2
scs/a), which differs by almost a

factor of two from the value obtained using the s − α model, for which χiLn/(ρ
2
scs) = 2.1

(χi/χGB = 1.7). We note that the value χi for the s− α case agrees with the LLNL GK fit

χiLn/(ρ
2
scs) = 15.4 [ 1.0− 6.0 (LT/R)] , (14)

presented in Ref. [5], which also provides χiLn/(ρ
2
scs) = 2.1 for R/LT = 6.96. The simulation

using the ad-hoc circular model gives χi Ln/(ρ
2
scs) = 3.7 (χi/χGB = 3.0) and thus agrees

within 10% with the result using the MHD equilibrium. Strong discrepancies, for slightly

different physical parameters, between nonlinear simulations using either the s − α model
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FIG. 6: Ion heat diffusivity χi obtained by nonlinear GENE simulations for the Cyclone test case

using MHD (solid line), s−α (dashed line) and ad-hoc circular (dash-dotted) equilibrium models.

or a corrected circular equilibrium obtained from the Miller model [11] were also stated in

Ref. [10], but no detailed explanation of the actual cause was provided.

In Fig. 7, the time-averaged ion heat diffusivity spectrum χ̂i(ky), defined such that χi =∑
χ̂i(ky), is presented as a function of the normalized poloidal wave number kyρs. The

spectrum obtained using the s − α model strongly differs from the ones using either the

ad-hoc circular model or the MHD model, especially for kyρs above 0.2 which corresponds

to its maximum amplitude.

Figure 8 shows the time-averaged ion heat diffusivity using both the s−α and MHD models

for different values of the temperature gradient. The nonlinear critical gradients R/LT,crit

are shifted upward with respect to the corresponding linear critical gradients according to

the well known Dimits-shift [5] effect. For the s−α model, the resulting R/LTcrit is around

6, identical to results in Ref. [5], and contained in the fit given by Eq. (14), while its value

is around 5 using the MHD equilibrium.

C. Linear comparison with global simulations

In view of the significant effects on the linear growth rates and nonlinear diffusivities

from the approximations in implementing the s− α model in the flux-tube simulations, the
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FIG. 7: ky spectra of time-averaged ion heat diffusivity χ̂i(ky) obtained via nonlinear GENE

simulations for the Cyclone test case using MHD (circles), s − α (crosses), and ad-hoc circular

(stars) equilibrium models.

FIG. 8: Ion heat diffusivity χi for the Cyclone test case as a function of the ion temperature

gradient. Results are given for simulations using either the MHD (circles) or the s − α (crosses)

equilibrium model.

agreements between these same flux-tube results and global simulations reported in Ref.[5]

appear surprising. Indeed, no similar approximations in implementing the equilibrium in the

global simulations had been made. In order to address this apparent paradox, such local-

global comparisons are repeated for linear simulations using GENE and the global, linear
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PIC code GYGLES [18]. Global simulations, which consider the entire tokamak volume,

are expected to approach the flux tube results for ρ∗ = ρs/a → 0, where a is the minor

radius. Note that the limit ρ∗ = ρs/a → 0 is the assumption made in the standard flux

tube approach; this is in particular reflected by the fact that one neither accounts for the

radial dependence of plasma density and temperature profiles and their gradients, nor for

the radial dependence of magnetic equilibrium metric coefficients.

The GYGLES code is run using an analytical equilibrium with concentric, circular flux

surfaces, identical to the one described previously in Section III B, with no further ap-

proximations on the geometry. The ad-hoc safety factor profile is chosen to be q̄ =

0.854 + 2.184 (r/a)2, corresponding to q̄(r0) = 1.4 and ˆ̄s(r0) = (r0/q̄)dq̄/dr(r0) = 0.78

at r0/a = 0.5, so that the values of the actual safety factor and shear assume the values of

q = q̄/(1− ε2)1/2 = 1.42 and ŝ = ˆ̄s + ε2/(1− ε2) = 0.8 used for the local simulations in the

previous section. The temperature and density gradient profiles are defined as

R0

T

dT

dr
= −κT cosh−2

(
r − r0

∆r

)
,

R0

n

dn

dr
= −κn cosh−2

(
r − r0

∆r

)
, (15)

with peak gradients κT = 6.96, κn = 2.23 matching those considered in the GENE simula-

tions and the radial width of the global profiles is chosen as ∆r = 0.3 a.

In Fig. 9, growth rates of ITG modes from GENE simulations using different geometrical

models are plotted with respect to the poloidal wave number kyρs and for GYGLES results

for different values of ρ∗. The ratio ρ∗ is varied by rescaling the major and minor radii R0

and a. For plotting results obtained from the global GYGLES code for a given toroidal wave

number n, one makes use of the relation ky = nq0/r0. Indeed, using Eq. (3), one obtains :

A(Ψ, χ, φ) = Â(ψ, χ)einφ = Â(ψ, χ)ei[nq0χ−nq0/r0(y+y0)] = Â(x, z)e−ikyy. (16)

A first series of global simulations with a value of ρ∗ = 1/140 yields a ky-spectrum which

basically matches the flux tube simulations using the s−α geometry. A second ky spectrum

obtained with the global code for the lower value ρ∗ = 1/1120 is however in closer agreement

with the GENE results using the circular analytical model. Details of the convergence in

ρ∗ of the GYGLES results going from ρ∗ = 1/70 to ρ∗ = 1/1120 is shown in Fig. 10 for

the fixed poloidal wave number kyρs = 0.3. One notes that the apparent match, previously

published in Ref. [5], between the global results for 1/ρ∗ ' 180 (which is very close to the
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FIG. 9: Growth rate spectra of linear ITG modes for the Cyclone test case as computed by the flux

tube code GENE and the global code GYGLES. GENE was run with either the s− α (crosses) or

circular analytical model, and for the latter considering the polarization drift term Γ0 either to all

orders in k⊥ρs (circles) or only to second order (stars). GYGLES results are given for ρ∗ = 1/140

(diamonds) and ρ∗ = 1/1120 (squares).

actual parameters of the DIII-D Tokamak from which the Cyclone case is inspired) and the

flux tube s−α results is purely coincidental. However, when decreasing ρ∗ towards zero, the

global simulation results truly converge towards the flux tube results with correct treatment

of the geometry, as clearly illustrated in Figs. 9 and 10.

In Fig. 9, one observes that there are nonetheless some remaining differences between the

local and global results at the largest considered value 1/ρ∗ = 1120, which increase with kyρs.

Part of this deviation is related to the different implementations in the two codes of the quasi-

neutrality equation. Indeed, taking advantage in the flux-tube calculation of the assumed

periodicity in both the x and y directions, it is straightforward to express the polarization

drift term in Fourier representation to all orders in k⊥ρs. This term is represented in Eq. (2)

by the modified Bessel function Γ0(b). On the other hand, in the global code GYGLES,

the polarization drift term in the quasi neutrality equation is handled in real space by a

second order differential operator, corresponding in Fourier space to a second order Taylor

expansion in k⊥ρs of Γ0(b). As shown in Fig. 9, a better agreement is thus obtained if one

introduces the same approximation Γ0(b) = 1 − b + O(b2) ' 1 − k2
⊥/τB

2 in the flux tube
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FIG. 10: ρ∗ scaling of the ITG growth rate at kyρs = 0.3 for the global code GYGLES. GENE

results are obtained with the s− α or the circular analytical equilibrium model.

simulation. Note, that there still remain additional differences between the GENE and the

GYGLES implementation of finite Larmor radius effects: In GYGLES the perturbed ion

gyro-density and the gyro-averaged potential Φ̄1 are only evaluated up to second order in

k⊥ρs, whereas all orders are retained in GENE [through the zeroth order Bessel function

J0(λ) appearing both in the relation Φ̄1 = J0(λ)Φ1, as well as in the gyro-density, i.e. the

first term on the right hand side of Eq. (2)].

V. CONCLUSIONS

In the present paper, we have investigated the influence of different treatments of the

equilibrium in linear and nonlinear gyrokinetic simulations. The results presented here were

focussing on the Cyclone DIII-D base case parameter set considering its importance as a

reference benchmark. It has been shown that the significant differences obtained in linear

and nonlinear simulations when using the s−α model or a circular MHD equilibrium mainly

result from approximating the poloidal angle to the straight field line angle in the standard

implementation of the s−α model, which leads to inconsistencies of the order of the inverse

aspect ratio ε. These differences reach a factor of almost two in the predicted turbulence

induced heat-flux for the standard Cyclone parameters. It is also found that using the s−α

model the linear and nonlinear critical gradients R/LT,crit are overestimated by at least 20%.
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As a consequence, one should not only be aware of these discrepancies when comparing flux

tube codes among each other, but also when applying flux-tube results, and in particular

the so-obtained critical gradients, to semi-empirical transport models.

When considering a circular, concentric analytical equilibrium model which correctly treats

the straight field line angle, one obtains good agreement with simulations using a true MHD

equilibrium. This improved analytic model is applicable to both local and global simulations

and is straightforward to implement in flux tube codes.

The importance of using a correct geometrical model is of further interest when comparing

results from flux-tube and global codes. In particular, it was shown in this paper that the

previously reported apparent agreement between flux tube and global simulations [5] had

resulted from the unfortunate combination of two different effects, namely the inconsistencies

of order ε in the equilibrium model of the flux tube codes and the physical finite size ρ∗

effects in the global simulations. True convergence between linear flux tube results with a

correct treatment of the geometry and global simulations in the appropriate limit of ρ∗ → 0

was demonstrated. In this respect, it is also interesting to note that the nonlinear ρ∗ scan

in Ref. [22], using the global code GTC converges to a value of χi/χGB ' 3.4, which is in

good agreement with our value of χi/χGB ' 3.0 obtained with GENE using the corrected

circular model. On the other hand, global GYRO results, in Ref. [23] converged toward the

value of χi/χGB ' 1.9 in the limit ρ∗ → 0, which is also in good agreement with the value

of χi/χGB ' 2.1 obtained with GENE using the s− α model.

ACKNOWLEDGMENTS

This work has been partly supported by the Swiss National Science Foundation. The

simulations have been run on the Pleiades cluster and the IBM Blue Gene/L parallel machine

at EPFL. The authors would like to thank O. Sauter and T. M. Tran for there help concerning

the implementation of the CHEASE code interface, as well as Y. Camenen for providing

results from the GKW code.

[1] E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).

[2] T. S. Hahm, Phys. Fluids 31, 2670 (1988).

20



[3] A. J. Brizard and T. S. Hahm, Reviews of Modern Physics 79, 421 (2007).

[4] M. Kotschenreuther, G. Rewoldt, and W. Tang, Comp. Phys. Comm. 88, 128 (1995).

[5] A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim,

J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E.

Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J. Weiland, Phys. Plasmas 7, 969 (2000).

[6] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plasmas 7, 1904 (2000).

[7] J. Candy and R. Waltz, J. Comp. Phys. 186, 545 (2003).

[8] J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396 (1978).

[9] A. J. Redd, A. H. Kritz, G. Bateman, G. Rewoldt, and W. M. Tang, Physics of Plasmas 6,

1162 (1999).

[10] J. E. Kinsey, R. E. Waltz, and J. Candy, Physics of Plasmas 14, 102306 (2007).

[11] R. L. Miller, M. S. Chu, J. M. Greene, Y. R. Lin-Liu, and R. E. Waltz, Physics of Plasmas 5,

973 (1998).

[12] F. Jenko, W. Dorland, and G. W. Hammett, Physics of Plasmas 8, 4096 (2001).

[13] P. W. Terry, M. Greenwald, J.-N. Leboeuf, G. R. McKee, D. R. Mikkelsen, W. M. Nevins,

D. E. Newman, D. P. Stotler, Task Group on Validation and Verification, U.S. Burning Plasma

Organization, and U.S. Transport Task Force, Phys. Plasmas 15, 062503 (2008).

[14] T. Dannert and F. Jenko, Phys. Plasmas 12, 072309 (2005).

[15] H. Lütjens, A. Bondeson, and O. Sauter, Comp. Phys. Comm. 97, 219 (1996).

[16] W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579

(2000).

[17] A. Peeters and D. Strintzi, Phys. Plasmas 11, 3748 (2004).

[18] M. Fivaz, S. Brunner, G. de Ridder, O. Sauter, T. M. Tran, J. Vaclavik, L. Villard, and

K. Appert, Comp. Phys. Comm. 111, 27 (1998).

[19] W. D. D’Haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L. Shohet, Flux Coordinates and

Magnetic Field Structure (Springer, Berlin, 1991).

[20] P. Xanthopoulos and F. Jenko, Phys. Plasmas 13, 092301 (2006).

[21] X. Garbet, Plasma Phys. Control. Fusion 43, A251 (2001).

[22] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Phys. Rev. Lett. 88, 195004 (2002).

[23] J. Candy, R. E. Waltz, and W. Dorland, Physics of Plasmas 11, L25 (2004).

21


