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1. Introduction

Compressional Alfvén eigenmodes (CAEs) have been extensively studied, because

they could potentially be applied to channel energy from the fusion products to the

background ions in a future reactor or to diagnose fast ion distributions or bulk plasma

properties [1]. A theory for CAEs was first developed for large aspect ratio, cylindrical

geometry in [2, 3], where it was found that the modes can be radially localized near

the edge. This theory explained the observations of emission of radiation at harmonics

of the ion cyclotron frequency caused by super-Alfvénic ions [4, 5]. Furthermore, the

modes were predicted to be localized poloidally as well as radially [6, 7] and the Hall

term was seen to introduce a dependence of the eigenmode solutions on the poloidal

phase velocity [8, 9, 10].

Super-Alfvénic ions due to neutral beam injection have been observed to generate

magnetic fluctuations in the frequency range 0.3 <∼ ω/ωci <∼ 1, where ωci is the on-axis

ion cyclotron frequency, in the spherical tokamaks START [11], NSTX [12] and MAST

[13, 14] and in the conventional tokamak DIII-D [15]. These perturbations were found in

a series of papers [16, 17, 18, 19, 20, 14, 15] to be CAEs and in some cases global Alfvén

eigenmodes (GAEs) [21] driven by the energetic ions. For the instabilities identified as

CAEs the instability frequency correlates with the evolution of the Alfvén velocity [12]

and the perturbed magnetic field polarization is elliptical with a significant component

parallel to the equilibrium field [13, 14, 19]. The theories developed for large aspect

ratio tokamaks were extended in [17, 20] to explain the observations below the ion

cyclotron frequency in spherical tokamaks. These analytical works, however, suffered

from limiting assumptions that were necessary in order to make the problem tractable.

Furthermore, the numerical approaches that have been employed to make more detailed

calculations have either not been suitable for large ellipticity tight aspect ratio plasmas

[22], or do not include the Hall term [23].

In this paper, we investigate the frequencies and spatial structures of CAEs

in spherical tokamaks. The two-dimensional structure of the eigenmodes is studied

by deriving the cold plasma Hall-MHD equations for a realistic spherical tokamak

equilibrium and solving them using a finite difference scheme. The cold plasma

assumption excludes the slow magnetoacoustic mode from the problem. The parallel

wavenumber k‖ is allowed to be non-zero, but assumed to be small enough (k2
‖ ≪ ω2/v2

A)

to avoid coupling to the shear Alfvén branch. For a spherical tokamak it is important

to correctly model the equilibrium magnetic field, which is therefore obtained from

the equilibrium solver CHEASE [24]. The equilibrium current is also retained in

the linearized Hall-MHD equations, and the influence of both the Hall term and the

equilibrium current on the eigenmode frequency is studied.

The structure of the paper is the following: In Sec. 2 the eigenmode equations are

derived. To solve them, the numerical solution scheme described in Sec. 3 is used with

the boundary conditions in Sec. 4. The calculated eigenmodes and eigenfrequencies are

presented and discussed in comparison with experiments and other theoretical results
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in Sec. 5. Finally, the main conclusions are given in Sec. 6.

2. The eigenmode equation

The starting point of the analysis is the linearized momentum balance equation

−iωρv = J1 × B0 + J0 × B1, (1)

and the linearized Ohms law

E =

(

J1

nee
− v

)

× B0 +
J0

nee
× B1, (2)

where J is current density, B and E are magnetic and electric fields, v is velocity, ρ

is mass density, ne is electron density and e is the elementary charge. Equilibrium

quantities are denoted by the subscript 0 and perturbed quantities, which vary as

exp(−iωt), are denoted by a subscript 1. Together with the Maxwell equations, where

the displacement current is neglected, the relations (1) and (2) yield a wave equation

which can be written either for the perturbed electric field E or perturbed magnetic

field B1,

ω2
E = iF (∇×∇×E)×B0+GB2

0(∇×∇×E)⊥−G(J̃0×∇×E)×B0+iF J̃0×∇×E, (3)

ω2
B1 = ∇×

{[

iF∇× B1 − G(∇× B1) × B0 − GJ̃0 × B1

]

× B0 + iF J̃0 × B1

}

. (4)

Here, F = −ωv2
A/(ωciB0), G = v2

A/B2
0 , ωci is the ion cyclotron frequency, vA is the

Alfvén velocity, J̃0 ≡ µ0J0 = ∇ × B0 is the equilibrium current, and the subscript ⊥
should be interpreted as X⊥ = −B−2

0 B0 × (B0 × X).

A usual approach [25] is to choose (3) as the main equation, neglect all J̃0 terms,

and transform it into the form

c2

ω2
∇×∇× E1 = ǫ1E1⊥ + iǫ2E1 × B0/B0, (5)

where the dielectric tensor elements ǫ1 and ǫ2 are related to F and G by

F =
−ε2c

2

B0(ε2
1 + ε2

2)
(6)

G =
ε1c

2

B2
0(ε

2
1 + ε2

2)
. (7)

On the outboard side of a tight aspect ratio tokamak like MAST the equilibrium

magnetic field is far from homogeneous, so J̃0 cannot in general be neglected.

Equation (5) can therefore be modified to account for the J̃0 terms [26, 27], or one

can work with (3) or (4) directly. In the present work it is preferred to solve (4) for the

magnetic field, because the compressional wave has for perpendicular propagation one

dominant perturbed magnetic field component, i.e. the parallel component.

The perturbed magnetic field B1 is represented as the sum of three orthogonal

components,

B1 = br∇r + b∧Λ + b‖B0, (8)
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where r is a flux surface label and Λ = B0 × ∇r. The three functions b‖, br, and b∧
are governed by the three components of (4) along ∇r, Λ and B0 supplemented by

appropriate boundary conditions at the edge of the plasma. For the presentation of

results in Sec. 5, the more physically relevant quantities Br = br

√
grr, B∧ = b∧

√
grrB0

and B‖ = b‖B0 will be used, where grr = ∇r · ∇r.

The equations are simplified by assuming that k2
‖ ≪ ω2/v2

A, which written in

operator form becomes

ω2X ≫ v2
A

B2
0

(B0 · ∇)2X, (9)

where X is a perturbed quantity. This approximation is necessary to exclude shear

wave (i.e. ion cyclotron mode) perturbations, which are difficult to treat with the

numerical scheme described below. It can be verified a posteriori that the obtained

eigenmodes do not satisfy the ǫ1 = c2k2
‖/ω

2 singularity of cold MHD in the region of

their localization. Furthermore, because of toroidal symmetry a single toroidal mode

number n is considered, so that X varies as exp(−inϕ − iωt), which essentially reduces

the problem to two dimensions, radial and poloidal.

The full equations, i.e. the three components of (4), are not shown here because of

their length but are given in (A.1) to (A.3) in the Appendix. These are the equations

that, together with the assumption (9), are solved in the numerical calculation. However,

for the purpose of the simplicity of this presentation, we may assume that J0 = 0 and

(B0 ·∇)∇r = 0 and that the spatial variation along B0 of equilibrium quantities occurs

on longer scales than that of perturbed quantities, in which case the three components

of (4) reduce to

ω2grrbr = B0 · ∇
[

iFΛ · ∇b‖ + GB2
0∇r · ∇b‖

]

, (10)

ω2grrB2
0b∧ = B0 · ∇

[

−iFB2
0∇r · ∇b‖ + GB2

0Λ · ∇b‖
]

, (11)

ω2B2
0b‖ = ∇ ·

{

iF
[

B2
0B0 ×∇b‖ − Λ(B0 · ∇)br + B2

0∇r(B0 · ∇)b∧
]

+

+ GB2
0

[

−B2
0∇⊥b‖ + ∇r(B0 · ∇)br + Λ(B0 · ∇)b∧

]}

. (12)

In these simplified equations, a few important things should be noted which are also

valid for the full problem. Firstly, all terms including the small (B0 · ∇)2 operator

acting on br and b∧ have been neglected in (10) and (11). What remains relates br

and b∧ to b‖ through a single (B0 · ∇) operator, so the perpendicular magnetic field

components of the solution are small compared with the parallel component. Secondly,

the apparent option to substitute (10) and (11) into (12) to reduce the system to one

equation becomes impossible for the full system (A.1) – (A.3). However, it can be

performed for plane waves in the limit of straight magnetic field and small k‖, and the

result is the dispersion relation Ω2
i ω

2(ω2 − v2
Ak2

⊥) = (ω2 + Ω2
i )v

4
Ak2

⊥k2
‖, where k⊥ is the

perpendicular wavenumber (see e.g. [28]). In this context, since the two equations (10)

and (11) were substituted into (12), the assumption (9) implies that terms of the order

Ω2
i v

4
Ak4

‖ have been neglected in the dispersion relation.
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3. Numerical solution

The eigenmodes are expected to be localized to the outboard side of the tokamak and

contain only a few wavelengths in the poloidal direction [17, 20, 23]. We choose to

discretize the poloidal plane in the two spacial variables r and θ, rather than in r and in

Fourier harmonics of θ as in [23]. For simplicity, finite differences are used to discretize

the eigenmode equations on a uniform grid of the coordinates r and θ with the step

sizes ∆r and ∆θ. The functions r = r(Ψ) and θ = θ(Ψ, χ) relate r and θ to the the

poloidal flux Ψ and the poloidal coordinate χ obtained from an equilibrium solver. The

coordinates r, θ, Ψ and χ all lie in the plane perpendicular to ∇φ, where φ is the ordinary

toroidal angle. The two coordinates r and θ are chosen in order for the numerical scheme

to work well, and are in general not straight field line coordinates.

For the discretization to be suitable for the finite difference scheme, it is desirable

that the grid elements are as square-shaped as possible. In order for them not to be

stretched out poloidally, the number of poloidal grid points Nθ is chosen to be higher

than the radial number Nr (Nθ = 160 and Nr = 60 in the examples below). The

transformation functions r = r(Ψ) and θ = θ(Ψ, χ) are chosen to make the skewness of

the grid elements small. Combinations of elementary functions are used, to ensure that

no numerical derivatives are needed in order to derive the metric tensor elements for

r, θ, φ from the metric tensor elements of the Ψ, χ, φ system known from the equilibrium

solver,

grr = ∇r · ∇r =

(

dr

dΨ

)2

gΨΨ,

grθ = ∇r · ∇θ =
dr

dΨ

(

∂θ

∂Ψ
gΨΨ +

∂θ

∂χ
gΨχ

)

,

gθθ = ∇θ · ∇θ =

(

∂θ

∂Ψ

)2

gΨΨ + 2
∂θ

∂Ψ

∂θ

∂χ
gΨχ +

(

∂θ

∂χ

)2

gχχ,

gφφ = ∇φ · ∇φ = R−2, (13)

where R is the major radius. To avoid numerical difficulties associated with the high

Alfvén velocity near the inboard edge (further discussed below) and the geometry near

the x-point, and to decrease the computation load, the calculation domain is restricted

to be inside of the Ψ = 0.8Ψseparatrix surface. That the reduction of the computational

area only has a small effect on the result is discussed further in Section 4. Figure 1

shows examples of a grid from the equilibrium solver CHEASE [24], and a grid used for

the numerical solution of the eigenmode equations.

The equilibrium quantities (magnetic field, current, etc.) are interpolated to the

new grid using piecewise cubic splines. This gives small numerical errors, which can

however become important when derivatives of the equilibrium quantities are needed.

For instance, to calculate (B0 · ∇)∇r, which appears in several terms in (A.1) – (A.3),

one needs to take derivatives of metric tensor elements. In this case it is necessary to

perform a Gaussian smoothing of the numerical derivatives before giving (B0 ·∇)∇r as
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Figure 1. (a) The (Ψ, χ) grid obtained from the equilibrium solver. (b) The more

regular (r, θ) grid used in the eigenmode calculations. Every fourth grid point in each

direction is displayed.

input to the eigenmode calculation.

The eigenmode equations can be rewritten in the general form

ω2bj =
∑

k=r,∧,‖

C
(0)
jk bk + C

(r)
jk

∂bk

∂r
+ C

(θ)
jk

∂bk

∂θ
+ C

(rr)
jk

∂2bk

∂r2
+ C

(rθ)
jk

∂2bk

∂r∂θ
+ C

(θθ)
jk

∂2bk

∂θ2
, (14)

for j = r,∧, ‖, where the Cjk coefficients are derived from (A.1) – (A.3). By discretizing

the partial derivatives, one can write the eigenmode equation as

ω2bj,ir,iθ =
∑

k=r,∧,‖

∑

d=0,r,θ,rr,rθ,θθ

C
(d)
jk

∑

l,m

δ
(d)
l,mbk,ir+l,iθ+m, (15)

where bk,ir ,iθ is the k-component of the magnetic field at the radial grid point ir and

poloidal grid point iθ. The non-zero partial derivative discretization coefficients δ
(d)
l,m

used here are

δ
(r)
1,1 = δ

(r)
1,−1 = −δ

(r)
−1,1 = −δ

(r)
−1,−1 = 1/8∆r,

δ
(r)
1,0 = −δ

(r)
−1,0 = 1/4∆r,

δ
(rr)
0,0 = −1/(∆r)2,

δ
(rr)
1,0 = δ

(rr)
−1,0 = −δ

(rr)
0,1 = −δ

(rr)
0,−1 = 1/2(∆r)2,

δ
(rr)
1,1 = δ

(rr)
1,−1 = δ

(rr)
−1,1 = δ

(rr)
−1,−1 = 1/4(∆r)2,

δ
(rθ)
1,1 = δ

(rθ)
−1,−1 = −δ

(rθ)
1,−1 = −δ

(rθ)
−1,1 = 1/4∆r∆θ,

δ
(θ)
l,m = δ

(r)
m,l, δ

(θθ)
l,m = δ

(rr)
l,m , (16)

which include a weight spreading in the non-derivative direction to suppress short

wavelength noise on the scale of the grid. These numerical problems occur for tight
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Figure 2. The eigenfrequency versus the initial guess after two iterations with the

eigenvalue solver.

aspect ratio configurations near the inboard edge, where the high magnetic field and

the low density makes vA much greater than in the rest of the domain. For the MAST

equilibrium the weight spreading introduced above is not enough to resolve the problem.

Instead of resorting to more advanced numerical techniques, an artificially high density

will be used at the inboard edge. Because the eigenmodes are localised on the outboard

side, this has a very small effect on the result; a doubling of the inboard edge density

gives only a few percent change in the eigenmode frequency.

For the numerical solution, (15) is turned into a sparse matrix equation ω2Bb = Ab.

All the grid points are numbered with a single index from 1 to L = NrNθ + 1 (where

the +1 accounts for the point at the magnetic axis, see Sec. 4) and the elements of the

eigenvector can thus be numbered by an index from 1 to 3L. The 3L × 3L banded

matrix A corresponds to the right hand side of (15). The diagonal matrix B has ones on

the diagonal except for the lines corresponding to equations for boundary points, where

the boundary condition may require the left hand side to be zero.

Since the Hall term coefficient F contains ω, so does the right hand sides of (4) and

(14). The equation ω2Bb = Ab can therefore not be solved as an eigenvalue problem for

ω2 straight away. Instead, the terms including F in the equation are refined iteratively.

First, a starting guess ωguess is made, and the corresponding Fguess is calculated. Next,

the eigenvalue problem is solved numerically to obtain ω, which is then used as a new

ωguess, and the process is repeated. The numerical solution is obtained using ARPACK

routines [29] which find the eigenvalue that is closest to a given input value. This

initial guess for the eigenvalue is taken to be the same as the starting guess ωguess in

the Hall term. The iterative process of putting the obtained eigenvalue as a new ωguess

and solving the eigenvalue problem again converges in a few steps if the initial guess

is close to an eigenvalue. To find all relevant eigenmodes in a certain frequency span,

the starting guess ωguess is scanned through this range of frequencies. Figure 2 shows

an example of MAST calculations for n = 6, where the obtained eigenfrequencies f are

plotted against fguess. The plateaus identify the true eigenfrequencies.
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4. Boundary conditions

Boundary conditions are needed for the perturbed field at the plasma edge, i.e. near

the last closed flux surface where the plasma density is low. The most realistic choice

would be to use plasma – vacuum boundary conditions, which say that the components

of B1 parallel to B0 and normal to the boundary should both be continuous [30].

However, this adds the complication of solving the Maxwell equations in the surrounding

vacuum. Previous research has shown [14, 17, 20] that the eigenmodes are localized

inside the plasma (albeit close to the outboard edge) by a well structure determined by

the equilibrium magnetic field and density. The perturbation in the vacuum region is

therefore not expected to have a large influence on the mode structure inside the plasma,

so the present implementation is restricted to solution of the eigenmode equations inside

the plasma.

A boundary condition is still needed though, and an ideal conducting wall at the

plasma edge would be a natural choice, not because it is necessarily similar to the

configuration in existing spherical tokamaks, but because it would ensure that no energy

flows in or out of the plasma. This boundary condition, however, leads to unphysical

solutions partially located directly adjacent to the boundary [31] which dominate the

spectrum and make it very difficult to find any internally localized modes. In contrast

to [32], where global eigenmodes are sought with one reflection point caused by plasma

inhomogeneity and the other reflection point being at the wall, we are here looking for

modes that are contained solely by the plasma inhomogeneity, as in e.g. [33]. The

boundary condition should only affect a small evanescent tail of the eigenmode that

spreads beyond the reflection point to the periphery.

The boundary condition that is used in the following is instead that the dominant

magnetic component for the compressional wave, b‖, vanishes at the edge. This

corresponds to the plasma – vacuum boundary condition that b‖ should be continuous

if one assumes that the magnetic perturbation is zero in the vacuum. It is a sufficient

condition for the eigenmode equations since b‖ is the only component for which (A.1) –

(A.3) contain second order radial derivatives. Furthermore, the numerically calculated

eigenmodes in Figure 3 confirm that b‖ = 0 is a good boundary condition in the sense

that the frequency and localization of the eigenmodes are less affected by where the

edge of the domain is located than by where the density drops in the plasma. As shall

be seen later, the Poynting vector is also very small at the boundary and tangential to

it.

Numerically, there is also a “boundary” at r = 0, i.e. on the magnetic axis. This

point needs special treatment because some metric tensor elements, e.g. gθθ, diverge

as r → 0. Moreover, b‖ is continuous at r = 0, but br and b∧ in general retain a θ

dependence as r → 0. To resolve this, a calculation point is placed on the magnetic axis

for the three unknowns BR, BZ and Bφ, which are all continuous. Here, R is the major

radius, Z is the vertical coordinate and B1 = BR∇R + BZ∇Z + Bφ∇φ. For this point,

the ∇R, ∇Z and ∇φ components of (4) are solved, and BR, BZ and Bφ are linked by
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Figure 3. Top: Test case with narrow density profile and large computational domain

for n = 5 yielding f = 1.55 MHz: (a) Density, (b) Alfvén speed, (c) |B‖|. Bottom: (d)–

(e) Same as above for a test case with wider density profile and smaller computational

domain yielding f = 1.42 MHz. The maxima in (f) are 10% farther apart than in (c).

The edge density is chosen to be higher on the inboard than on the outboard side to

avoid numerical difficulties with too large inboard Alfvén velocities caused by the high

inboard magnetic field.

coordinate transformation matrices to the b‖, br and b∧ components.

5. Results and discussion

To benchmark the numerical solver a comparison has been performed with results in [22],

which were obtained for a circular plasma with aspect ratio ǫ−1 = 3, on-axis magnetic

field B0 = 3.4 T and minor radius a = 1 m. In [22] the mode frequency 51.7 MHz is

fixed and the density emerges from the calculation as an eigenvalue. As an example,

an n = 1 eigenmode with 7 wavelengths in the poloidal direction was found to have the

eigendensity 3.42 · 1018 m−3. For this density, the present numerical solver finds a mode

with a similar structure shown in Figure 4(a)–(c) and the eigenfrequency 50.3 MHz.

The small difference in eigenmode frequency can be attributed to the sensitivity of the

solution to the radial profile of the density, which is assumed to be constant in the

inner region and fall off at r = 1 m as shown in Figure 4(d). For this calculation the

magnetic field was not obtained from an equilibrium solver, but was instead prescribed

to be purely toroidal and vary as 1/R. Comparison with two other examples in [22]

presented in Figures 4(e) and (f) also gives good agreement, so one can be confident
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Figure 4. A benchmark with the results in [22]. Top: A solution for the density

3.423 · 1018 m−3 with f = 50.3 MHz. (a) Absolute value, (b) complex phase and

(c) real part of B‖. Bottom: (d) The density profile. (e) A solution for the density

1.5784 ·1018 m−3 with f = 50.2 MHz. (f) A solution for ellipticity κ = 1.2 and density

2.7967 · 1018 m−3 with f = 50.5 MHz.

that our numerical solver works for large aspect ratio tokamaks.

Having thus benchmarked the code, we now want to take one step further than in

[22], and study highly shaped, tight aspect ratio equilibria. In the following, a typical

MAST equilibrium calculated by the CHEASE code [24] is therefore used with the

basic parameters a = 0.58 m, B0 = 0.47 T on axis, I = 790 kA and the density profile

in Figure 3(d). The ion cyclotron frequency varies in this equilibrium from 2.4 MHz

on the outboard side to 7.4 MHz on the inboard side. Figure 5 shows an example

of a solution for the MAST equilibrium. Note that the the parallel component in

Figure 5(c) dominates over the two perpendicular components in (a) and (b), and that

the Poynting vector in Figure 5(d) is tangential to the boundary as previously mentioned.

The eigenmodes obtained for the MAST equilibrium have a more standing wave-like

structure than the ones in Figure 4. This can be seen by noting that the complex phase

Im[Log(B‖)] of the parallel magnetic field component does not vary significantly on the

scale of the amplitude variation for the parallel component in Figure 5(e). There is

only a change from 0 to π where B‖ goes through a zero and changes sign. Compare

with Figure 4(b), which displays a gradual change of the phase as one go around one

poloidal turn. This indicates a travelling wave, which has a monotonously increasing

phase in a certain spatial direction (the direction of the local wave vector). In the

toroidal direction the eigenmode is always travelling (kφ = n/R), so the terms travelling
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Figure 5. Example of an n = 3 eigenmode for the MAST equilibrium with

f = 1.29 MHz. Top plots: (a) |Br|, (b) |B∧| and (c) |B‖|. Bottom plots: (d) the

Poynting vector, (e) the complex phase of B‖ and (f) the real part of B‖. Plots (a),

(b), (c) and (f) are normalized to max(|B‖|).

and standing wave-like here only refers to the directions perpendicular to ∇φ.

The validity of the assumption (9) is investigated a posteriori and it is found that

it holds in almost the whole cross section, except near the inboard edge. Since it holds

on the outboard side where the eigenmodes are localized, the solutions are expected to

be approximately valid. The finding that k2
‖ is comparable to ω2/v2

A on the inboard

side indicates that the eigenmodes can in reality have a more shear wave-like behaviour

there. Indeed, calculations of the polarization show that for positive n the perturbation

is right-handed (the electron gyration direction) in the region of localization, but left

handed (the ion gyration direction) close to the inboard edge. For negative n, the

solutions are most often right-handed in the whole cross section.

Figure 6 presents the lowest order different eigenmode structures, and the

eigenfrequencies for these structures and different toroidal mode numbers n are shown

in Figure 7. One would expect from the simplest dispersion relation ω2 = v2
Ak2 =

v2
A(n2/R2 + k2

r + k2
θ) that if the radial and poloidal wavenumbers kr and kθ were

independent of n, then the relation between f and n should be hyperbolic. For

the high k2
r and k2

θ eigenmode structures in Figure 7 (e.g. the one denoted by left

pointing triangles) the the relation f(n) in deed has a positive discrete second derivative.

However, for most of the mode structures the relation f(n) appears to be closer to an

affine function than a hyperbola. The reason is that the potential well associated with

the effective potential V ≡ n2/R2 − ω2/v2
A [23] becomes more concentrated to the
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Figure 6. Different eigenmode structures for the MAST equilibrium for n = 5. The

crosses in (e) mark locations where |B‖| = 0.

outboard side with increasing |n|, and therefore the eigenmodes become more and more

localized, i.e. kr and kθ increase with |n|. This was reported in [20] and is also seen in

calculations with the present numerical solver.

Moreover, it is found for a fixed n that with higher frequency the solutions change

from a simple standing wave character to a more complicated form. As an example,

the complex phase of B‖ for the solution in Figure 6(e) is given in Figure 8. As time

progresses, the extrema of Re(B‖e
−iωt) circle around the |B‖| = 0 points marked with

white crosses in both figures. In the theories of [20] and [17] it was assumed that the

solution is a travelling wave ∝ einqθ in the poloidal direction, which is not a suitable

representation of the more standing wave-like behaviour of the lowest order eigenmodes

computed here.

These results point at the differences between the eigenmodes found in the MAST

geometry and in larger aspect ratio circular cross sections [as e.g. in Figure 4(a)–

(e)]. However, it is seen in Figure 9, that when the geometry is varied from a large

aspect ratio circular plasma to a low aspect ratio elongated plasma the transition in

the eigenmode structure is gradual. The lowering of the the aspect ratio causes an

increase in the relative variation in B0 across the cross section, which leads to a stronger

localization on the outboard side. The decrease in the aspect ratio and the increase in



CAE structure in spherical tokamaks 13

1 2 3 4 5 6 7 8
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

n

f  
(M

H
z)

−8−7−6−5−4−3−2−1

n

Figure 7. Eigenmode frequencies for different n. For clarity, the top axis for negative

n is slightly shifted to the right compared with the bottom axis for positive n. The

different symbols correspond to the different eigenmode structures shown in Figure 6.

0.5 1 1.5

−0.5

0

0.5

 

R (m)

 

Z
 (

m
)

−3.14

0

3.14

Figure 8. The complex phase of B‖ for the solution in Figure 6(e). The crosses mark
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the elongation both distort the simple poloidally travelling wave property of the mode.

The gradual transition from large to small aspect ratio is especially interesting in view

of the similarities between experimental observations of CAEs in DIII-D (with aspect

ratio ǫ−1 = 2.9) and the spherical tokamak NSTX (with aspect ratio ǫ−1 = 1.3) [15].

Note however that the flat central density profile studied here may not be representative

for those experiments [23].

Based on the findings in Figure 9, we propose a classification scheme for spherical

tokamak eigenmodes, in which the eigenmode structure is followed in a series of

calculations for magnetic configurations with gradually increasing aspect ratio and

decreasing elongation. The spherical tokamak eigenmode is then classified by the mode

numbers of the obtained large aspect ratio eigenmode. The topology of the solutions in

Figures 9(d) and (h) is the same as in Figures 6(d) and (e), although the frequencies
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Figure 9. |B‖| for two different types of eigenmode (rows) in four simple magnetic

configurations (columns). In all cases the central density profile is flat as in Figure 4

with ne = 5 · 1019 m−3 on axis, B0 = 0.5 T on axis and B0 ∝ 1/R. The aspect ratio

decreases from left to right in the first three columns, and the elongation is higher in

the last column. Figures (d) and (h) correspond to the mode structures in Figures 6(d)

and (e).

and the cross section geometries are somewhat different. The corresponding large aspect

ratio modes in Figures 9(a) and (e) have one anti-node in the radial direction, so the

radial mode number is s = 1. By inspection of the complex phase of the solutions in

Figures 9(a) and (e) (not shown), the two large aspect ratio eigenmodes can be classified

as m = 2 and m = −2 modes, respectively. In the same way, each mode in Figure 6

can be classified in terms of the radial and poloidal mode numbers s and m of the

corresponding large aspect ratio eigenmode, where s denotes the number of oscillations

between r = 0 and the edge. The result for Figures 6(a)–(h) is (a) s = 1/2, m = 0,

(b) s = 1, m = 1, (c) s = 1, m = −1, (d) s = 1, m = 2, (e) s = 1, m = −2, (f)

s = 3/2, m = 0, (g) s = 1, m = 3 and (h) s = 2, m = 1. The classification scheme

proposed here differs from the one in [23], which is directly related to the small aspect

ratio solution. The present classification scheme is instead related to an equivalent large

aspect ratio eigenmode, and it is in general nontrivial to deduce the values of s and m

just by studying the spherical tokamak eigenmode itself.

The obtained eigenfrequencies for MAST in Figure 7 are not expected to exactly

match the experimental observations, because they are sensitive to details of the

equilibrium, especially the density profile. For comparison with experiments, theory and

other numerical works it is therefore better to study the frequency difference between

eigenmodes of different structures in the poloidal cross section or between different
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toroidal mode numbers. The frequency splitting between the first two eigenmode

structures in Figure 6 (marked with circles and crosses, respectively) is in the range

260 − 310 kHz. Between the second and third (marked with crosses and triangles),

the difference is 220 − 230 kHz, and between the third and fourth (triangles and x-es),

170 − 180kHz. This range of frequency splittings is consistent with the experimentally

observed frequency differences between modes of the same n in MAST [13]. They

are also in general agreement with the poloidal eigenmode frequency splitting found

theoretically [17, 20] and numerically [23] for NSTX, which is a spherical tokamak with

an equilibrium not very different from MAST.

The frequency splitting between successive n in Figure 7 is ≃ 40−70 kHz, which is

in the same range as was obtained with the ideal MHD code NOVA [23] for NSTX. The

convention in this paper is that B0 · ∇φ > 0 and J0 · ∇φ < 0 and that perturbations

are proportional to exp(−inφ − iωt), which implies that n > 0 corresponds to co-J0

(counter-B0) propagation.

The eigenmode equations solved in this work include the Hall term and the

equilibrium current, and it is therefore interesting to see how these terms influence

the calculated eigenmodes. The eigenmodes for negative n have a similar structure to

the modes for the corresponding positive n, but there is a small difference in frequency.

The negative n frequencies in Figure 7 are slightly shifted compared with the positive

ones, a difference which disappears if the Hall term is switched off by setting F to zero.

If the Hall term is included in the eigenmode equation but not the J0 terms, then the

n > 0 frequencies are 50 − 100kHz higher than the corresponding n < 0 frequencies.

When J0 is also included, the last term in (4) has the opposite effect that the positive

n mode frequencies typically become shifted downwards ∼ 30 kHz and the negative n

modes are shifted upwards ∼ 30 kHz. On the whole, the frequency difference between

plus and minus n in Figure 7 with all effects included is generally smaller than 50kHz,

and it has different signs for different eigenmodes. Moreover, for an equilibrium with

B0 · J0 > 0 the frequency difference between plus and minus n has the opposite sign

compared with the B0 · J0 < 0 equilibrium discussed above.

In [20], edge localized eigenmodes were obtained, for which there was an asymmetry

with respect to the sign of the mode number n of the existence of solutions. This

asymmetry is not found here, because the eigenmodes are localized farther in from the

outboard edge, a result which was also reported using the theory of [20] for a realistic

MAST equilibrium in [14]. The eigenmodes are radially more extended and have their

maximum at around r ∼ a/2, and the frequency is therefore not as close to the ion

cyclotron frequency as in [20], so the Hall term is less important. The ion cyclotron

frequency in this equilibrium is around 3 MHz where the eigenmodes are located. In

the MAST experiments, modes of both signs of n were observed [14], although negative

toroidal mode numbers were more commonly seen [13], an asymmetry which is not seen

in the present work and which is therefore likely to be due to the excitation by the

energetic ions.
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6. Conclusions

Two-dimensional eigenmode structures for CAE below the ion cyclotron frequency have

been calculated numerically using the cold plasma Hall-MHD equations for a spherical

tokamak equilibrium. The influence of the equilibrium current and the Hall terms in the

eigenmode equation was studied, and it was found that including the Hall term removes

the degeneracy of eigenmodes which differ only in the sign of n. It shifts the n > 0

modes up and the n < 0 modes down in frequency for an equilibrium with B0 · J0 < 0.

When the equilibrium current is also included this frequency difference between plus and

minus n is reduced to less than 50 kHz. For the MAST equilibrium studied here, the Hall

term was not found to have any effect on the existence of eigenmodes for different signs

of n, because the eigenmodes are not localized as close to the outboard edge as in [20].

The frequency splitting between the first few low order eigenmode structures is around

200−300 kHz, and for higher orders the frequencies are more closely spaced. The lowest

order eigenmodes have a standing wave-like structure, but the higher order eigenmodes

show a complicated behaviour which locally resembles small eddies of travelling waves.

A classification method is proposed which relates each spherical tokamak eigenmode to

the three mode numbers n, m and s of the corresponding large aspect ratio circular

cross section eigenmode obtained by gradually decreasing the elongation and increasing

the aspect ratio.
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Appendix

The component of the eigenmode equation (4) along ∇r is

ω2grrbr = (B0 · ∇)iF (Λ · ∇)b‖ + (B · ∇)
[

GB2
0∇r · ∇b‖ − 2Gb‖p̃

′grr
]

+

−(B0 · ∇)iF (B0 · ∇)grrb∧ + (B0 · ∇)Gb∧
(

Λ · H + grrαB2
0

)

+

−(B0 · ∇)Ggrr(B0 · ∇)br − α(B0 · ∇)iFgrrbr − p̃′B−2
0 (Λ · ∇)iFgrrbr, (A.1)

where J̃0 ≡ αB0 + p̃′B−2
0 Λ defines α and p̃′, and where H ≡ ∇ × Λ = −2D + αΛ +

(∇2r − p̃′grr/B2
0)B0 and D ≡ (B0 · ∇)∇r. The component of (4) along Λ is

ω2grrB2
0b∧ = br

[

iFαH · Λ + iF p̃′grrB−2
0 (p̃′grr + 2B0 · D) + ∇r · ∇ (iF p̃′grr)

]

+

+iF p̃′grr∇r · ∇br + grr(B0 · ∇)iF (B0 · ∇)br +

−grr(B0 · ∇)GαB2
0 − 2GΛ · D(B0 · ∇)br +

b∧
[

iFαB2
0(B0 · ∇)grr + (B0 · ∇)2iFΛ · D

]

+ iFΛ · (H − 2D) (B0 · ∇)b∧ +
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+b∧
[

GB2
0

(

4|D⊥|2 − 2αΛ · D
)

− (B0 · ∇)GB2
0(B0 · ∇)grr

]

+

−grr(B0 · ∇)GB2
0(B0 · ∇)b∧ − GB2

0(B0 · ∇grr)(B0 · ∇)b∧ +

+
(

2iF p̃′grr
B0 − iFB2

0H⊥

)

· ∇b‖ + 2b‖g
rr(B0 · ∇)iF p̃′ − (B0 · ∇)iFB2

0∇r · ∇b‖ +

+2GH · Λp̃′b‖ + GB2
0B0 × H · ∇b‖ + (B0 · ∇)GB2

0Λ · ∇b‖. (A.2)

Finally, the component of (4) along B0 is

ω2B2
0b‖ = −(Λ · ∇)iF (B0 · ∇)br + briFαB2

0∇2r + ∇r · ∇(iFαB2
0br) +

+(∇2r)GB2
0(B0 · ∇)br + (∇r · ∇)GB2

0(B0 · ∇)br + Λ · ∇(GB2
0αbr) + p̃′Ggrr

B0 · ∇br +

+b∧
[

2∇ ·
(

iFB2
0D⊥

)

+ iF p̃′(B0 · ∇)grr
]

+ iF
(

B2
0∇2r + p̃′grr

)

B0 · ∇b∧ +

+(∇r · ∇)iFB2
0(B0 · ∇)b∧ + 2iFB2

0D⊥ · ∇b∧ + b∧GB2
0∇ · (2B0 × D) +

b∧ (2B0 × D) · ∇GB2
0 − 2b∧Gp̃′Λ · D + (Λ · ∇)GB2

0(B0 · ∇)b∧ +

+GB2
0(2B0 × D) · ∇b∧ + (∇iFB2

0 × B0) · ∇b‖ + iFB2
0αB0 · ∇b‖ − 2b‖Λ · ∇(iF p̃′)

−iF p̃′Λ · ∇b‖ −∇ · GB4
0∇⊥b‖ + 2b‖GB2

0 p̃
′∇2r + b‖∇r · ∇(2GB2

0 p̃
′) +

+GB2
0 p̃

′∇r · ∇b‖ + 2Gp̃′2grrb‖. (A.3)

From these equations and the assumption (9), the coefficients of (14) are derived using

co- and contravariant representations of the vectors in the r, θ, φ coordinate system.

For instance, the (B0 · ∇)X operator becomes Bθ
0∂X/∂θ − inBφ

0 X if X is a perturbed

quantity and Bθ
0∂X/∂θ if X is an equilibrium quantity.
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