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The effect of externally applied resonant magnetic perturbations (RMPs) on plasma particle

transport  is  investigated based on the two fluid equations.   It  is  found that,  depending on the

frequency and direction of plasma rotation, the RMP of a moderate amplitude can either increase or

decrease the plasma density gradient around the corresponding rational surface.  The local density

profile flattens only for a sufficiently large RMP.

PACS: 52.30.Ex, 52.35.Vd, 52.55.Dy, 52.65.Kj
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1.  Introduction 

Resonant magnetic perturbations (RMPs) have important effects on tokamak plasmas such

as generating magnetic islands inside the plasma (mode penetration) [1-8], changing the plasma

rotation velocity and  locking  sufficiently  large magnetic  islands  [1,9-13],  and  mitigating edge

localized modes [14].

One  puzzle  arising  from  the  experimental  results  is  the  effect  of  RMPs  on  plasma

confinement.   Externally  applied  RMPs  degrade  tokamak  particle  confinement  in  some

experiments.   While  improved  confinement  by  RMPs  of  moderate  amplitude  was  however

observed  in  others[1,15,16],  a  phenomenon  not  well  understood  as  it contradicts  to  the

conventional understanding that the magnetic island generated by a penetrated RMP would flatten

the local plasma density profile and degrade the particle confinement.  The difference in tokamak

wall conditioning and the role of the stochastic  magnetic  field  in  the plasma edge have been

suggested as  the possible explanations [1,15] 

As the particle transport is a basic issue in plasma physics and is very important for a fusion

reactor, the effect of  RMPs on the particle confinement is investigated  in this paper using the

(reduced) two fluid equations.  A new mechanism affecting the particle confinement by a RMP is

found.

2.  Model and analysis

The large aspect-ratio tokamak approximation is utilized.  The magnetic field is defined as

B=B0tet-(kt/k� )B0te� +����� et, where  
�

 is the helical flux function, k� =m/r and kt=n/R are the wave

vector in e�   (poloidal) and et (toroidal) direction, r and R are the minor and the major radius,  m and

n are the poloidal and toroidal mode numbers of the helical field, and the subscript 0 denotes an

equilibrium quantity.  The plasma velocity is given by v=v||e||+
�����

et, where 
�

 is the stream function.

The  two  fluid  equations  utilized  here  include  the  mass  conservation  equation,  the
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generalized Ohm's law, and the equation of motion in the perpendicular (after taking et� � ×) and the

parallel (to magnetic field) direction.  Normalizing the length to the minor radius a, the time t to the

resistive time 	 R=a2

0/ � , the helical flux 

�
 to aB0t, v to a/ 	 R, and the electron density ne to its value

at the magnetic axis, these equations become [8,17]

nee
e SnDvnjd

dt
dn �����
�� ��� )()( ||||||1

, (1)

enjE
dt
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||0

���
� ��
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2
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where d/dt= � / � t+v � � � � ,  j is the parallel plasma current density, �  the normalized resistivity, E0 the

equilibrium electric field, U=-
� � 2�  the plasma vorticity, Sn the particle source, and Sm the poloidal

momentum source leading to an equilibrium poloidal  plasma rotation.  d1=� ce/  e,  � ce and  e are the

electron cyclotron and the collisional frequency,  
�

=! d1, ! =4 " Pe/B0t
2, P=Pe+Pi, Pe (Pi) is the electron

(ion) pressure, S= 	 R/ 	 A, where 	 A=a/VA is the toroidal Alfven time.  cs, 
 and D�  are the normalized

ion sound velocity, plasma viscosity, and perpendicular particle diffusivity.  A constant electron

temperature is assumed, and the cold ion assumption is made.  

When the amplitude of the RMP is sufficiently small, the v � � � ne  and 
�$# #

(nev||) terms in Eq.

(1) can be neglected (will be shown to be true in Fig. 1), and Eq. (1) is reduced to 

 d1
�

||j + 
� � (D� � � ne) +Sn = 0 (5)  

in the steady state.  The equilibrium electron density,  ne0, is given by  
� � (D� � � ne0)=-Sn.  Away

from the rational surface at r=rs, Eq. (3) ensures  
�

||j=0 due to the large S number for tokamak

plasmas.  

In the inner region around rs, however, 
�

||j is finite to balance the plasma inertia and viscous
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force.  In this region the radial gradient of parallel plasma current density perturbation, j1, is much

larger than that of the radial magnetic field perturbation, b1r, and in the lowest order one finds 
�

||j

% b1rj1 & , where the prime is for the radial gradient, the subscript 1 denotes perturbed quantities, and

all quantities in Eqs. (1)-(5) and in the derivation are in the dimensionless form.  Integrating Eq.

(5) along the minor radius and averaging over flux surfaces, one has

( ' ne) &  =-0.5(d1/D
� )(b1rj1*+b1r*j1), (6)

where  ' ne=(ne,0/0-ne0),  ne,0/0 is  the m/n=0/0 component of  ne,  and the superscript * refers to the

complex conjugated part.  Eq. (6) can be easily solved at r=rs.  With the perturbed helical flux 
�

1~

exp[i(- � t+m ( +n
�

)], in the lowest order it is found from Eq. (2) that

j1(rs) = i( � -� E0- � *e0)
�

1/ � (7)

at r=rs, where �  is the mode frequency, � E0=(mV� /r+nVt/R) is the frequency due to the equilibrium

plasma rotation velocity in the poloidal (V � ) and the toroidal (Vt) directions.  � *e0=V*e
� m/r is the

frequency due to the electron diamagnetic drift, and V*e� =-pe& /neeB0t.  Utilizing equation (7), Eq.

(6) becomes

( ' ne) & =-(d1/D � )(m/r)(� - � E0- � *e0)|
�

1|2/ � (8) 

at r=rs.  The mode frequency is given by the applied RMP frequency, and � =0 for a static RMP.

Putting back the dimensional parameters into Eq. (8), one finds

rs( ' ne) &*) ne=d1(� *e0rs
2/D� )(1-� 0)|b1r/B0t|2/m (9)

for � =0, where � 0+ 
 � E0/ � *e0, and the same length or time units are used for the parameters in (9).

� 0>0 refers to the plasma rotation in the ion drift direction (plasma current direction for a toroidal

rotation).  Eq. (9) shows that a RMP of a single helicity can change the local electron density

gradient.   The  density  gradient  decreases  (|ne & /ne|  increases in  the  standard  case  where  the

equilibrium density gradient is negative) for � 0>1, while in the opposite limit ( ' ne)& >0. 

In addition to the change in the local electron density gradient, the electromagnetic torque
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due to the applied RMP drives the plasma rotation frequency � E to approach the negative electron

diamagnetic drift frequency ( � E
% -� *e) [10].  Assuming that the viscous force is larger than the

plasma inertia, with a derivation similar to those shown above, the relative change of the rotation

frequency is found to be

',� /� E0 
% (	 RVA

2/ 
 )[(w/a)(r/R)/q]2(1/ � 0-1)|b1r/B0t |2 (10)

for a toroidal plasma rotation with  � =0 and  ',� << � E0 [10],  where  ',� =( � E-� E0),  w=4[(b1rRq)/

(B0tnq & )]1/2 is the magnetic island width under the constant 
�

 assumption, and q is the safety factor.

Eq. (9) predicts a significant change in the electron density gradient only under the condition 

( '-� / � E0 )/[(' ne) &*) (ne/r)]<<1, (11)

which turns out from Eqs. (9) and (10) to be

(D� / 
 )( � ci/ � E0)m[w/(qR)]2 << 1, (12)

where  � ci is the ion cyclotron frequency.  If � E and � *e are significantly different from � E0 and

� *e0,  then  the  � *e0 and the  (1-� 0)  terms  in  Eq. (9) should be replaced by  � *e and  (1+� E/ � *e),

respectively.  In the opposite limit of (12),  a small  static RMP leads to  � E
% -� *e

% - � *e0 before a

significant change in the electron density [10].  One therefore expects a change in the density profile

rather  than  the  rotation  frequency  for  smaller  islands  and  larger values of q and  � E0.   For  a

deuterium plasma with B0t=2.5T,  � E0=104s-1, w=0.01a, q=3, R/a=3, m=6, and  D� =0.2
 ,  the left

hand side of (12) takes a value 0.018.

3.  Numerical results

To compare with analytical results discussed above and to look further into the regime with

a large RMP amplitude, Eqs (1)-(4) are solved simultaneously using the initial value code TM1,

which has been used earlier for modelling drift tearing modes and neoclassical tearing modes

[8,13,17].  

5



The calculations are performed for a single helicity RMP with m/n=2/1, being taken into

account by the boundary condition 

�
2/1|r=a = 

�
aaB0tcos(m ( +n

�
), (13)

where  
�

a describes the normalized m/n=2/1 helical magnetic flux amplitude at r=a.  The radial

magnetic field perturbation at r=a is given by b1r=-m
�

aB0t sin(m ( +n
�

).

The input parameters are based on TEXTOR experimental parameters.  A monotonic q

profile is used with the q=2 surface located at rs=0.628a [5,9].  The m/n=2/1 tearing mode is stable

for 
�

a=0. The toroidal magnetic field is B0t=2.5T, the plasma minor and major radius are a=0.47m

and  R=1.75m.   The  following  parameters,  S=1.97 . 108,  
�

=6.3 . 104,  cs=1.2 . 107(a/ 	 R),

d1=2.5 . 108, and D� =4.2(a2/ 	 R) are used in calculations except mentioned elsewhere. 

Assuming 
 � 5D� , one finds 
 =21(a2/ 	 R) in normalized units.  In TEXTOR experiments the

plasma  rotation  is  essentially  toroidal  [5,9],  while  in  Eqs.  (1)-(4)  due  to  large  aspect  ratio

approximation  only  the  poloidal  rotation  is  included,  so  that  a  larger  plasma  viscosity,


 =2.1 . 103(a2/ 	 R), is used in our calculations for a reasonable balance between the electromagnetic

and viscous force.  This is based on the following reasons [1,11,13]: (a) The electromagnetic force

in the toroidal direction is smaller by a factor (n/m)(rs/R) than that in the poloidal direction.  (b) To

have the same mode frequency due to the plasma rotation, the toroidal rotation velocity should be

(m/n)(R/rs) times larger than the poloidal one. These two effects lead to a relative larger viscous

force compared to the electromagnetic force for the toroidal rotation case by a factor [(m/n)(R/rs)]2,

which is of the order 102.  

The radial profiles of ( ' ne) &*)0/ n0/a) in steady state, obtained by directly solving Eqs. (1)-(4),

are shown by solid curves in Fig. 1 for (1) � 0=3.7 with 
�

a=2.54
�

10-5, and (2) � 0=-2.7 with 
�

a=

2.9
�

10-5,  where  n0 is  the value of  ne0  at  r=0.   The corresponding magnetic  island widths are

w/a=0.0122 and 0.0117.  The dotted curves show the (' ne) &1)2/ n0/a) value calculated from Eq. (6),
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with b1r and j1 obtained from the numerical results.  It is seen that the dotted curves are close to the

solid ones.  The difference from the numerical results is caused by the nonlinearity due to higher

harmonics.  The dashed curve shows the radial profile of  ne0&1)2/ n0/a).  Fig. 1 indicates that  for a

small  island,  (' ne) &  is  positive  (negative)  around the  rational  surface  for  � 0=-2.7  (� 0=3.7)  in

agreement with Eq. (9).  Away from the rational surface ( ' ne) & =0 as expected.

The radial profiles of the (normalized) m/n=0/0 component of the electron density, ne,0/0) n0,

in steady state are shown in Fig. 2 for � 0=3.7 with 
�

a=2.54
�

10-5, 10-4, 2 . 10-4, and 6 . 10-4 (solid

curves).   The corresponding island widths are w/a=0.0122,  0.0866, 0.107, and 0.176, and the

screening factors,  defined here as the ratio between the m/n=2/1 component of  
�

 at the rational

surface obtained from the numerical result and that from the vacuum assumption, are found to be

0.234, 3.00, 2.28, and 2.06 respectively.  The dotted curve shows the unperturbed profile of ne0 ) n0.

With increasing 
�

a, the electron density first increases across the rational surface, forming a kind

of pedestal there and reaching the maximum at 
�

a
% 10-4.  The value of (1+� E/� *e)  at r=rs changes

from -0.500 for  
�

a=2.54
�

10-5 (unpenetrated case) to -0.0547 for  
�

a=10-4 (penetrated case).  The

smaller |1+ � E/ � *e| together with the larger island width maintains the increased electron density as

well as the changed plasma rotation velocity profile for the penetrated case.  The local plasma

rotation frequency changes little for  
�

a=2.54
�

10-5 and by about 20% for  
�

a=10-4.  For an even

larger  
�

a (2 . 10-4),  the  electron  density  begins  to  decrease and becomes  smaller than  ne0  for

�
a=6 . 10-4.  In this stage the plasma rotation frequency significantly decreases ( � E/ � *e0=-0.52 at

r=rs for 
�

a=6
�

10-4a), which results in a corresponding small � *e (� *e/ � *e0=0.473) or local electron

density gradient, and the ion sonic motion and convective transport are also found to be important.

In tokamak experiments the RMP results from both the intrinsic machine error field and externally

applied helical field, with the magnitude of 
�

a ranging from 10-5- 10-3 [1-5, 15,16].
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For the plasma rotation in the electron drift direction with  � 0=-2.7, the radial profiles of

ne,0/0) n0 in  steady state  are shown in figure 3 with  
�

a=2.9
�

10-5,  3
�

10-5,  10-4,  and 6 . 10-4.  The

corresponding island widths are w/a=0.0117, 0.0640, 0.0907, and 0.183, and the screening factors

are 0.187, 5.4225, 3.284, and 2.22, respectively.  The dotted curve shows again the  ne0) n0.  With

increasing 
�

a, the electron density first decreases, and the local electron density gradient changes

from the usual negative value to a positive one in agreement with Eq. (9).  For a sufficiently large

�
a (6 . 10-4),  the  local  density  profile  nearly  flattens.   Numerical  calculations  confirm  the

analytical  prediction that  the local  electron density is  increased by a static  RMP of moderate

amplitude  for  � 0>1,  but  is  decreased for  � 0<1.  The effect  of RMPs on the  plasma density

gradient is larger for a larger value of |� 0-1| with an appropriate value of 
�

a as expected from (9)

and (12).

The effect of the parameter d1 on the ne,0/0 ) n0 profile in steady state is shown in Fig. 4 with

�
a=1

�
10-4.   The  solid  (dashed)  curves  correspond  to  � 0=3.7  (-2.7) with  d1=7

�
107,  108 and

2.5 . 108.  The dotted curve shows  ne0) n0.   With increasing d1, the electron density gradient is

changed more by the RMP as predicted by the analytical results.   As  d1=� ce/ e~Te
3/2/ne and  Te

usually increases with decreasing ne for a constant heating power, the value of d1 is larger for a lower

density  plasma, leading to  a  bigger  change in  the electron density  in  this case as seen in  the

experiments [15].

The effect of the perpendicular particle diffusivity on the ne,0/0) n0 profile in steady state is

shown in figure 5 for 
�

a=1
�

10-4.  The solid (dashed) curves are for � 0=3.7 (-2.7), with  D �
N=10,

20 and 30, where D �
N=D� /(a2/	 R).  The dotted curve shows ne0 ) n0.  The change in the local density

gradient is larger for a smaller D �
N, corresponding to Eq. (9) that (' ne)& ~d1/D

� .  For the case with

D�
N=20,  d1/D

�
N=1.25 . 107,  corresponding to a electron density ne=1019m-3 for  D � =0.1m2/s and
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B0t=2.5T or to a higher electron density for a stronger toroidal field, as d1/D
�

N is proportional to B0t/

(neD
� ).  According to Ref. 1, 15 and 16, the experimental values of the local electron density is

around 1019m-3.

Eq. (9) can be written in the form

rs( ' ne) &*) ne=( 3 ||/D� )(1-� 0)|b1r/B0t|2(rs/Lpe), (14)

where 3 ||=vTe
2/  e, vTe is the electron thermal velocity, and Lpe=Pe/Pe &  is the scale length of the electron

pressure gradient.  The change in the density gradient is larger for a higher electron temperature and

a lower plasma density.   For the tokamak edge plasma like that  of TEXTOR with Te=300eV,

ne=2 . 1019m-3, (1- � 0)=-2, Lpe=a, D� =0.1m2/s, and |b1r/B0t|=2 . 10-5 at r=rs, one finds ( ' ne)&1) ne=-2.2/

a.   For  a  fusion reactor  like ITER with assumed local  values  Te=1keV,  ne=1020m-3 and  other

parameters as mentioned above,  ( ' ne) &*) ne=-8.9/a.  Eq. (14) is subject to the limitation given by

(12), so that (' ne)&*) ne can be significant only for a small or moderate values of |b1r/B0t|.  Once (12)

is violated, the dominant change caused by RMPs is in the plasma rotation frequency [10].

The strongest improvements in particle confinement by RMPs is observed on TEXTOR in

low density, low collisionality and well heated plasmas with neutral beam injection in the plasma

current (ion drift) direction [15], being consistent with our theoretical results.  In addition, the island

width is small with high mode numbers (m % 6) of the applied RMPs [15], as required by (12).  Our

results provide another possible explanation for the experimental results.

Since the required RMP amplitude for changing the density gradient is quite small, it would

be of interest to study whether the tokamak particle confinement is affected by RMPs from intrinsic

machine error field.  Eq. (8) further suggests that an applied RMP of an appropriate frequency and

amplitude can be utilized to either increase or decrease the local electron density gradient. 

In summary, the effect of an externally applied RMP of a single helicity on the particle

transport is investigated based on two fluid equations.  A sufficiently large RMP is found to flatten
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the local electron density profile around the rational surface as expected.  With a small or moderate

RMP,  however,  the  electron density  is  increased  if  the  plasma  rotates  in  the  plasma  current

direction with a frequency being larger than the electron drift frequency.  In the opposite limit the

electron density is decreased, and its local gradient may even become positive for a given constant

perpendicular particle diffusivity.
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CAPTION

Figure 1 Radial profiles of ( ' ne) &*)0/ n0/a) for (1) � 0+ 
 � E0/ � *e0=3.7 with 
�

a=2.54
�

10-5, and (2)

� 0=-2.7 with 
�

a=2.9
�

10-5.  The solid curves are the full numerical results, and the dotted curves

are obtained from Eq. (6) with numerical results for b1r and j1.  The dashed curve shows ne0&*)4/ n0/a).

Figure 2 Radial  profiles  of  ne,0/0) n0 in  steady  state  for  � 0=3.7  with  
�

a=2.54
�

10-5,  10-4,

2 . 10-4, 6 . 10-4 (solid curves) and 0 (dotted). 

Figure 3 Radial profiles of ne,0/0 ) n0 in steady state for � 0=-2.7 with  
�

a=2.9
�

10-5, 3
�

10-5, 10-4,

and 6 . 10-4 ( solid curve) and 0 (dotted).

Figure 4 Radial profiles of ne,0/0 ) n0  in steady state for � 0=3.7 (solid) and -2.7 (dashed), with

d1=7
�

107, 108 and 2.5 . 108, and 
�

a=10-4.  The dotted curve shows ne0 ) n0 .

Figure 5 Radial profiles of ne,0/0) n0 in steady state for � 0=3.7 (solid) and -2.7  (dashed), with

with  D� =10, 20 and 30 (a2/	 R), and 
�

a=10-4.  The dotted curve shows ne0 ) n0 .
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