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Abstract 
 

An extensive acceptance test program for the WENDELSTEIN 7-X (W7-X) confinement 
coils is presently being carried out in the CEA Saclay cryomagnetic test facility. Over half of 
the 50 non-planar coils and 20 planar coils have already been subject to a cool down to liquid 
helium temperature, allowing current tests in the superconducting state.  
This paper presents a description of the cooling protocol observed at CEA. In-depth 
background information about the helium refrigeration technology limitations, the coil active 
cooling procedure and its control are given. The cryogenic power extraction is estimated 
through mass flow rate and enthalpy balance of the winding and casing helium circuits, which 
are derived from various coil and facility sensors.  
Coils geometry and material thermal properties are given, as well as a simple modelling of the 
coil cooling. The observed coil thermal behaviour can help to better understand the role of the 
casing cooling loop on the cooling inertia and on the total cooling time. Finally, the cooling 
down process is projected into the future operation of the W7-X stellarator under 
construction.  
More generally, data and experience gained from the cooling tests operated at the CEA Saclay 
cryomagnetic test facility provide practical knowledge to foresee the thermal behaviour and 
cryogenic challenges of other large magnets for thermonuclear fusion.  
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Introduction 
 

The WENDELSTEIN 7-X (W7-X) stellarator magnetic confinement system is a torus made 

of fifty (50) non-planar coils (NPC). Additionally, twenty (20) planar coils (PLC) surrounding 

the torus allow field adjustment and magnetic configuration modification. The coils system is 

assembled in a subdivision of five modules and ten half-modules. Each half module holds 5 

NPC and 2 PLC. Given the complexity of the stellarator mounting, a confinement coil failure 

is an unacceptable risk and a systematic extensive test for the W7-X coils is carried on, 

including current tests in the superconducting state [1]. Cold tests are being carried on in the 

CEA Saclay cryomagnetic test facility. 75% of the coils have already been subject to a cool 

down to liquid helium temperature [2].  

The cryogenic equipment, procedures and measures of temperatures and cooling power are 

here depicted. 

 

1. Experimental protocol 

 

1.1 Coils geometry and properties 
 

The W7-X coils are wound from superconducting NbTi cable-in-conduit conductor (CICC). 

The heat loads can be safely removed by a controlled helium circulation. A unique W7-X 

conductor is used for PLC and NPC, although the nominal current value is respectively 16 kA 

and 17.6 kA. Casing cooling circuits are made of external stainless-steel pipes thermally 

connected to the coil case by copper strips. Differences among the two types of PLC [3] and 

five types of NPC characteristics [4] are neglected for simplification from the cryogenic point 

of view, and PLC are differentiated simply from NPC (see Table 1). The cooling down of 

coils AAC52 and AAB10 have been used as examples in Fig. 3 to 6. 

Table 1: Coil geometric properties 

Figure 1: PLC (left) & NPC (right) heat capacity 

The total coil energy to be extracted during cool down is not evenly distributed in temperature 

(Fig. 1). In the stellarator fourteen cryogenic distribution loops will be providing supercritical 

helium to the seven modules each with winding and casing circuits [5]. 
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1.2 Saclay cryo-magnetic test facility 
 

The Saclay cryomagnetic test station [6] comprises four principal parts:  

1.2.1 Two cryostats: each hosting simultaneously two coils suspended under their 

support ring, in order to optimize the long cooling and warming time for the high 

number of coils. Current tests are however conducted separately; 

1.2.2 The cryogenic plant: it comprises a collecting helium network, a variable volume 

surge tank, high pressure compressors, pressurized helium storing gas cylinders, a 

purifying system, a cycle compressor, oil traps and dehumidifiers, a refrigerator-

liquefier, a 5000 l LHe reservoir, LHe helium supply lines to the distribution satellite, 

a valve box with current leads for each cryostat, a LN2 network (Fig. 2); 

1.2.3 The Electric supply (stabilized DC Current Transformer) of 25 kA, with ambient 

temperature copper conductors, actively cooled flexible conductors to the current lead 

heads and discharge resistors; 

1.2.4 The control-command system, with a hardware coil security quench system and 

the data acquisition system.  

 

Figure 2: Cryogenic systems of the test facility 
Testing of the coils begins before insertion into the cryostat, because any intervention or 

instrumentation on a coil is checked, tested and recorded. The cryogenic test itself begins after 

vacuum pumping and leak proof detection of all circuits in the cryostat. After a flush of clean 

helium and the control of low pollution levels in the coils, the cooling down may start. The 

cryostat actively cooled shields and coil supports are filled with LN2 within 12 hours. The 

temperature of these circuits rapidly sinks and radiation contribution to the cool down is 

significant when temperatures are still high. LN2 consumption during operation is about 

2500 l/day, corresponding to an evaporation power of 4.5 kW for a cryostat with two coils. 

Only the coils are cooled with the helium circulation. The helium cryogenic power is 

provided in part with LN2 through heat exchangers in the cold box of the refrigerator. The 

insulation vacuum in the test cryostat is better than 10-5 mbar, therefore residual gas heat 

conduction can be neglected.  

 

The refrigerator is used both as a circulating loop refrigerator, and also but subsequently as a 

liquefier storing LHe in a 5000 l tank. The helium refrigerator is designed to admit extremely 

clean compressed helium at 16 bars, serving it at a pressure up to 12 bars, at a temperature 
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down to 4.7 K depending on the return vapor temperature. The refrigerator technology is 

based on a LN2 exchanger, a series of four heat exchangers and a mono-turbine. The heat 

exchangers thermally connect cooling high pressure and warming low pressure helium. 

External cryogenic power above 150 K is provided on the first heat exchanger by LN2 (77 K), 

most simple and efficient. As the heat exchange progressively becomes a limiting factor, 

cryogenic power must be extracted directly from the pressurized helium. A single cold turbine 

rotating at up to 2500 Hz draws a portion of the mass flow, depressurizing it to cool the 

remaining mass flow on the third heat exchanger. The coldest heat exchanger is used only 

when helium returns below a threshold temperature. The temperature in this last heat 

exchanger is controlled by helium pressure and thermodynamic properties through a Joules-

Thomson valve. 

 

 

2. Coil cooling procedure 

 

2.1 Mass flow rate in the coil circuits 
 

Helium mass flow rate is precisely measured at cryogenic temperature through Venturi flow 

meters specially adapted to the density and viscosity of He under 10 K. These Venturi 

diaphragm flow meters would bring a high pressure drop and reduce the mass flow rate 

during cool-down therefore the flow is diverted into a bypass for cool-down circulation. This 

means the observation of pressure drop is the only valid measure recorded during the cool-

down. The mass flow rate is calculated from the pressure drop using the formula: 
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Figure 3: PLC and NPC mass flow rate and pressure drop 
The coils winding and casing inlet pressure regulation is an important cooling down 

parameter. Near ambient temperature, helium pressure drop is high and the cryogenic power 

transferred to the coils is limited by the mass flow rate. A high inlet pressure, up to 12 bars, is 

necessary to push a significant mass flow through the hydraulic circuits (Fig. 3).  

 

2.2 Cooling control 
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The cooling down of the coils is controlled by maximal ramp and gradient laws (Table 2). 

The mass flow rate and cryogenic power of the cooling loop may also limit the cool down 

(see § 2.3). 

Table 2: Cooling down statutory laws  

Figure 4: PLC and NPC inlet and outlet cooling down temperatures (left scale) and 
temperature ramp (right scale) Inlet pressure, turbine start or turbine velocity adjustment 

events are marked with p or T signs. 
Fig. 4 presents the cooling down temperatures and the temperature ramp limiting factor. The 

inlet temperature setpoint follows the 2 K/h temperature derivative ramp (clearly in Fig. 4 

PLC up to 70 hours) by small steps unless the maximal gradient is reached. In this case (in 

Fig. 5 NPC between 40 and 70 hours) the setpoint remains constant until the gradient is below 

the maximal value, and the setpoint can step down again.  

Figure 5: PLC and NPC casing temperature (left scale), in-out He temperature difference and 
maximal casing temperature difference (right scale) 

 

2.3 Cooling down limiting factors 
 

The cool-down of the coils is limited by the following factors:  

2.3.1 Pressure and mass flow rate 

The mass flow rate through the casing and winding circuits is defined independently 

by the inlet pressure and the pressure drop. The inlet pressure is reduced especially 

when other factors are limiting the cool-down. 

2.3.2 Speed of inlet temperature decrease (ramp)  

The rate of inlet temperature decrease, calculated as the derivative of temperature over 

time, is a statutory rule (Table 2) visible in Fig. 4. 

2.3.3 Maximum admissible temperature gradient 

The maximum temperature difference in the coil between any two points, or more 

practically between the inlet and a casing temperature most distant from the cooling 

circuit, is a statutory rule limited to 40 K (Table 2). This gradient is not a limiting 

factor for PLC but only for more massive NPC (Fig. 5). 

2.3.4 Available cryogenic power (nitrogen, turbine and turbine velocity) 

The cryogenic power available is strongly dependant on the temperature range of the 

cold box, on the thermodynamic properties of helium and on the velocity of the 

turbine that may be raised manually by steps.  
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3. Cooling power and projection to cryoplant design 

 

The W7-X magnets cooling down data base can be helpful at a moment when several 

superconducting fusion machines are starting their operation (EAST, KSTAR) or envisaging 

the acceptance tests (JT-60SA, ITER). For the imperative acceptance tests, one main point in 

discussion is how to design the cryoplant according to the required cooling down duration: 

How to proceed for a facility working mainly in cool-downs, what is the required cryogenic 

power at low temperature, is LN2 necessary, what is the required mass flow rate, what are the 

respective roles of the casing and of the winding pack to extract the enthalpy? 

 

3.1 Extracted power 
 

From the mass flow rate and temperature difference between coil inlet and outlet, the enthalpy 

balance can be produced and plotted for the casing and winding circuits (Fig. 6). 

Figure 6: PLC and NPC actively extracted power as a function of coil temperature 

 

Plotted as a function of temperature, the cryogenic power clearly shows the limit of nitrogen-

cooled helium, before the turbine is activated. These curves show the power extracted on one 

coil through He circulation Power extracted or added from the supports and cryostat is also 

present: 

conductionNradiationNcoolingcoil WWhmasshmassW 22casingwinding .. ++Δ+Δ= . 

The total refrigerator power (200 W at 5 K) corresponds to the enthalpy extraction from two 

coils and from the facility busbars circuits. The comparison between the enthalpy to be 

extracted and the available cryogenic power integrals over temperature will provide an 

estimate of the cooling down duration. Cooling down time is a fundamental design parameter 

for schedule planning and cryogenic facilities design. 

 

 

3.2 Discussion and lessons for cryoplant design 
 

Although the uncertainty of PT100 temperature sensors is less than 1% of the total range, the 

cooling-down curves cannot be observed below 30 K. The curves are plotted from PT100 

sensors between 300 and 50 K, from cernox sensors below 40 K, and as a linear interpolation 
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of PT100 and cernox in-between. Sensors were paired according to their proximity, but the 

artificial sensor transition between 50 and 40 K corresponds to sensor reading differences up 

to 1 K. 

Given the geometric complexity of unique coil casing geometries, the assumption of simple 

geometry with temperature homogeneity is rough. The thermal gradients in the coil can be 

subdivided into a circumferential gradient along the hydraulic circuits, precisely the 

temperature difference between inlet and outlet on one hand, and a transverse thermal 

gradient on the other hand, to be evaluated on a coil cross-section. A 3D thermal model 

however, would be much more complicated for a limited gain in precision. The isothermal 

casing hypothesis provides only basic thermal analysis of global diffusivity, inertia and time 

response properties.  

A modelling of the helium refrigerator cryogenic power as a function of T, united with the 

control-command laws can lead to a full cool-down prevision. This experimental data base 

can be very useful to control the concept and dimensioning of the cryoplant. Combined with 

heating and quench scenarii, the cool down and power measurements provide highly valuable 

information that can help validate the helium mass flow rate, instantaneous power, heat 

exchangers and volume capacity of the W7-X cryogenic plant. Such an analysis is considered 

at present time in the case of the W7-X project, but the possibility of application is interesting 

for any large magnet with high field.  

Heat extraction through the casing is efficient close to room temperature as observed in 

Fig. 6, while helium circulation in the CICC is difficult. On the opposite, near lowest 

temperature, the casing heat extraction is limited by the pipe area. The casing mass flow rate 

is hence reduced and heat extraction is more efficient through the winding circuit. 

The coil cooling time is a parameter helpful to design new large superconducting coils. It will 

help understanding and justifying the role of the case cooling circuit when starting the cooling 

process, while the winding channels cannot carry their nominal mass flow rate. 

 

Conclusion 

During the cooling down of the W7-X superconducting magnets for their cryogenic 

acceptance tests before assembly, a large data base has been collected regarding temperature, 

pressure drop and mass flow. This CICC data base has been used to better understand 

manufacturing homogeneity, cooling down process and control. The result of this 

investigation can be very helpful to dimension the cooling test facilities which are foreseen 
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for ITER and JT-60SA future acceptance tests. Moreover this data base can help to prepare 

for the coil thermal behaviour and cooling down of the W7-X machine long before reactor 

operation, with adapted thermal shield conditions.  

Further work is needed to investigate the respective role of the casing, the winding pack and 

the shield along the cooling process. 

 

Nomenclature and abbreviations 
CICC  Cable-In-Conduit Conductors 
cp [J/kgK] calorific capacity 
f - European friction coefficient 
Δh [J/kg] inlet/outlet helium enthalpy variation 
Δp [Pa] inlet/outlet pressure drop 
ΔT [K] inlet/outlet helium temperature variation 
EAST  Experimental Advanced Superconducting Tokamak (China) 
ITER  International Thermonuclear Experimental Reactor 
JT-60SA Japan Tokamak – 60 Super Advanced 
KSTAR Korea Superconducting Tokamak Advanced Reactor 
mass [kg] (winding, insulation, casing or total) mass 
m [kg/s] mass flow rate  
NPC  Non-Planar Coil(s) 
PLC  PLanar Coil(s) 
ρ [kg/m3] fluid density 
W [W] Power 
W7-X  Wendelstein 7 stellarator X 
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