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Abstract

The bootstrap current in small magnetic islands of neoclassical tearing modes is studied with

guiding center particle simulations including pitch angle scattering. A model for a rotating island

and its electric field is used and a new approximation to the electric potential in small islands is

derived. Islands with sizes of the order of the ion banana orbit width are studied by means of a two-

step model which allows to treat both ions and electrons kinetically. The bootstrap current in such

small islands is found to depend strongly on the direction of rotation of the island. The bootstrap

current in small islands rotating in the ion diamagnetic direction is strongly diminished, similarly

to what happens in big islands. In small islands rotating in the electron diamagnetic direction, on

the contrary, the bootstrap current is almost completely preserved, implying a reduced neoclassical

drive of the island growth.

PACS numbers: 52.35.Py, 52.55.Fa, 52.65.Cc, 52.65.Pp
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I. INTRODUCTION

Neoclassical tearing modes play an important role in present large tokamak experiments,

and the planned international experiment ITER, since they set a limit to the achievable

pressure in long-pulse operation with high confinement [1]. A tearing mode occurs when

a magnetic perturbation creates by field line reconnection a small unstable helical island

structure in the plasma. In a tokamak, the flattening of the pressure profile due to the fast

transport along the field lines inside a sufficiently big island causes a loss of the bootstrap

current at the position of the island. This loss corresponds to a perturbed current in the

opposite direction that can drive the mode unstable even when the unperturbed current

profile would be stabilizing [2, 3]. In this case the mode is called a neoclassical tearing mode

(NTM).

It is generally assumed that in small islands, due to the incomplete flattening of the

density and temperature profiles, the bootstrap current is not entirely lost. The incomplete

flattening of the pressure profile in a small island is due, on the one hand, to the fact that

the parallel transport is indeed very high but finite. This implies that there exists always a

layer around the island separatrix where the perpendicular transport across the separatrix

competes with the parallel transport. Profile flattening is strongly reduced when the island

width is of the order of the width of this layer. For the temperature profile, e.g., the critical

size is about (χ⊥/χ‖)
1/4 (rR0)1/2 [4], where χ⊥ and χ‖ are the perpendicular and parallel

heat conductivities, respectively. A second reason for the incomplete disappearance of the

bootstrap current is the effect of the finite ion banana orbit width, which is important when

the island width is comparable or smaller than the typical ion orbit width. Previous kinetic

investigations [5, 6] of the bootstrap current in small static islands have shown that the ion

component of the bootstrap current is entirely restored when the island width falls below

the thermal ion banana width.

In this work, we study the effect of the finite ion orbit width on the bootstrap current

in small islands. In addition to the model used in Refs. 5, 6, we take into account the

rotation of the island and the corresponding electric field. As is well known (cf. section III),

in the presence of a radial electric field Er, the neoclassical damping of poloidal rotation

leads to a contribution to the parallel flow of both ions and electrons proportional to the

ratio between Er and the poloidal magnetic field Bp [7]. In general, these flows do not lead

to an electrical current. In the case of a small island, however, the response to the island

electric field (which has large variations across the island separatrix) can be different for

2



ions and electrons because of the different width of their orbits, so that a finite parallel

current can be generated. Since the direction of the Er/Bp flow is related to the direction

of the island rotation with respect to the surrounding plasma, the contribution of such a

current to the island dynamics can be stabilizing or destabilizing depending on the sign of

the island rotation frequency. Here, we study the response of both ions and electrons to

islands rotating in either direction, treating the island width and the rotation frequency

as input parameters. The surface-averaged parallel current, the changes of the density and

temperature profiles and the plasma flow are determined by means of guiding center particle

simulations. Ions and electrons are treated kinetically, including ion-ion, electron-electron

and electron-ion collisions, according to the two-step model presented in section II.

II. THE SIMULATION MODEL

A. Perturbed equilibrium with rotating island

The magnetic field used in the numerical simulations consists of a simple equilibrium field

with concentric circular flux surfaces and a perturbation that creates a rotating island with

a single helicity. The toroidal and poloidal components of the equilibrium magnetic field are

Bt =
B0

1 + ε cosϑ
, Bp =

εBt

q
√

1− ε2
. (1)

This field is expressed in Boozer coordinates ψ, θ, ζ as

B = ∇ζ ×∇ψ + q(ψ)∇ψ ×∇θ. (2)

where ψ is the poloidal flux, q is the safety factor, and θ and ζ are poloidal and toroidal

angles. The Boozer angle θ is related to the angle ϑ appearing in equation (1) by tan(θ/2) =√
(1− ε)/(1 + ε) tan(ϑ/2) [6]. We assume q = 1+q ′ψ with a constant q′. From the definition

of the toroidal flux (per radian),

2πψt =
∫
BtR

2
0εdεdϑ, (3)

and ψt =
∫
q(ψ)dψ we obtain the poloidal flux ψ as a function of the inverse aspect ratio ε,

ψ + q′ψ2/2 = R2
0B0(1−

√
1− ε2). (4)

A perturbation of the vector potential

δA‖ = −α̂ cos(ξ)R0B, ξ = mθ − nζ − ωt, (5)
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with mode numbers m and n, mode frequency ω, B =
√
B2
t +B2

p and a constant α̂ is

assumed. This leads to the poloidal flux perturbation

δψ = α̂R0RBt cos ξ = ψ̂ cos ξ (6)

that creates, near the flux surface with q = qs = m/n, a rotating helical island of size

wψ =
√

4ψ̂qs/q′s (half of the poloidal flux difference across the island) and half-width wisld ≈
(dr/dψ)wψ. The index s indicates the resonant surface, the prime denotes the derivative

with respect to the poloidal flux ψ and ξ is a helical angle. The perturbed poloidal flux is

not suited as a label for the perturbed flux surfaces inside and near the island. Employing

both ψ and ψt we can define a helical flux as Ψhel = ψ−ψt/qs+ ψ̂ cos ξ, which is constant on

the perturbed flux surfaces. In the following we use, as an alternative to ψ, θ, ζ, a normalized

helical flux obtained from a second-order expansion of ψt around ψs,

Ω = 2(ψ − ψs)2/w2
ψ − cos ξ (7)

together with ξ and θ. Ω = 1 defines the island separatrix and Ω = −1 is the minimum

value of Ω attained at the O point (ξ = 0, ψ = ψs) of the island. For the time-dependent

electric potential of the rotating island we use two different analytic approximations. First

we take the well-known expression [8, 9]

Φ =
qω

m

{
(ψ − ψs)±

wψ√
2

(
√

Ω− 1)Θ(Ω− 1)

}
, (8)

which was derived assuming E‖ = − ∂A‖/ ∂t−∇‖Φ = 0. The positive sign holds for ψ < ψs

and Θ is defined as Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. The first part of Φ is

constant on the unperturbed flux surfaces and the corresponding part of the electric field

is Er = −(qω/m)∇ψ ≈ −(qω/m)RBp. It causes the plasma inside the island to co-rotate

with the island, since (E ×B)θ/r = ω/m is the poloidal rotation frequency of the island.

The second part of Φ reduces the electric field −∇Φ outside the island, such that it vanishes

far away from the island, where the plasma is assumed to be at rest. The expression for Φ

in equation (8) is valid for big islands, but we shall show that in small islands the potential

can be very different, depending on the rotation frequency. A second expression for the

potential, valid in small islands, is derived in section IV.

B. Two step δf model

The bootstrap current is a flux surface averaged parallel current which is driven by

radial gradients of density or temperature. A kinetic description of the bootstrap current
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generation is obtained from the drift kinetic equation

df

dt
=

∂f

∂t
+ v · ∇f +

(
ev ·E
mv‖

− µ∇‖B
m

)
∂f

∂v‖
= C(f) (9)

for the distribution function f(r, v‖, µ) of the guiding centers. Here, v = v‖b + vd is the

guiding center velocity with parallel component v‖, b = B/B, and drift velocity vd = B ×
(mv2

‖(b ·∇)b+µ∇B+ e∇Φ)/eB2, µ = mv2
⊥/2B is the magnetic moment, E = −b dA‖/dt−

∇Φ is the electric field, and C(f) is the collision operator. We have to solve the kinetic

equations for ions and for electrons. Since we assume a given magnetic field with prescribed

perturbation and electric field, the only coupling between the ion and electron equations is

via the collision operator. For the ions we can neglect collisions with electrons, because their

effect on the ion momentum is very small. This makes it possible to compute the electric

current in two steps: First the equations for the ions are solved with C(fi) = Cii(fi) to

obtain the distribution function fi. In the second step the equations for the electrons are

solved, where the collision operator, C(fe) = Cee(fe) + Cei(fe, fi), depends on fi, because

here it is important to include the friction between electrons and ions. With this procedure

there is no need to follow the electrons for several ion collision times, but several electron

collision times are sufficient. The procedure was successfully tested with a different code,

but with the same collision model [10].

We apply the δf method, i.e. the distribution function is split into two parts, f = f0 +δf ,

and only the part δf is represented by marker particles, which trace the guiding center orbits.

f0 is chosen suitably with |δf | � f0 in order to make efficient use of the marker particles.

For the ions we choose a local Maxwellian on the unperturbed flux surfaces,

fi0 =
ni0(ψ)

(2πTi0(ψ)/mi)3/2
exp

{
−mv

2/2

Ti0(ψ)

}
. (10)

Here, mi is the ion mass and ni0(ψ) and Ti0(ψ) are the initial radial profiles of ion density

and temperature. This choice reduces the collision operator to Cii(δfi, fi0), since C(fi0) = 0

holds. For the electrons we choose fe0 as a Maxwellian centered at the ion flow velocity ui‖,

fe0 =
ne0(x)

(2πTe0(x)/me)3/2
exp

{
−me(v‖ − ui‖(x))2/2 + µB

Te0(x)

}
, (11)

and in the coefficients of Cei(fe, fi) we approximate fi by a similar Maxwellian (the exact

form of fi is not important, since the ion velocities are much smaller than the electron

velocities),

fiM =
ni(x)

(2πTi(x)/mi)3/2
exp

{
−mi(v‖ − ui‖(x))2/2 + µB

Ti(x)

}
. (12)
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In these expressions, ni(x) and Ti(x) are the radial ion density and temperature profiles

obtained from the ion distribution function determined in the first step, and we take ne0 = ni.

The variable x is either ψ or Ω depending on what choice fits better the solution of the ion

equation. This choice of fe0 and fi reduces the electron collision operator to

C(δfe) = Cee(δfe, fe0) + Cei(δfe, fiM), (13)

which is applied in the frame of reference moving with the ion velocity. The distribution

function fe0 in equation (11) gives a finite contribution to the parallel electric current that

just cancels the ion current eniui‖. Hence, the bootstrap current is obtained directly from an

the integral over δfe. With these choices for fi0 and fe0 we arrive at the following equations

dδf

dt
= C(δf)− df0

dt
. (14)

We use the Hamiltonian guiding center particle code HAGIS [11] which contains a Monte

Carlo procedure for pitch-angle scattering [12]. The Hamiltonian guiding center equations

for the marker particles are consistently obtained from a Lagrangian. They are expressed in

the Boozer coordinates ψ, θ, ζ and the velocity space coordinates ρ‖ = mv‖/eB and µ and

solved by a Runge-Kutta method with adaptive time steps. Associated with each particle

is a phase space element and the contribution of the particle to δf , the product of which is

the particle’s weight. The sources for this weight are the terms on the right-hand side in

equation (14). The effect of collisions is included as follows: The particles move collisionless

for the length of a collision of time step and then the change of their velocities and weights

by collisions is determined as explained in the next subsection.

Without collisions the distribution function f would be constant along the particle orbit

as expressed by equation (14). Hence, between collisions we can compute δf as the difference

between the value fj of the total distribution function on the particle orbit and the value of

f0 at the current position of the particle in phase space [13]. For the jth particle we get

δfj(t) = fj − f0(rj(t), vj(t)) (15a)

fj(0) = f0(rj(0), vj(0)). (15b)

Between collisions fj is constant, but when collisions occur, their contributions to the particle

weights have to be added to δfj. This is achieved by changing fj in the collision procedure.
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C. Monte Carlo procedure for pitch angle scattering

The collision operator for pitch-angle Coulomb scattering is applied. For scattering of

particles α by particles β with a Maxwellian distribution it reads

Cαβ(fα, fβM) = ν̂αβ(v)
1

2

∂

∂λ
(1− λ2)

∂fα
∂λ

, (16)

where λ = v‖/v is the cosine of the pitch angle, and ν̂αβ(v) is the velocity-dependent collision

frequency. It is obtained from the pitch angle part of the Landau-Fokker-Planck collision

term [equation (6.40) in Ref. 7],

ν̂αβ(v) = ν0αβ

(
vthα

v

)3

G

(
v

vthβ

)
, (17a)

G(x) =
(

1− 1

2x2

)
erf(x) +

exp(−x2)

x
√
π

. (17b)

The quantity ν0αβ = nβZ
2
αZ

2
βe

4 ln Λαβ/(4πε
2
0m

2
αv

3
thα) is related to the usual collision fre-

quencies (νii, νee, νei) by ναβ = 4ν0αβ/3
√

2π. The thermal velocities are defined as vthα =√
2Tα/mα and vthβ =

√
2Tβ/mβ. For the electron-ion collisions G(x) is replaced by the

asymptotic value G = 1 for x = ve/vthi � 1. The changes of v‖ and v⊥ during a collision

time step ∆tc are computed with (pseudo) random numbers η fulfilling 〈η〉 = 0 and 〈η2〉 = 1

as follows

δv‖ = −ν̂v‖∆tc + ηv⊥
√
ν̂∆tc, (18a)

δv2
⊥ = −(2v‖ + δv‖)δv‖. (18b)

The pitch angle scattering does not conserve the particle momentum, but we achieve mo-

mentum conservation in a second step by adding a term proportional to ν̂v‖fM [14, 15] to

δf , i.e. we change the values fj in equation (15a) by

δfcorr. = −ν̂(v)v‖fM∆p‖ /
∫
ν̂(v)mv2

‖fMd
3v, (19)

where ∆p‖ =
∫
mδv‖δfd

3v is the momentum change in the Monte Carlo step. In the nu-

merical simulation it is not possible to compute δfcorr. at each point in real space, since a

minimum number of marker particles is needed for representing the velocity space in the

integral in equation (19). Therefore the correction is done within volume elements of finite

size that are constructed as follows. The plasma volume is divided into thin shells between

helical flux surfaces with a closer spacing near the island for sufficient resolution. These
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FIG. 1: Lines of constant helical flux in the ξ-ψ plane (schematic). In the lower half of the graph the

grid cells for computing ξ-dependent averages and integrals for the collision operator are indicated.

wψ is the island half-width.

volumes between flux surfaces are then subdivided further into smaller cells to avoid a pos-

sible spurious momentum transfer along the helical angle coordinate ξ. The range of ξ from

−π to π is divided into 10 bins as indicated in the lower half of Fig. 1. The Monte Carlo

procedure described above was successfully tested in Refs. 10, 12, 16.

D. Flux surface averages

The flux surface averages are approximated by volume averages within a thin shell be-

tween two helical flux surfaces,

〈
∫
Aδf d3v〉 ≈

∫ Ω+δΩ

Ω−δΩ
Aδf dΓ /

∫ Ω+δΩ

Ω−δΩ
J dΩdξdθ, (20)

where J is the Jacobian and dΓ = d3vJ dΩdξdθ is the phase space volume element. The

integral in the numerator of equation (20) is replaced by a sum over the contributions of the

marker particles,
∑

Ω−δΩ≤Ωj≤Ω+δΩ

Aj δfj ∆Γj, (21)

where ∆Γj is the phase space volume associated with the jth marker, and δfj the marker’s

contribution to δf . The integral in the denominator is computed numerically directly from
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J . Whenever the dependence of some variable on the helical angle ξ is to be resolved, the

averages are computed for the grid cells indicated in lower half of Fig. 1.

III. THE SMALL-ISLAND EFFECT

The island of a neoclassical tearing mode is normally rotating with respect to the sur-

rounding plasma and a radial electric field is present inside the island that acts to force

the plasma to co-rotate with the island. (We consider the frame of reference in which the

plasma far from the island is at rest.) Since the trapped particles, on average, cannot follow

the poloidal E × B drift and by collisions the poloidal rotation of the passing particles is

also damped, a contribution u‖ = 〈Er/Bp〉 to the parallel flow velocity arises [7], where the

brackets indicate the flux surface average. In a big island the parallel flow velocities of ions

and electrons are equal and thus do not contribute to the electric current. When, however,

the island width is of order of the ion banana orbit width, this is not the case, and a finite

electric current arises. This effect can best be seen in the artificial case of a rotating island

in plasma with constant background density and temperatures (equal for ions and electrons)

such that no unperturbed current exists. We demonstrate the creation of this current with

numerical results for a small island with w = 0.6. Here and in the following we denote by w

the ratio of the island width and the ion orbit width,

w = wisld/wion (22)

with wion =
√
ερip and ρip = mvthi/eBp. The following parameters have been used for the

calculations: n0 = 1020m−3, T0 = 1000 eV, ω = 13000s−1, B0 = 2T, R0 = 2m; the safety

factor q varies radially between 1 and 3, and the island is located at a flux surface with

q = m/n = 3/2 and inverse aspect ratio ε = 0.22; the collision frequency is set to a value

corresponding to ν∗ = νqR/ε3/2vth = 0.02 at the location of the island.

The parallel ion flow velocity in steady state after 8 collision times is shown in Fig. 2(a).

In the island the flow velocity is much smaller than the neoclassical velocity 〈Er/Bp〉, because

the ions do not feel the strong electric field all along their orbits, but only inside the island.

In addition, due to the finite orbit width a finite ion flow exists outside the island, although

the electric field is very small. The electron velocity, on the contrary, is close to 〈Er/Bp〉
due to the small electron orbit width, as is shown in Fig. 2(b), when electron-ion collisions

are switched off. This mismatch of the flows results in a finite electric current in the island

of the order of 〈−enEr/Bp〉, which is reduced to a smaller value, when the friction due to
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FIG. 2: (a) Parallel ion flow velocity (red symbols), and (b) parallel electron flow velocity (red

symbols) from a simulation without e-i collisions versus the radius through the O point of a small

rotating island (w = 0.6). Also shown by solid blue lines is 〈Er/Bp〉.
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FIG. 3: Parallel electric current (red symbols) in the island of Fig. 2. Also shown is the current

〈−enEr/Bp〉 (solid blue line) and the bootstrap current computed with the perturbed density

gradient (green/grey line).

collisions between electrons and ions is included. This is shown in Fig. 3, where the electric

current from a simulation with electron-ion collisions is depicted.

The finite electric current goes along with a small density perturbation of order −eΦ/T
shown in Fig. 4, which creates a finite density gradient in the island and outside the island

near the separatrix. We find that the values of the ion flow and the bootstrap current

obtained from the usual neoclassical theory [7, 17] with the perturbed density gradient match
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FIG. 4: Density perturbation (symbols) in the island in Fig. 2 compared to −eΦ/T (solid line) for

an island rotating in the ion diamagnetic direction.

well the numerical results, except close to the separatrix. This might be surprising since

the island is smaller than the ion banana orbit width, but, on the other hand, the density

variation is only a percent or two over the island width, hence the gradient length n/(dn/dr)

is much larger than the island width. Near the separatrix the strong change of the gradient

evidently has an effect. The density perturbation and the electric current have the opposite

sign when the island is rotating in the opposite direction, since the potential is proportional

to ω. In the normal case of negative density and temperature gradients the additional small-

island current has the same direction as the unperturbed bootstrap current, when the island

rotates in the direction of the electron diamagnetic drift, and it has the opposite direction

in the case of rotation in the ion diamagnetic drift direction.

IV. RESULTS OF THE SIMULATIONS

A. Results with electric potential like in big islands

In the simulations, the mode frequency ω is a free parameter, while in the experiment

it depends on the density and temperature gradients of the unperturbed plasma. From

analytic models for neoclassical tearing modes values ω = ω∗ (1 + κη) near either of the

diamagnetic frequencies,

ω∗e = −mTe
qen0

dn0

dψ
, ω∗i =

mTi
qen0

dn0

dψ
, (23)
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are obtained [18], where η = nT ′/Tn′ is the ratio of the logarithmic gradients and κ is

a factor smaller than unity (since ω is m times the island rotation frequency, the dia-

magnetic frequencies are multiplied by m here). For such frequencies the current of order

〈enEr/Bp〉 found in the previous section is of similar size as the unperturbed bootstrap cur-

rent: 〈enEr/Bp〉 ≈ en(qω∗/mBp)dψ/dr ≈ (T/Bp)dn/dr. Therefore, the bootstrap current

in small islands can differ considerably from that in big islands. The partial preservation of

the ion bootstrap current which we found in small non-rotating islands [6] is enhanced or

diminished depending on the direction of rotation.

We performed simulations for small islands with finite density and temperature gradients

in the unperturbed plasma. The density profile is chosen as n = n0 exp{−γψ/ψ(a)} with

γ = 1 or γ = 0.5 and n0 = 1020m−3 (a is the minor radius, with a/R0 = 0.333). The

temperature has the same profile, T = T0 exp{−γψ/ψ(a)}, where T0 is varied (500eV –

2000eV) together with the magnetic field B0 (2T – 6T) and the perturbation strength α̂

(2 · 10−6 – 4 · 10−5) in order to get the desired ratio w = wisld/wion while keeping the island

size small compared to the minor radius. Again, the safety factor q varies radially between

1 and 3, with q = m/n = 3/2 and ε = 0.22 at the location of the island. The collision

frequency is scaled by a constant factor in order to obtain ν∗ = νqR/ε3/2vth ≈ 0.02 at the

location of the island, such that the plasma is in the banana regime.

In Fig. 5, the bootstrap current (surface averaged parallel electric current) in the island

region is shown for different values of w. In the left column the results for islands rotating at

the ion diamagnetic frequency are depicted, and in the right column the results for islands

rotating at the electron diamagnetic frequency. In the case ω = ω∗i, the small-island current

is opposite to the unperturbed bootstrap current and we see that only a small fraction the

unperturbed bootstrap current remains present in the island. That implies that almost the

full bootstrap current drive for the NTM remains present in this case. With rotation at

ω = ω∗e, however, the current due to the small-island effect is in the same direction as the

bootstrap current, and a large fraction of the unperturbed bootstrap current is preserved

in the island. In this case the drive of the mode due to the bootstrap current is strongly

reduced in small islands.

In Fig. 5 also the bootstrap current values obtained from the neoclassical theory [17]

with the perturbed density and temperature gradients are shown. They match well with

the numerical results, except near the separatrix, particularly in the case ω = ω∗e. Looking

at the perturbed density and temperature profiles in Figs. 6 and 7(a), we notice that in this

case the flattening of the electron density and temperature in the island produces enhanced
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FIG. 5: Bootstrap current from simulations (red symbols) in islands rotating at the ion diamagnetic

frequency (a,c,e) or the electron diamagnetic frequency(b,d,f), w = wisld/wion is the normalized

island width. Also shown is the neoclassical value computed with the perturbed gradients (solid

blue line) and the unperturbed current (oblique dashed line). Vertical dashed lines indicate the

position of the island.
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FIG. 7: Electron (red solid) and ion (blue dashed) temperature profiles in a small island (a) with

w = 0.6 and a bigger island (b) with w = 2. Vertical dashed lines indicate the position of the

island.

gradients just outside the island, but neither the ion density nor the ion temperature are

flattened. The ion temperature profile is unchanged when the island width is smaller than

the orbit width. (In the simulations, the finite collisional heat transport tends to flatten a

little the temperature profile on a scale much larger than the island width, because there

is no heat source. This is not caused by the island and occurs even without the presence

of an island.) In islands rotating at the electron diamagnetic frequency the ion density is

even steeper than the unperturbed density. This means that quasi neutrality is violated in
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FIG. 8: Density perturbations, (n−n0)/n0, (red symbols) in islands rotating at the ion diamagnetic

frequency (a,c,e) or at the electron diamagnetic frequency (b,d,f). Also shown are −eΦ/Ti or
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this case which makes it necessary to consider a modification of the electric potential which

is the subject of Sec. IV B. In the case ω = ω∗i, the ion and electron densities are both

flattened in the island and quasi neutrality is preserved. In this case the residual bootstrap

current in the island is due to the ion temperature gradient. The ion temperature gradient

in the island starts to decrease a little at w = 2 as shown in Fig. 7(b) and almost vanishes

at w = 10.

Looking at the normalized ion density perturbations shown in Fig. 8, we can see how the

the plasma reacts differently to the rotating island and its electric field depending on the

direction of rotation. In islands rotating at the ion diamagnetic frequency the ion density

perturbation is always close to −eΦ/Ti, which corresponds to a flattening of the ion density

in Fig. 6 when the potential is given by equation (8). In the case ω = ω∗e the ion density

perturbation varies from +eΦ/Ti in big islands (not shown here, but this corresponds to

flattening) to −eΦ/Ti in small islands, which corresponds to the steepening seen in Fig. 6.

The combined results of many simulations are shown in Fig. 9, where the fraction of

the unperturbed bootstrap current that is preserved in small islands is plotted versus the

island width. The difference between the bootstrap current values at ω = ω∗e and at ω = ω∗i

increases with decreasing island size, but even in islands rotating at the electron diamagnetic

frequency the bootstrap current is not entirely preserved. In the simulations there is a finite

electron temperature gradient in the unperturbed plasma and the electron temperature

profile is flattened. The resulting loss of the contribution due to the electron temperature

gradient sets an upper limit to the bootstrap current. For ω = ω∗i there is a lower limit

to the bootstrap current in a small island set by the current driven by the (unchanged) ion

temperature gradient. The absolute values of these limits depend on the values of the density

and temperature gradients in the unperturbed plasma, and on the neoclassical parameters

such as collisionality and trapped particle fraction (in the simulations: ν∗ ≈ 0.02, ft ≈ 0.6

at the position of the island and η = 1).

B. Results with modified electric potential

The violation of quasi neutrality in the case ω ≈ ω∗e indicates that in such islands the

electric field must be different from that derived from the potential in equation (8), which

is valid for big islands. In small islands the electric potential is a more complex function

of Ω and ξ and waves can be excited by the island [19]. We can get an estimate for the

potential as follows: In view of the results presented above, the ion density in small islands
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FIG. 9: Bootstrap current in the island normalized to the unperturbed current versus normalized

island width w = wisld/wion for ω = ω∗i (blue triangles) and for ω = ω∗e (red squares).

is approximated by ni ≈ n0 (1− eΦ/Ti). Since the small islands which we study are always

big compared to the electron banana orbit width, we can take the solution for the electron

distribution function for big islands. The leading terms which determine the density are [9]

fe = feM

{
1 +

eΦ

Te
− e

Te

q(ω − ω∗e)
m

(ψ − ψs + h)

}
, (24)

where h(Ω) denotes the Ω-dependent part (i. e. the second term) on the right-hand side of

equation (8). Equating the resulting density with the ion density leads to

Φsmall ≈
Ti

Ti + Te

q(ω − ω∗e)
m

(ψ − ψs + h) (25a)

=
Ti

Ti + Te

(
1− ω∗e

ω

)
Φbig (25b)

=
Ti + Te (ω∗i/ω)

Te + Ti
Φbig (25c)

with the potential Φbig given in equation (8). At frequencies near the ion diamagnetic

frequency the potential in small islands is about the same as that in big islands, while it

is very small for frequencies near the electron diamagnetic frequency. In Fig. 10 results of

simulations with this modified electric potential are shown, and the dependence of the island

bootstrap current on the rotation frequency is depicted in Fig. 11. In the case ω = ω∗e with

a vanishing electric potential the density remains unperturbed, the mismatch of the electron
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FIG. 10: Results from simulations with the modified electric potential in equation (25a): (a,c,e)

electron density (red solid) and ion density (blue dashed) profiles, (b,d,f) bootstrap current from

simulations (red symbols), neoclassical value computed with the perturbed gradients (solid blue

line) and the unperturbed current (oblique dashed line). Vertical dashed lines indicate the position

of the island.
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versus island rotation frequency. Data from simulations with modified electric potential.

and ion densities is removed. The temperature profiles are not different from those in Sec.

IV A, hence there is some reduction of the bootstrap current in the island caused by the

flattening of the electron temperature. Inspite of the flattening of the electron temperature

the current in the island rotating at ω = 1.5ω∗e is almost equal to the unperturbed current,

because the density is steepened inside the island. In the case ω = 1.5ω∗i the current in the

island is very small. This confirms the result from Sec. IV A that the most of the bootstrap

current in the island is lost for ω ≈ ω∗i, but that a large fraction is preserved for ω ≈ ω∗e.

V. SUMMARY

The bootstrap current in rotating islands that are of similar size or smaller than the ion

banana orbit width has been computed with drift kinetic numerical simulations. A frame of

reference is used in which the unperturbed electric field vanishes. When the island is rotating

in this frame, there is a radial electric field Er that leads to an additional contribution to

the parallel flows of ion and electrons of magnitude u‖ ∼ Er/Bp, where Bp is the poloidal

component of the magnetic field. Since the electric field varies on the scale of the island

width, which is much larger than the typical electron-orbit size, but comparable to the

ion orbit width, the electrons react to the local field while the ions respond rather to the

orbit-averaged field. The resulting parallel electron and ion flows differ from each other,
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thus contributing to the parallel (bootstrap) current. The electric field also causes a density

perturbation such that this current can be explained as the bootstrap current caused by this

perturbation.

We have shown that when the island is rotating at a frequency near the ion diamagnetic

frequency, most of the bootstrap current is lost even in small islands, only the contribution

due to the ion temperature gradient remains present. In the case of rotation at a frequency

near the electron diamagnetic frequency a large part of the bootstrap current is preserved in

the island, and only the contribution due to the electron temperature gradient is lost. In this

case the electric potential differs strongly from that in big islands. In all cases the bootstrap

current is close to the value of the neoclassical theory computed with the perturbed density

and temperature gradients.

Since the parallel current in the island influences the island dynamics, our results have a

particular relevance for the prediction of the stability of magnetic islands. In small islands

rotating in the ion diamagnetic direction, the bootstrap current drive of the island growth

is strong like in big islands, since most of the bootstrap current is lost also in these small

islands. However, in small islands rotating in the electron diamagnetic direction are more

stable, since the bootstrap current is largely preserved by the “small-island effect” presented

in this paper, hence the neoclassical drive of the island growth is strongly reduced. The

competition between this effect and other (de)stabilizing effects acting on small islands (like

e. g. finite transport across the island [4] or the polarization current [8, 9, 18]) is likely

to explain the experimental finding that magnetic islands often appear only above a given

amplitude threshold, implying some stabilising effect acting against the neoclassical drive

for small islands.
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