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Abstract

A de-convolution based correction method of the beam emission spectroscopy

density (BES) profile measurement is demonstrated by its application to simulated

measurements of the COMPASS and TEXTOR tokamaks. If the line of sight is far

from tangential to the flux surfaces, and the beam width is comparable to the scale

length, on which the light profile varies, the observation may cause an undesired

smoothing of the light profile, resulting in a non-negligible underestimation of the

calculated density profile. This effect can be reduced significantly by the emission

reconstruction method which gives an estimate of the emissivity along the beam axis,

from the measured light profile, taking the finite beam width and the properties of

the measurement into account in terms of the transfer function of the observation.

Characteristics and magnitude of the mentioned systematic error and its reduction

by the introduced method are studied by means of the comprehensive alkali BES

simulation code RENATE.
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1 Introduction

Lithium Beam Emission Spectroscopy (Li-BES) is an active diagnostic tool, typically

probing the outer regions of fusion plasmas by observing the characteristic emission of

a 10–100 keV atomic beam injected into the plasma [1, 2]. Li-BES measurements are

routinely performed on several fusion devices [3]. Application of sodium for BES purposes

is recently considered [4, 5], thus we refer the method as alkali BES hereafter.

The evolution of the populations of different atomic states depends on the distri-

bution of plasma parameters along the beam line. This means that from the emitted

intensity distribution at a characteristic frequency (i.e. the light profile) information can

be obtained on the distribution of electron density [6] and its fluctuation [2].

Advantages of the alkali BES diagnostic include being practically non-intrusive –

because of the low density of the beam, – and being approximately a point measurement.

The technique is exceedingly suitable for Scrape-Off Layer (SOL) and pedestal density

profile measurements with good temporal and spatial resolution (50 µs, 5 mm [7]), thus

contributes to the understanding of transitions between different confinement modes and

to the validation of models of edge transport barrier formation [8]. Statistical behavior of

density fluctuations with ∼ µs time scale in the edge and SOL (e.g. radial wave number

spectra, correlation length and time) can also be investigated in the radial direction by

“single beam” fluctuation measurements [2]. Moreover, fluctuation measurements can

be extended to two dimensions by electrostatically deflecting the beam in the poloidal

plane in the fluctuation’s time scale in order to obtain a complex picture of the cross

field turbulent transport [9]. We have to point out that the high temporal resolution

fluctuation measurements need always to be combined with the significantly slower profile

measurement.

The collisional-radiative model is considered in the standard description of beam

evolution [10]. Based on this model, reliable numerical methods were developed to deter-

mine the density profiles along the beam line, given the observed light profile [7, 11, 12],

such as the Li-BES density reconstruction code, Absolut, which is used in the present
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study [6]. All these methods are based on the assumption that the measured light profile

is equivalent to the emissivity of the beam. This case corresponds to the ideal mea-

surement geometry considering the beam to be one dimensional and neglecting its finite

width.

Our goal is to provide a tool to quantitatively measure the systematic error caused by

this simplified treatment. Partially for this purpose, as well as to support the design and

interpretation of BES measurements, the RENATE alkali BES simulation code has been

developed. For the purpose of this study, alkali BES set-up and plasma parameters are

chosen from the recently upgraded TEXTOR Li-BES diagnostic [13], and the alkali BES

diagnostic planned for the newly restarted COMPASS [14]. We investigate the character

and magnitude of the systematic error in density profile reconstruction, and conclude that

it can be significant in certain, experimentally relevant cases, which we support with a

general estimation of the maximal error in the calculated electron density. The simulation

of the phenomenon also enabled the design of a method for the correction of the measured

light profile reducing the effect of the finite beam width, and thus allowing the use of the

one dimensional density reconstruction methods.

The structure of the paper is as follows: In Sec. 2 the of the alkali BES measurement

simulation, RENATE is introduced. The issues of the observation of a finite width beam

are investigated in Sec. 3. The emission reconstruction correction method is discussed in

Sec. 4, and demonstrated through realistic simulated measurements in Sec. 5. A general

estimate of the error due to finite beam width is given in Sec. 6, and finally, the results

are summarized in Sec. 7.

2 RENATE alkali BES measurement simulation

For the purpose of supporting the design of alkali BES density profile and fluctuation

measurements, an IDL language simulation code, RENATE, has been developed which

also assists the interpretation and correction of measured data. In order to take the finite

width of the beam into account the beam evolution is calculated separately in slices of the
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beam considering a realistic current distribution. The integration of emitted light along

the lines of sight is modeled together with other essential features of the observation and

the detector system.

The atomic physics processes of the beam are modeled by the collisional radiative

model [10]. The rate equations describing the evolution of atomic occupations can be

written in a quite compact form

dni

dx
=

∑
j

[ne(x)ãij(x) + bij] nj(x) (i, j = 1, · · · ,m), (1)

where ne is the electron density, ni and nj are populations of the ith and jth atomic states

respectively and x is the coordinate along the beam. The atomic transition and electron

loss processes due to electron (e), proton (p) and impurity (I) collisions are described by

the reduced rate coefficient matrix ãij [4, 15, 16, 17]. Taking the effect of the impurities into

account through one representative impurity characterized by charge q(x) and producing

an effective ion charge Zeff (x), the matrix is written as ãij = ae
ij + (1 − qf)ap

ij + faI
ij,

where f = (Zeff −1)/(q(q−1)). The spontaneous atomic transitions are described by the

bij matrix. In the simulation the number of registered atomic levels are m = 9 for lithium

and m = 7 for sodium. Note that ãij depends on x not only through q and Zeff but due to

the temperature dependence of the rate coefficients. The ion and impurity temperatures

are chosen to be equal to the electron temperature, causing only a negligibly small error,

due to the flat temperature dependence of ap
ij and aI

ij.

The photon emission density of a beam per unit time and length is proportional

to nιIAϕι/vB, where the observed spectroscopic line corresponds to the ι → ϕ transition

(2p → 2s for Li, 3p → 3s for Na), vB is the beam velocity, Aϕι is the corresponding

Einstein coefficient and I is the beam current. The nι population is calculated by the

solution of the direct problem, integrating equation (1) stepwise from the point where the

beam enters into the plasma x = 0, with the initial condition ni(0) = δi1, where 1 is the

index of the ground state.

Since the RENATE code was originally developed with the purpose of design of BES
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measurements, it solves the direct problem calculating the beam evolution and the emis-

sion distribution for a given measurement configuration and set of plasma parameters.

Therefore, the most important component of the simulation is its atomic physics kernel,

which calculates the rate coefficients from parametrically given cross sections of the col-

lisional processes and solves the rate equations (1) by a 4th order Runge-Kutta method.

The spontaneous atomic transition probabilities are taken from the NIST atomic spec-

tra database [18], and the cross section data found in [15, 16, 17] for lithium and [4] for

sodium are used. The collisional j → i de-excitation rate coefficients are derived from the

corresponding i → j excitation rate coefficients using the principle of detailed balance,

while impurity collision rate coefficients are calculated from the proton collisional cross

sections using the scaling relations given in [4, 15]. The proton impact target electron loss

processes are considered instead of treating the ionization and charge exchange channels

separately, which is the main difference of the atomic physics kernel from the Absolut [6]

inverse problem solver regarding the atomic physics.

Absolut has a corresponding direct solver code called Simula, which we used for

the validation of RENATE; the found relative difference between the rate coefficients

calculated by the different programs is O(10−4), and accordingly the maximum relative

difference between the calculated evolution of atomic populations is the same order of

magnitude. The Absolute code in turn has been critically tested against both Li [6] and

Na [5] measurements. In this manner, RENATE is indirectly validated to measurements;

the direct validation is under way at the TEXTOR tokamak.

The calculation scheme of the simulation is as follows. First, the beam is divided into

slices which are perpendicular to the poloidal plane while the velocity of the beam atoms is

tangential to them. The emissivity profile is calculated along each slice, given the magnetic

geometry Ψ(R,Z), together with the distribution of the relevant plasma parameters, ne,

Te, q and Zeff as a function of a flux coordinate Ψ. The plasma parameters are assumed to

be equally distributed on a flux surface. Then the calculation of the geometric efficiency

(i.e. the effect of that the collecting optical element covers different solid angles seen from
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different points of the beam) is performed for the points of each slice, and the efficiency of

the observation system is taken into account in order to determine the number of photons

per unit time detected by each detector segment. Contributions of the different beam

slices and points to the detected signal are summed up.

We restrict our studies to measurement geometries where the beam axis is in the

poloidal plane and the “observation point” is also located in the same toroidal position,

which is typical for diagnostic neutral beams. In this case, we can project the three

dimensional beam into the poloidal plane of the beam axis, and the observed volumes

reduce to observed areas.

3 Observation of a finite width beam

Observing the emission of a diagnostic beam means integrating the emissivity along the

lines of sight weighted by the geometric efficiency. Since the beam has a finite width, a line

of sight goes through parts of the beam being in different stages of beam evolution, thus the

measurement cannot be perfectly local. Inverting this effect, the emission reconstruction

method gives an estimate of the emissivity on the beam axis from a measured light profile.

We denote the coordinate measured along the beam axis by x, and index each

segment of the detector array by x′ marking the position where the middle of the observed

volume of the detector segment intersects the beam axis (see Fig. 1). For the sake of

simplicity of the formalism, x′ is also considered to be a continuous independent variable.

Assuming that the plasma parameters are flux functions, it can be concluded from

our simulations that the evolution of atomic populations also follows the flux surfaces,

except from extreme cases of wide beams injected almost tangentially to the flux surfaces.

This enables us to extend the emissivity along the beam axis I(x) into two dimensions

by mapping along the flux surfaces indexed by x′′ marking their intersection with the

beam axis and weighting with the beam current distribution. Thus, we can express the
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measured light profile S(x′) as

S(x′) =

∫
T (x′, x)I(x)dx, (2)

where the kernel function T (x′, x) is called the transfer function of the observation. Ob-

viously, the goal is to determine I(x) from a measured S(x′).

Figure 1: Construction of the transfer function of the observation. x is the coordinate
along the beam axis, which is one-to-one mapped to x′ through the lines of sight crossing
the axis. The image S(x′) of a light source being on the flux surface poked by the axis at
x′′ gives T (x′, x = x′′).

Definition (2) suggests the way to calculate the transfer function T (x′, x), since

the choice of the emissivity I(x) = δ(x − x′′) gives S(x′) = T (x′, x′′), where x′′ scans

all possible values of x. For a given measurement configuration, the T (x′, x) transfer

function of observation can indeed be calculated by simulating the observation of virtual

light sources on the x′′ flux surfaces for a whole range of x′′ values, as it is illustrated in

Fig. 1.

On Fig. 2, two transfer functions are contour plotted, illustrating the features of the

deviation from an ideal measurement that would give a δ(x′ − x)-like transfer function

fully centered upon the diagonal. Fig. 2a corresponds to an unfavorable set-up, when the

lines of sight are quite far from tangential to the flux surfaces, in contrast to Fig. 2b. A

horizontal cut of the former transfer function is a wide Gaussian-like curve, showing that

a detector segment in a given x′ position collects the information from a broad range of

spatial coordinates x. The closer the lines of sight to tangential are to the flux surfaces

at the beam position, the more local the measurement is.
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b

Figure 2: Simulated transfer functions. The observation angle is high (a) or small (b).

The effect caused by the broadening of the transfer function, due to finite thickness of

the beam, on the measured light profile and the corresponding density profile is illustrated

for a quite unfavorable but still realistic case. The angle between the lines of sight and

the flux surfaces, which we call observation angle, is approximately 45 ◦ on average at the

beam position. The observation system is located 0.45 m far from the observed region. A

Gaussian current distribution beam with full width at half maximum of 1.2 cm is injected

into a high density plasma with pedestal. For this case the transfer function is similar to

Fig. 2a, and the corresponding light profiles are presented in Fig. 3a-b. The emissivity

distribution of an infinitesimally fine beam I(x) would give the best measurement of the

electron density on the beam axis, up to the accuracy of the density profile reconstruction

method. This strictly local measurement is referred as ideal (solid line). In reality we

measure a light profile (measured, dotted line) affected by the finite beam width, that

is smoothed compared to the ideal. Before the density calculation, the measured profile

is corrected to the spatially slowly varying geometrical efficiency factor giving the profile

labeled as“calibrated”(dashed line). Note that the density reconstruction does not require
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the absolute value of the emissivity, only the shape of the light profile.

The relative differences from the ideal profile with respect to the maximum intensity

are plotted in Fig. 3b. Note that while the relative difference between the ideal and

the calibrated profiles is 5 % at x = 5 cm, the maximum relative error of the density

profile calculated from the calibrated light profile is 23 % within the same range as it

is shown on Fig. 3c-d, where the corresponding density profiles are plotted together

with the differences from the density profile used as input to the light profile calculations

(original, dash-dotted line). The density profiles are calculated by the Absolut code [6].

The corrected (long dashed line) curves show the result of the emission reconstruction

correction method, which is introduced in the next section.
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Figure 3: Li-BES, COMPASS; outboard mid-plane injection observed from the in-board
side top port. a – light profiles, b – differences from the ideal light profile, c – density
profiles, d – differences from the original density profile.
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4 Emission reconstruction

A de-convolution based method can be introduced for the correction of undesired smooth-

ing effect due to the observation of a finite width beam addressed in the previous section.

The method uses the properties of the beam evolution and the transfer function, and

assumes that the plasma parameters are flux functions in the spatial scale of the beam

width.

Two essential aspects determine the characteristics of the transfer function: On

one hand, the fact that we integrate over a range of flux surfaces, as the line of sight

goes through the beam, gives the extradiagonal elements if we represent the discretized

functions as a matrix. On the other hand, the geometrical efficiency of detection, the

main factor of which is the variation of the solid angle of observation along the beam, is

responsible for the slow trends in the magnitude. The latter effect would remain even if we

used an ideal beam, and thus it is usually taken into consideration in the 1D calculations.

The two above effects are nearly independent of each other, thus the transfer function

can be separated

S(x′) =

∫
T (x′, x)I(x)dx ≈

∫
p(x)t(x′, x)I(x)dx ≈ (3)

≈

∫
p(x)τ(x′ − x)I(x)dx ≈ p(x′)

∫
τ(x′ − x)I(x)dx,

where in the first step, we introduced a slowly varying function p(x) containing the ge-

ometrical efficiency factors, and the effect of the integration along the lines of sight is

represented by t(x, x′). Note that in an ideal measurement, t(x′, x) = δ(x′ − x). In the

second step, t(x′, x) is approximated by a convolution kernel τ(x′ − x). This approxima-

tion means that the width of t(x′, x) is independent of x, being valid if the observation

angle does not vary too much in the observed region. In the third step we used that p(x)

is a slowly varying function of x compared to τ(x′ − x).

We introduce the calibrated light profile S ′(x′) = S(x′)/p(x′), where the geometrical

efficiency along the beam axis p(x′) is calculated by the simulation, but otherwise an
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easily measurable quantity. The convolution kernel can be estimated by τ(x′ − x) =

T (x′ − x + xc, xc)/p(xc) with xc being in the middle of the x range relevant from the

density profile calculation point of view.

In order to invert a convolution, it is expedient to consider the problem in Fourier

space. The convolution theorem gives

Ŝ ′(k) = τ̂(k)Î(k), (4)

where ”hat” denotes the Fourier transform of a function. If τ̂ 6= 0 for any k the problem

would be solved, since then the inverse Fourier transform of

Î(k) = Ŝ ′(k)/τ̂(k) (5)

would give the desired solution I(x). In reality, τ(x′−x) has a typical scale length, which

is comparable to the beam width. Therefore, there is a finite k, above which τ̂(k) drops

rapidly, which we denote by kτ . Division by such a τ̂(k) according to (5) would amplify

high wave number part of the noise present in the spectrum of the measured light profile.

The spectrum of the measured light profile also decays exponentially due to the finite

spontaneous decay time of the atomic states, but reaches the noise level at a frequency

kS intrinsically much lower than kτ . To get around the problem we can zero out 1/τ̂(k)

above kS before the multiplication with Ŝ ′(k).

Typical wave number spectra of the emission reconstruction are plotted on Fig. 4.

The corrected light profile spectrum plotted by dashed line can be expressed as Θ(kS −

k)Ŝ ′/τ̂ , where Θ(k) is the Heaviside function. It decays rapidly with a slope determined

by the spontaneous transition frequency of the observed transition, while the calibrated

spectrum Ŝ ′ (solid line) decays even somewhat faster due to the decaying τ̂ transmission

of the observation in wave number space (dotted line). The de-convolution function

Θ(kS − k)/τ̂ is plotted with dash-dotted line.

As we will see, there are measurement configurations and plasma parameters profiles
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Figure 4: Wave number spectra of functions involved in emission reconstruction.

when the smoothing effect of the observation does not cause significant error in the recon-

structed density profile, however the quantification of the transmission of the system is

still of importance, if the radial wave number spectrum of a BES fluctuation measurement

is to be investigated. The smallest measurable spatial scale is limited by the effect of the

finite lifetime of the ι atomic state, although, there is a considerable part of the wave

number spectrum that can be underestimated by not considering the transmission.

5 Realistic numerical tests

In the present section, the effects of the finite beam width on the light profile and the

corresponding density profile are investigated in simulations for the COMPASS and the

TEXTOR tokamaks. The undesired smoothing of the light profile due to the integration

along the lines of sight through different stages of beam evolution is corrected by the

emission reconstruction method introduced in the previous section.

The COMPASS simulations are based on the plasma parameter profiles of the 1.2 ·

1020 m−3 central electron density H-mode shot #30866 (156 ms). The 40 keV Li/Na

beam is injected in the outboard mid-plane, while the observation system is located in

the same poloidal position at the high field side (HFS) or middle top ports. The latter

set-up, which is the planned one for the COMPASS reinstalled at Prague recently, is
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shown in an output file of RENATE, Fig. 5, where the emissivity of the Li beam is

contour plotted; additionally, the magnetic geometry and the lines of sight together with

the vacuum chamber are also indicated.

A lower density (3.2 ·1019 m−3) shot #107242 (2730 ms) is taken from the TEXTOR

circular tokamak, where the 35 keV Li beam is observed from a low field side (LFS) top

port through a periscope system with quite high observation angle. The TEXTOR Li-

BES set-up [13] is shown in Fig. 6. The corresponding sodium calculations are based on

similar measurement geometry and the assumption of a 40 keV Na beam.

Figure 5: Investigated configuration and simulated beam emissivity, COMPASS.

There are two aspects of the measurement playing important role in the enhance-

ment of the finite beam width effects: the observation angle and the scale length of the

light profile compared to the beam width. The first one is mainly determined by the

measurement geometry apart from the case of significantly variable magnetic geometry

devices. In certain cases, the location of the observation system can not be chosen to

give optimal observation angle, because of technical constraints, such as on the TEXTOR

set-up [13]. The second aspect depends on the beam width, which is determined by the

ion optics, and also on the plasma parameter profiles and the beam material determining
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Figure 6: Investigated configuration and simulated beam emissivity, TEXTOR.

the beam evolution.

The finite beam width effects on the light profile were discussed in the end of Sec.

3 and were illustrated on Fig. 3 showing a simulated Li-BES measurement on the COM-

PASS tokamak with LFS observation. In this case, besides the unfavorable observation

direction, the relatively steep density gradient also enhances the smoothing of the light

profile, since the characteristic length scale of the light profile– the distance between the

point where the beam enters the plasma and the light profile maximum – is only 5 cm,

comparable to the beam width. The varying geometrical efficiency has smaller effect

according to the measured and calibrated curves on 3b. This difference is even more pro-

nounced in the reconstructed density profiles calculated by the Absolut code, as seen on

Fig. 3c-d. Here, the differences are measured with respect to the original density profile

that was the input for the light profile calculations, which enables to show the accuracy

of the density calculation method, as even the ideal density profile has a certain error.

The calibrated density profile is also smoothed compared to the ideal, significantly un-

derestimating the density at the pedestal region, however, its relative systematic error is

approximately four times larger than that of the corresponding light profile.

The result of the emission reconstruction calculation from the measured light profile

and the corresponding density profile is plotted with long-dashed line (corrected). The

14



relative error of the corrected profile is only 1 % at the maximum in contrast to the 10 %

maximum error in the calibrated one, or 5 % in the region of interest from density profile

calculation point of view. This error in the corrected profile causes 6 % error in the density

profile, which is the same magnitude as the error due to the imperfections of the density

calculation.

According to the current plans the observation system of the COMPASS BES will

be installed into the middle top port, as in Fig. 5, which is more favorable, since the

angle between the flux surfaces and the lines of sight is only ∼ 25 ◦ on average, however

the systematic error for the same parameters is still not negligible, more than 15 %; see

Fig. 7. The error in the calibrated light profile follows the same pattern as in the previous

case, however the overestimation outside the 4 − 5 cm range is considerably lower. The

calibrated light profile has more than four times higher error then the corrected one, and

the improvement for the density profiles is a factor of three, although as the ideal density

profile shows, the improvement is limited again by the accuracy of the density calculation.

As we pointed out not only the observation direction, but the scale length of the

light profile is also important in the finite beam effects of a density profile measurement.

The scale length is affected on the one hand by the plasma parameter distributions along

the beam line, mainly the electron density distribution and slightly by the beam energy,

the temperature profile and impurity concentrations, and on the other hand the beam

material. In the TEXTOR test case the density gradients are much lower than for the

COMPASS case, giving three times longer light profile scale length, much higher than the

beam width (see Fig. 6). Although the observation angle is 50 ◦ the finite beam width

effects are negligible.

However, the emission reconstruction method can potentially be used for the density

profile measurement during a two-dimensional fluctuation measurement. The beam scans

in the poloidal direction (at 400 kHz on TEXTOR) in order to give good poloidal velocity

resolution of the turbulent structures, while the concurrent profile measurement has a

much lower sampling rate, thus the different beam positions are seen simultaneously. The
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Figure 7: Light profile differences; Li-BES, COMPASS, observation from the middle top
port.

configuration is equivalent with the observation of only one, quite thick beam (∼ 5 cm),

which clearly gives non-negligible finite beam width effects.

The effect of the beam material is illustrated by Na beam simulations, in Fig. 8 and

9. For a smaller ionization energy atom, such as Na, the light profile becomes shorter for

the same plasma parameter distributions, which enhances the finite beam width effects.

For middle top port observation COMPASS case using Na beam, shown in Fig. 8, the

overestimation of the light profile is more than two times higher than with Li beam (7),

while the error of the corrected light profile is the same in both cases. In the TEXTOR

case, shown on Fig. 9, similar trend can be seen. For Li beam the systematic error of the

measured profile was clearly dominated by the geometrical efficiency effects, but for Na

the contribution of the finite beam width effects gives the half of this error.
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Figure 8: Na-BES, COMPASS tokamak; a – light profiles, b – differences from the ideal

light profile
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Figure 9: Na-BES, TEXTOR tokamak; a – light profiles, b – differences from the ideal

light profile

6 Error estimation for Li-BES measurements

After having investigated the characteristics of the error caused by the finite beam width

on typical simulated measurements of the COMPASS and TEXTOR tokamaks, it is in-

structive to quantitatively measure the different factors affecting the error, on the basis

of which it can be estimated for different measurements and configurations. In this chap-

ter we focus only on measurements using lithium as beam material, which is the most

common for diagnostic purpose beams.

Assuming that the evolution of plasma parameters follow the flux surfaces, for given

plasma parameters, we expect the error to be proportional to the typical width of the
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Figure 10: The relevant parameters characterizing the observation geometry. b – the full
width at half maximum of the beam, α – observation angle, β′ – the angle between the
beam axis and the flux surfaces, β = π/2 − β′. Thick dotted line: beam axis, thick solid
curves – flux surfaces, thin solid lines: lines of sight.

range of flux surfaces we integrate through along the line of sight. This width can be

estimated as b |sin(α)/ cos(α − β)|, where b is the full width at half maximum of the

beam, α is the observation angle and β = π/2 − β′, if β′ is the angle between the beam

axis and the flux surfaces (see Fig. 10). The trigonometric expression gives no error, when

the lines of sight are tangential to the flux surfaces, and diverges as they become parallel

to the beam axis; although, the latter configuration is quite unnatural. Here, we note

that the first assumption of the paragraph breaks down if β′ is too small. If the axis is

perpendicular to the flux surfaces on average, the expression reduces to b |tan α|. These

angles are average values over a range along the beam relevant to the measurement.

Experience with several simulations for a wide range of plasma parameter profiles

showed that the most important parameter affecting the magnitude of the systematic error

is the electron density at the maximum of the light profile ne∗, and that the dependence

of the maximum relative error in electron density on this parameter is approximately

linear. The maximum relative error usually occurs in the vicinity of the light profile

maximum, and due to the fact, that the light profile smoothing effect of the observation

mainly lowers the logarithmic derivative of the light profile, the error always appears as

an underestimation of the electron density.

Investigating the effect of the electron temperature on the error, we found that

the relative variation of the error for different temperature profiles is comparable to the

relative variation of the quantity
∫

ne(x)ã2p,2s(T (x))dx, where we integrate from the point
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Figure 11: Comparison of the maximum relative error in electron density with the model
given in Eq. 6 (solid line) for different measurement configurations and plasma parameter
profiles. The cyan diamond corresponds to the configuration of Fig. 5, the white square
to Fig. 6, while the red triangle is the simulation of Fig. 3.

where the beam enters the plasma to the maximum of the light profile. This variation is

negligibly small for an experimentally relevant range of SOL/edge temperatures, therefore

can be neglected. Finally the error shows a relatively weak linear dependence on Zeff .

Thus, the maximum relative error can be estimated as

max(|∆ne/ne|) = Cne∗bfZeff |sin(α)/ cos(α − β)| , (6)

where fZeff = 0.068 Zeff + 0.9, ne∗ is given in 1019 m−3, b is in m and the constant C is

found by linear fitting to be 3.8.

In Fig. 11 maximum relative errors are plotted against ne∗bfZeff |tan(α)| for a various

plasma parameter profiles, observation angles and beam widths; in these cases the beam

axis is chosen to be perpendicular to the flux surfaces. The errors are calculated for the

densities corresponding to the calibrated light profiles, accordingly contain only the effects

due to the finite beam width. The considerable deviation of the errors with respect to

the estimation indicated by the line is partly due to the finite accuracy of the density

calculation method, but profile effects of the plasma parameter distributions, that would

be difficult to parameterize, also play important role.

Equation (6) predicts 21 % relative error for the COMPASS case shown in Fig. 3,
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where we found 23 %, and 4.5 % for the simulated TEXTOR measurement in Fig. 6,

which is indeed lower than the achieved accuracy of the density calculation for that case.

The formula can be used to give a rough estimate to the error expected for a measurement

configuration, however, it is not capable of giving accurate implications to the error of a

certain measurement, and in particular, can not be used for correction of the error; for

that, one has to resort to the comprehensive simulation of the BES measurement (e.g.

using the RENATE code).

7 Conclusions

In the present paper a de-convolution based correction method of alkali BES density

profile measurements has been presented and demonstrated in simulated measurements on

the TEXTOR and the COMPASS tokamak using the actual/planned BES configuration

respectively. We found that in set-ups, where the line of sight is far from tangential to the

flux surfaces at the beam position, the observation can cause an undesired smoothing of

the light profile, which results in an underestimation of the reconstructed density profile,

up to 15− 20 % for realistic cases. The systematic error caused by the finite beam width

is larger for higher electron densities and for sodium or beam materials with even lower

binding energies.

The systematic error investigated here caused by the integration along the lines of

sight is important, since it causes information losses on the fine structure of the profile, and

leads to the underestimation of the pedestal density gradient, degrading the capabilities

of the BES measurement in very important fields such as investigation of L–H transitions.

A general estimation of the maximal relative error in electron density is presented,

reflecting that the error is proportional to the electron density at the light profile maximum

and shows a linear dependence on Zeff , while its temperature dependence is negligible for

experimentally relevant temperature profiles. Furthermore, it is proportional to the beam

width and to the tangent of the average angle between the flux surfaces and the lines of

sight. The maximum relative error regularly occurs near to the light profile maximum
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and always appears as an underestimation of the electron density.

The transfer function of the observation, playing crucial role in the emission recon-

struction, is calculated by the RENATE alkali BES simulation code. It takes the finite

beam width and all basic properties of the measurement into account, assuming that

the plasma parameters are flux functions on the scale of the beam width. Separating

the transfer function into a slowly varying part due to geometrical efficiency effects and

a convolution kernel describing the smoothing of the light profile, the problem can be

reduced to a simple algebraic equation in wave number space.

The de-convolution method gives a good estimate of the emissivity on the beam

axis from the measured light profile, so that the level of the remaining error due to the

observation is in the order of the accuracy of the density profile reconstruction algorithm

(in our case the Absolut code [6]). The method allows the use of the one dimensional

density calculation methods even for the configurations where the finite width of the beam

is not negligible.
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Phys. Control. Fusion 34, 1173-1183 (1992).

[7] R. Fischer, E. Wolfrum, J. Schweinzer and the ASDEX Upgrade Team, Plasma Phys.

Control. Fusion 50, 085009 (2008).

[8] T. Oishi, S. Kado, M. Yoshinuma, K. Ida, S. Tanaka, S. Okamura, J. Plasma Fusion

Res. SERIES 6, 449-452 (2004).

[9] S. Zoletnik, G. Petravich, A. Bence, M. Berta, S. Fiedler, K. McCormick, J.

Schweinzer, Rev. Sci. Instrum. 76, 073504 (2005).
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