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Zonal flows are widely known to play an important role in improving tokamak plasma confine-

ment by shearing apart turbulent eddies, thus reducing the level of turbulent transport in the

plasma. Driven by turbulent Reynolds stress themselves, these flows may be sensitive to other

mechanisms which affect either the turbulence itself or the zonal flows. One of these mech-

anisms is friction due to Coulomb collisions between circulating and trapped particles which

slow down the poloidal rotation of the plasma. In this work, we study the effect of heavy,

highly charged impurities on the zonal flows. Being much more collisional than the lighter bulk

ions, even small amounts of heavy impurities speed up the damping process by increasing the

’effective’ collision frequency of the plasma, although their rotation itself hardly contributes to

the flow [1]. The main focus of this work is on determining how fast this damping process oc-

curs, and an analytic formula is derived for the damping timeτp =
∞
∫

0

(Er(t)/Er(∞) − 1) dt,

which describes the time scale on which the zonal-flow potential approaches its residual value.

The analytical results are then compared with the numerical results of the NEO code [2].

Following earlier papers by Hinton, Rosenbluth [3] and Xiao, Catto, Molvig [4], the zonal-

flow potential is modelled by an initially imposed short-wavelength radial electric field, and

the long-time response (i.e. on time scales longer than a few ion bounce times) of the plasma

is calculated. The result can then be generalised to arbitrary source terms by convolution with

the initial-value solution.

While the ion distribution function is governed by the drift-kinetic equation, the radial electric

field has to adjust according to the constraint of conservation of angular momentum. Thus, we

first solve

∂fa
∂t

+ (v‖ + vd) · ∇fa + ẇ
∂fa
∂w

= Ca(fa)

for both ion and impurity distribution functions,fi andfz, respectively. Here,vd is the drift ve-

locity,w = 1
2
mav

2 the kinetic energy and the radial electric field is contained inẇ = −ea(v‖ +

vd) · ∇φ, v‖ denoting the velocity along the magnetic fieldB = I(ψ)∇ϕ + ∇ϕ× ∇ψ. All

particle species (electrons, bulk ions and impurities) are assumed to be in the low-collisional

banana regime, and we orderZ � Z2nz/ni ∼ Zmi/mz ∼ 1, which allows us to neglect

impurity-ion collisions as their effect is much smaller than the effect of impurity self-collisions.
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Self-collisions are modelled byCaa(fa1) = νaaD

(

L(fa1) +mav‖ua‖fa0/Ta

)

and impurity-ion

collisions byCiz(fi1) = νizDL(fi1) + miv‖fi0ν
iz
DVz‖/Ti, whereνabD denotes the collision fre-

quency of speciesa andb, L is the Lorentz scattering operator,Vz‖ the impurity mean flow-

velocity andua can be calculated to satisfy momentum conservation in self-collisions.

The drift-kinetic equation is then expanded in the smallness of the Larmor radiusδ and the

resulting1st order equation is solved. For convenience, we split off the adiabatic part of the1st

order distribution function and writefa1 = ga − Iv‖eaφ
′fa0/(ΩaTa). There are two different

ways of solving the partial differential equation: if one is interested in the complete time evo-

lution of the zonal-flow potential, the equation can be solved via an eigenfunction expansion

of the bounce averaged self-collision operator. However, the resulting formula for the damping

time is not very intuitive, and in order to have sufficient accuracy it is advisable to calculate

the eigenfunctions numerically. Another option is to consider only the long-time behaviour of

the system, as in this limit the time derivative ofga can be shown to be small compared to the

other terms and can thus be neglected. Consquently, it is only necessary to solve an ordinary

differential equation, which can be done easily without expanding in eigenfunctions. A further

advantage is that, as the resulting problem strongly resembles a neoclassical Spitzer problem,

it is possible to compare the analytical results with neoclassical simulations.

The solution is then inserted in the equation of angular-momentum conservation, which reads

∂

∂t

〈

(mini +mznz)|∇ψ|2

B2
φ′

−

∫

Iv‖
B

(

migi0 +mzgz0 −
Iv‖
B
φ′

(

m2
i

Ti
fi0 +

m2
z

Tz
fz0

))

d3v

〉

= 0,

and can be rewritten in terms of the (Laplace-transformed) neoclassical polarisation

P̂ ≡
∑

a=i,z

〈

I

B

∫

mav‖ĝa0d
3v

〉

/

∑

a=i,z

〈

manaR
2
〉

φ̂′

as an equation for the Laplace-transformed potential response,

φ̂′(p) =
1

p
φ′(0)

〈

|∇ψ|2

B2

〉

〈R2〉 (1 − P̂ )
.

The relation between the neoclassical polarisation and the zonal-flow damping timeτp is found

to be τp = lim
p→0

∞
∫

0

(φ′(t)/φ′
∞ − 1)e−ptdt = dP̂/dp(0) and can thus be calculated from the
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Figure 1: Normalised damping time versus effective charge

distribution functionsgi andgz, with the result

τp =
I2

〈R2〉B2
0

fc







{

1

νiiD + νizD

}

+
fc

{

νii

D

νii

D
+νiz

D

}2

{νiiD} − fc

{

(νii

D
)2

νii

D
+νiz

D

}







≈
I2

〈R2〉B2
0

fc
ν̂ie

(

4.51

Zeff

+

(

0.87 + 2.49
fc

1 − fc

)

1

Z4
eff

)

where curly brackets denote an average over velocity space,{F (v)} =
∫

d3vFmv2
‖
f0/(nT ),

fc = 0.75
λc
∫

0

dλλ/
〈

√

1 − λB/B0

〉

is the effective fraction of circulating particles whereλc

denotes the trapped-passing boundary, and the second formula was interpolated in the effective

chargeZeff =
∑

j

(Z2
jnj)/

∑

j

(Zjnj).

In Figs. 1 and 2, the normalised damping time is plotted versus effective charge and inverse

aspect ratioε, respectively, together with the results from the NEO code. In regions where the

theory is valid, the agreement between theory and simulation is quite good. The simulation in

Fig. 1 was done for a carbon species, thus for largeZeff the impurities cease to be a minority

in the plasma and the assumptions in the theory are violated which explains the discrepancy as

Z → Zeff . The discrepancy for small values ofε in Fig. 2 is due to the fact that the plasma is no

longer in the banana regime in this limit as the collision frequency was fixed in the simulation.

Clearly visible is also the asymptotic character of the theory asZ → ∞.

From both theory and numerical simulations, we find that, when impurity ions are present in

the plasma, the damping time is significantly shorter than the damping time in a pure hydrogen

plasma. Although the impurities hardly rotate themselves, they are able to slow down the

circulating bulk ions considerably. The underlying physical mechanism is that impurities are
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Figure 2: Normalised damping time versusε

slowed down on the time scale of impurity collisions, which is much shorter than that of ion

collisions. Thus, when the circulating ions collide, their rotation is not only damped by self-

collisions with the trapped population as in the case of a pure plasma, but also by collisions

with the entire, i.e. both trapped and passing, impurity population. Most important is this

mechanism in the limit of very large aspect ratio where few trapped particles are present. In

this case, the rotation in a pure plasma remains nearly undamped, whereas in an impure plasma

damping occurs. For tight aspect ratio, impurities do not matter so much as the number of

trapped particles is high enough to damp the rotation nearly immediately.

Insofar as collisional zonal-flow damping plays an important role, this would suggest that

impurities inhibit zonal flows and could thus have a deleterious effect on plasma confinement.
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