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Introduction

For the first time, transport bifurcations have been found examining resistive drift wave turbu-

lence in self-consistent simulations. The transport states are associated with asymmetric zonal

flows (the negative ones being sharper and deeper), which gain energy from the turbulence and

reduce the turbulence level in return.

Resistive (and also collisionless) drift wave turbulence is potentially relevant at internal trans-

port barriers and to high gradient tokamak edge turbulence – and possibly to the drift wave

analogon in planetary turbulence, geostrophic modes.

Numerical simulations

Using the Braginskii-based two-fluid code NLET[3], a turbulent sheared-slab cold-ion re-

sistive drift-wave system consisting of the following Hasegawa-Wakatani equations has been

examined:

dtn = dt∇2
⊥φ (1)

ρ̂−3
s dt∇2

⊥φ = −∂ 2
‖ (φ −n) (2)

wheredt = ∂t +~z×∇⊥φ ·∇⊥, ∂‖ = ∂z−2πsx∂y and∇2
⊥ = ∂ 2/∂x2 + ∂ 2/∂y2 as well as

Ls = 1/2πsandLz(= 2πqR) as the parallel length scale.

Here,ρ̂s = ρs/L⊥ - the single relevant parameter for the Hasegawa-Wakatani equations - is

the dimensionless ratio of the ’ion sound Larmor radius’ρs = mvth/eB= m
√

Te/eBmi to the

orthogonal length scaleL⊥ = R/Ln(πq/s)2/3[

cst0neη‖/2B
]1/3

(the scale of maximal drift wave

growth where the relaxation frequency equals the diamagnetic drift frequency) whereη‖ marks

the parallel resistivity andLn = −n(dx/dn).

Time is normalized tot0 = ρs/vdia,e− with vdia,e− = α(1+ηi)(1+ τ)t0L∇/2L0Ln.

Typical run parameters in the previously defined units arenx = ny = 512,nz = 32,Lx = Ly =

104.5ρs, Lz = 6.3qR, grid step size≈ 7.7·10−3, time step≈ 3.4·10−4 and run time≈ 8.8·101.

Extensive consistency and convergence scans have been performed prior to the parameter scans

for ρ̂−3
s .
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Parameter studies

As is well-known, the linear properties of the flow states are best characterised by the eigen-

value of the unsheared system, since the sheared eigensystem cannot easily reproduce the de-

velopment of the states. There is no feasible decomposition for this non-orthogonal, nearly

collinear eigensystem, thus developing single eigenvectors on their own is rendered impossible.

Strictly speaking, there are no growing eigenmodes fors 6= 0, thus the general growth rate of

modes of the shearless, non-adiabatic case, derived from eqns. (1) & (2), is used

γ = ℑ(ω) ≈
[

k2
⊥ +k2

‖

(

1
k⊥ky

+
k⊥
ky

)2
]−1

(3)

which is approximated byγ = ω ∗2 /ω‖ = k2
⊥/

(

k2
‖/(ρ̂−3

s k2
⊥)

)

= ρ̂−3
s k4

⊥/k2
‖.

The mixing length anomalous heat diffusion coefficientD = γ/~k2
⊥ depends on the orthogonal

wavenumber, which is determined by one of two scales with a transition at approximatelyρ̂s≈
0.12−0.20 (coinciding with the onset of zonal flow formation). For the two regimes we find:

• relaxation scaleL⊥ dominant forρ̂s < 0.12: D̂ = γ̂/k̂2
⊥|kphys=L−1

⊥
= γ̂/k̂2

⊥|kunits=ρ̂s∝ ρ̂−1
s

• diam. drift scaleρs dominant forρ̂s> 0.2: Dρ = γρ/k2
ρ⊥|kphys=ρ−1

s
= γρ/k2

ρ⊥|kunits=1∝ ρ̂−3
s

⇒ Dρ

D̂
= ρ̂−2

s (analytically) ⇐⇒ Dρ

D̂
= ρ̂−2±0.1

s (numerically)

It has been verified thoroughly by a set of numerical parameter scans overρ̂s thatD/Dρ is

asymptotically constant for smallρ̂s and, vice versa,D/D̂ for largeρ̂s.

Transport bifurcations

Figure 1:Flow and density profiles

To our knowledge, for the first time in self-

consistent simulations, transport bifurcations

containing two stable gradients have been found.

These density corrugations represent station-

ary transport states with regions of high diffusiv-

ity and low gradients at the location of the flows

pointing in the electron diamagnetic drift direc-

tion (the positive flows) while low diffusivity

and high gradients can be observed at the more

sharply concentrated, radially tightened negative

flows - the bifurcations are accompanied by an

asymmetric flow pattern.
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This flow structure emerges on time scales which are∼ O(101) for a typical parameter̂ρs ≈
0.28 (and gain approximately one order of magnitude for every doubling ofρ̂s) - this, in addition

to a higher resolution, might indicate why they have not been observed in earlier studies[1].

Bifurcation mechanism

Using the drift wave action invariantN [2],

∂tN~k = −∇~x

(

N~k ·~vgr,~k

)

−∇~k

(

N~k(x) ·~̇k(~x,~k)
)

(4)

negative flows are found to repulse the turbulence, while positive flows are attractive. (The flows

can change the radial wavenumbers of the drift waves, thus acting like forcefields on the radially

propagating drift waves.) Transport, in concurrence with turbulence levels, is thus redu-

Figure 2:Numerical solution of eqns

(8) & (9) - flow vs. radius and time (γ =

10−4, η = 0.6, α = 1.5, β = 2 ·10−4)

ced at the negative flows. Since the transport balance

∂xΓ(x) = 0 is maintained in equilibrium, higher gradi-

ents at the location of the negative flows are required to

counterbalance the transport which is reduced in con-

currence with lower turbulence levels. Steeper gradi-

ents lead to an increased rate of drift wave generation,

which are then repelled by the negative flows. These

radially moving drift waves cause Reynolds stresses

(via Poynting’s theorem) which, in turn, fuel the flow

up to its equilibrium level.

To study this mechanism analytically, an elementary

nonlinear equation system (there cannot be a steady

state with just the linear terms) has been constructed based on three balances:

µ[N] = vy +const. (negative flows correlate with higher drift wave intensity) (5)

Γ[N] = const. (transport balance in equilibrium) (6)

Ṅ = γ[vy,n
′] (change in drift wave intensity acc. to the local growth rate) (7)

Empirical analysis shows that the occurence of density corrugations is independent from the

development of the asymmetric flow structure, finally yielding the following coupled equation

system for the drift wave intensity and the flow strength with various source and damping terms

(whereµ[N] = ηN
(α−1

α + N
α
)

includes the stabilizing first nonlinear term for saturation):

∂tN = −γ(N−N0)−∂x (−N∂x(µ[N]−vy))−β∂x
(

N(∂ 3
x N)

)

(8)

∂tvy = −∂x (−N∂x(µ[N]−vy))−β
(

∂ 4
x vy)

)

(9)
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The solution of these equations yields asymmetric flows. It increases with higher growth rate

γ (as could be expected); other influencial parameters include a diffusion constantD 6= 1, and

changing the relative amplitude of the nonlinear term. Thus, these quantitative considerations

support the concept of the transport bifurcations found in the large-scale numerical simulations.
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Figure 3:Stationary flow states and corre-

sponding asymmetric flow

Plotting the balance between the momentum

and drift wave flows given by the integrated

Reynolds stress (Poynting’s theorem, valid for

γDW = 0), v = N + const., against the nonlinear

chemical potentialµ[N] [Fig. 3] whereµ ∝ N +

N2 for large N (determining the saturation of the

positive flows) andµ →−∞ for N → 0 (in accor-

dance with general behaviour of chemical poten-

tials, preventing negative drift wave intensities)

yields three intersections.

The central point marks the unstablev = v0-

state, with the two outer ones being stable – and

corresponding to the developed flow states.

The intrinsic asymmetry in the chemical poten-

tial (strongly supported by NLET results) causes a

corresponding asymmetry in the deviation of both

the maximal positive and negative flows from the

median – and thus, due to total flow conservation, an asymmetry of the radial flow length scale.

Summary

Our sheared slab drift wave turbulence runs yield the first example of transport bifurcations

in self-consistent simulations.

These transport states and the associated flow asymmetry pose a robust phenomenon in a

considerable parameter range and have been affirmed by means of an ansatz for an asymmetry

mechanism as well as an analytical set of equations, derived from basic conservation principles.
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