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Free boundary three-dimensional anisotropic pressure magnetohydrodynamic equilib-

ria with nested magnetic flux surfaces are computed through the minimisation of the

plasma energy functional W =
∫

V d
3xd3x

[

B2/(2µ0) + p||/(Γ − 1)
]

. The plasma-vacuum

interface is varied to guarantee the continuity of the total pressure [p⊥ +B2/(2µ0)] across

it and the vacuum magnetic field must satisfy the Neumann boundary condition that its

component normal to this interface surface vanishes. The vacuum magnetic field cor-

responds to that driven by the plasma current and external coils plus the gradient of

a potential function whose solution is obtained using a Green’s function method. The

energetic particle contributions to the pressure are evaluated analytically from the mo-

ments of the variant of a bi-Maxwellian distribution function that satisfies the constraint

B · ∇Fh = 0. Applications to demonstrate the versatility and reliability of the numerical

method employed have concentrated on high-β off-axis energetic particle deposition with
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large parallel and perpendicular pressure anisotropies in a 2-field period quasiaxisymmet-

ric stellarator reactor system. For large perpendicular pressure anisotropy, the hot particle

component of the p⊥ distribution localises in the regions where the energetic particles are

deposited. For large parallel pressure anisotropy, the pressures are more uniform around

the flux surfaces.
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Keywords: free boundary equilibrium, Bi-Maxwellian, pressure anisotropy, Green’s func-

tion, quasiaxisymmetry.
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1. Introduction

Auxiliary heating methods are required in magnetic confinement devices to achieve the

high temperatures necessary for thermonuclear conditions. The schemes employed, how-

ever, tend to generate populations of energetic particles that are nonuniformly distributed

in velocity space. The Large Helical Device (LHD) heliotron has a 14MW tangential neu-

tral beam injection system based on negative ion beam technology that delivers 180keV

fast ions that produce a large parallel pressure anisotropy inasmuch as the ratio parallel to

perpendicular stored energies have been measured in the range of 3− 4 [1]. Furthermore,

the hot ions make a substantial contribution to the volume averaged β that can exceed

1/3 of the total value [2]. In the JET tokamak experiment, radio frequency waves in the

ion cyclotron range can produce a significant perpendicular pressure anisotropy that can

be very accurately described with a bi-Maxwellian distribution function for the energetic

ions [3] which can contribute 1/4 of the total estimated volume averaged β.

The three-dimensional (3D) magnetohydrodynamic equilibrium code VMEC [4] cou-

pled with the NESTOR vacuum solver [5] computes general toroidal free boundary scalar

pressure equilibria with nested magnetic flux surfaces [6]. The goal of this work is to ex-

tend this code to anisotropic pressure conditions driven by the energetic particle species.

We have labelled this code extension with the acronym ANIMEC (Anisotropic Neumann

Inverse Moments Equilibrium Code). The hot particles are modelled with the variant of

a bi-Maxwellian distribution function which satisfies the constraint imposed by the lead-

ing order solution of the Fokker-Planck equation that B · ∇Fh = 0. This model is very

convenient because the pressure moments of the distribution function can be determined

analytically and it allows for the deposition of hot particles in any region of the plasma. It

is particularly useful to describe hot populations generated with ion cyclotron resonance

heating (ICRH) [7, 8] and has been previously implemented and applied with success in

a fixed boundary version of the 3D VMEC code [9].

3



Anisotropic pressure equilibrium solvers have been previously developed for axisym-

metric [10, 11, 12] and helically symmetric [13, 14] geometries. For 3D stellarator con-

figurations, an expansion method was applied in which the pressures are imposed to be

only a function of the radial variable [15]. More recently, fixed boundary equilibria based

on the VMEC code have been devised, in addition to the bi-Maxwellian model [9], using

slowing down distribution functions multiplied by a factor (µBmin/E)ℓ to obtain large

perpendicular anisotropy concentrated on the low field (LF) side [16] and by a factor

(1−µBmin/E)ℓ to obtain large parallel anisotropy [17]. Here, Bmin is the minimum value

of the magnetic field strength B on each flux surface, ℓ is an integer that controls the level

of anisotropy while µ and E represent the particle magnetic moment and energy, respec-

tively. These distribution functions have the disadvantage, unlike the bi-Maxwellian, of

becoming singular at the velocity space coordinate origin, though their pressure moments

remain finite and therefore adequate for equilibrium calculations.

The bi-Maxwellian distribution function model we have invoked, the parallel and per-

pendicular pressures that can be derived from it and other useful equilibrium relations are

outlined in Section 2. The magnetohydrodynamic equilibrium energy valid for anisotropic

pressure plasmas is presented in Section 3 which also includes details of the minimisation

method. The vacuum treatment using a Green’s function approach is briefly described

in Section 4. The radial force balance diagnostic that determines the precision of the nu-

merical equilibrium state obtained is considered in Section 5. Applications of ANIMEC

to a 2-field period quasiaxisymmetric stellarator reactor is addressed in Section 6 while

the summary and conclusions are discussed in Section 7.
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2. The bi-Maxwellian distribution function and its pressure moments [8]

We consider a variant of the standard bi-Maxwellian distribution function to describe the

hot particles which satisfies the condition imposed by the lowest order solution of the

Fokker-Planck equation, namely, B · ∇Fh = 0, which can be expressed as

Fh(s, E , µ) = N (s)
( mh

2πT⊥(s)

)3/2

exp
[

−mh

( µBc

T⊥(s)
+

|E − µBC |
T‖(s)

)]

. (1)

where Fh is the fast particle distribution, N is the label of the density-like amplitude

factor, mh, T⊥ and T|| represent the energetic particle mass, perpendicular temperature

and parallel temperature, respectively, s is a radial variable proportional to the toroidal

magnetic flux 2πΦ enclosed and BC corresponds to a critical magnetic field that identifies

the layer where the energetic particles are deposited. In principle, BC can depend on

the flux surface variable s, but for simplicity we have chosen it to be a constant. This

model distribution function with constant BC fits fast particle distributions computed

with Fokker-Planck solvers that describe solutions with ICRH particularly well. The con-

tours of constant distribution of particles in v⊥ versus v|| space is displayed in Fig. 1

for an example where the hot particle temperature ratio T⊥/T|| = 4.2 at a position for

which BC/B = 1.3. The example shown is not a pure bi-Maxwellian but contains also

a thermalised Maxwellian component that is 10% of the total distribution for which the

thermal temperature is 5% of T⊥. This makes the shape of the contours close to the origin

to be more uniform and realistic in v⊥ versus v|| space.

The hot particle parallel pressure moment of the bi-Maxwellian distribution function

shown in Eqn. (1) can be integrated analytically to yield

ph
‖(s, B) = N (s)T‖(s)H(s, B), (2)

where the scale factor H(s, B) governs that variation of the pressures around a magnetic
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flux surface and, for B > BC , is given by

H(s, B) =
(B/BC)

[

1 − T⊥

T‖

(

1 − B
BC

)] , (3)

while for B < BC one obtains

H(s, B) =
B

BC

[

1 + T⊥

T‖

(

1 − B
BC

)

− 2
(

T⊥

T‖

)5/2(

1 − B
BC

)5/2]

[

1 −
(

T⊥

T‖

)(

1 − B
BC

)][

1 +
(

T⊥

T‖

)(

1 − B
BC

)] . (4)

The total parallel pressure is p||(s, B) = p(s) + ph
||(s, B), where p(s) corresponds to the

contribution of the thermal species (plus the thermalised hot particles) in the plasma.

Rather than determine the perpendicular pressure from the corresponding moment of the

distribution function, we invoke the magnetodydrodynamic force balance parallel to the

equilibrium magnetic field lines [9] to obtain

p⊥(s, B) = p‖(s, B) −B
∂p‖
∂B

∣

∣

∣

∣

∣

s

. (5)

Two criteria that must be monitored in an anisotropic pressure equilibrium calculation

are the firehose stability relation [18]

σ ≡ 1

µ0

− 1

B

∂p‖
∂B

∣

∣

∣

∣

∣

s

=
1

µ0

− p‖ − p⊥
B2

> 0 (6)

and the mirror stability relation [18]

τ ≡ ∂(σB)

∂B

∣

∣

∣

∣

∣

s

=
1

µ0

+
1

B

∂p⊥
∂B

∣

∣

∣

∣

∣

s

> 0. (7)

where µ0 = 4π × 10−7H/m is the permeability of free space.

3. Equilibrium energy minimisation

The first variation of the energy functional

W =
∫

V
d3x

(

B2

2µ0

+
p‖(s, B)

Γ − 1

)

, (8)

can be demonstrated to recover the magnetohydrodynamic force balance relation in mag-

netically confined plasmas with pressure anisotropy. The total parallel pressure is ex-

pressed in the form

6



p‖(s, B) = M(s)[Φ′(s)]Γ
1 + ph(s)H(s, B)

〈1 + ph(s)H(s, B)〉Γ
, (9)

where M(s) is the plasma mass enclosed within the surface labelled by s, ph(s) is the hot

particle pressure scale factor, H(s, B) has been defined in the previous section and the

flux surface average of a function A is defined as

〈A〉 =
L

(2π)2

∫

2π/L

0

dv
∫

2π

0

du
√
gA(s, u, v). (10)

The variables u and v of the inverse coordinate system (s, u, v) represent the poloidal

and toroidal angular variables, respectively, that are used in the ANIMEC code [19].

The number of equilibrium field periods is denoted by L and
√
g is the Jacobian of the

transformation from the Cartesian frame to the (s, u, v) coordinates. The thermal pres-

sure component in Eqn. (9) corresponds to p(s) = M(s)[Φ′(s)]Γ/ 〈1 + ph(s)H(s, B)〉Γ,

while the hot particle parallel pressure is ph
|| = p(s)ph(s)H(s, B). The identification

N (s)T||(s) = p(s)ph(s) reconciles the description of the parallel pressure moment of the

bi-Maxwellian distribution function [Eqn. (2)] with that given in Eqn. (9). For Γ > 1,

the energy functional W is strictly positive-definite. However, for the applications we

consider, we choose the adiabatic index Γ = 0.

A steepest descent energy minimisation procedure is applied to W in the inverse coor-

dinate representation with respect to an artificial time parameter t to obtain

dW

dt
= −

∫

V
dsdudv

[

FR
∂R

∂t
+ FZ

∂Z

∂t
+ Fλ

∂λ

∂t

]

−
∫ ∫

s=1

dudv
[

R
(

p⊥ +
B2

2µ0

)(∂R

∂u

∂Z

∂t
− ∂Z

∂u

∂R

∂t

)]

, (11)

where R is the distance from the major axis, Z is the distance from the vertical midplane

and λ is the poloidal angle renormalisation parameter that controls the spectral width of

the representation [19]. The forces within the plasma are

FR =
∂

∂u
[σ
√
gBu(B · ∇R)] +

∂

∂v
[σ
√
gBv(B · ∇R)]

− ∂

∂u

[

R
∂Z

∂s

(

p⊥ +
B2

2µ0

)]

+
∂

∂s

[

R
∂Z

∂u

(

p⊥ +
B2

2µ0

)]

(12)
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+

√
g

R

[(

p⊥ +
B2

2µ0

)

− σR2(Bv)2
]

,

Fz =
∂

∂u
[σ
√
gBu(B · ∇Z)] +

∂

∂v
[σ
√
gBv(B · ∇Z)]

+
∂

∂u

[

R
∂R

∂s

(

p⊥ +
B2

2µ0

)]

− ∂

∂s

[

R
∂R

∂u

(

p⊥ +
B2

2µ0

)]

(13)

and

Fλ = Φ′(s)
[∂(σBv)

∂u
− ∂(σBu)

∂v

]

. (14)

Note that at the plasma-vacuum interface, the contributions to the horizontal force FR

and to the vertical force FZ are −R [p⊥ +B2/(2µ0)] ∂Z/∂u and R [p⊥ +B2/(2µ0)] ∂R/∂u,

respectively.

The forces of the scalar pressure model are recovered by taking σ → 1/µ0 and p⊥ →

p [19]. The vanishing of Eqn. (14) reflects the condition that the current density lines

K = ∇×(σB) lie on the magnetic flux surfaces, namely K · ∇s = 0. Equilibrium con-

ditions are achieved when FR, FZ and Fλ approach 0 simultaneously. It is clear from

Eqn. (11) that the variation of W is negative-definite when equating Ṙ = FR, Ż = FZ

and λ̇ = Fλ. Further details of the minimisation procedure are reported in Ref. [19] and of

the radial discretisation in Ref. [20]. When the forces described in Eqns. (12)-(14) achieve

a prespecified level, a matrix preconditioning algorithm, GMRES [21], is called that can

reduce the force level error substantially.

4. Green’s function vacuum [5]

The magnetic field in the vacuum is represented as BV = B0+∇ΦV , where B0 corresponds

to the field generated by the external coils and the plasma current in the vacuum domain

and the potential ΦV must satify the Neumann condition

(B0 + ∇ΦV )·np = 0 (15)
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at the plasma-vacuum interface surface. In the region exterior to the plasma, the potential

ΦV also satisfies the Laplace equation ∆ΦV = 0 and the condition at the plasma boundary

∂ΦV

∂np
= −B0 · np, (16)

where np is the exterior normal vector to the plasma-vacuum interface [5, 6]. The Laplace

equation can be converted to the integral relation

ΦV (x) = − 1

2π

∫

dΣ′
p

∂G(x,x′)

∂n′
p

ΦV (x′)

+
1

2π

∫

dΣ′
pG(x,x′)

∂ΦV (x′)

∂n′
p

, (17)

where x and x
′ are points on the boundary labelled as Σp and G(x,x′) = 1/|x − x

′|

corresponds to the Green’s function. A more detailed description of the vacuum treatment

adopted can be found in Refs. [5, 6]. Finally, the continuity of the total pressure across

the plasma-vacuum interface must be satisfied, namely

p⊥ +
B2

2µ0

=
B2

V

2µ0

. (18)

5. Radial force balance diagnostic

The magnetohydrodynamic force balance relation within the plasma for anisotropic pres-

sure reduces to

F = −∂p‖
∂s

∣

∣

∣

∣

B
∇s + K × B (19)

The derivative of the parallel pressure with respect to s is evaluated at fixed B. The flux

surface average of the radial component of this relation constitutes a diagnostic that very

usefully ascertains the quality of the equilibrium state that is achieved, namely

〈

Fs

Φ′(s)

〉

= −
〈

1

Φ′(s)

∂p‖
∂s

∣

∣

∣

∣

B

〉

− ∂

∂s

〈

σBv√
g

〉

− ι(s)
∂

∂s

〈

σBu√
g

〉

(20)

where Bu and Bv are the poloidal and toroidal components of the magnetic field in

the covariant representation, respectively and prime (′) indicates the derivative of a flux

surface quantity with respect to s.
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6. Application to a 2-period quasiaxisymmetric stellarator reactor

A 2-field period quasiaxisymmetric stellarator reactor [22, 23] is chosen as a testbed system

to investigate free boundary anisotropic pressure equilibria. We specifically concentrate

on off-axis hot particle deposition on the high magnetic field (HF) with BC = 4.9T and the

low field (LF) side withBC = 4.2T . These conditions provide a very meaningful evaluation

of the versatility of the code as we can anticipate significant poloidal localisation of the

energetic particle pressure distributions particularly with large perpendicular pressure

anisotropy as has been previously demonstrated in fixed boundary computations [9]. We

define the volume averaged thermal β as 〈βth〉 =
∫

V d
3x2µ0p/

∫

V d
3xB2 and the volume

averaged total beta as 〈β〉 =
∫

V d
3xµ0(p‖ + p⊥)/

∫

V d
3xB2. The volume averaged hot

particle parallel component of 〈β〉 is
〈

βh
||

〉

=
∫

V d
3x2µ0p||/

∫

V d
3xB2 − 〈βth〉. That for

〈

βh
⊥

〉

is equivalent with p|| replaced by p⊥. The thermal pressure in the calculations we

have performed is prescribed as p(s) = p(0)(1 − s)(1 − s4). The hot particle pressure

scale factor is chosen as ph(s) = pHs(1 − s) to produce hollow fast particle parallel and

perpendicular pressure profiles with maximum value around s ∼ 0.25. Typical profiles

that we have examined are presented in Fig. 2 . In principle, the ratio of energetic particle

perpendicular to parallel temperature T⊥/T|| is a flux surface quantity, but for simplicity

we have chosen it as a constant. Similarly, the critical field BC can also vary across the

flux surfaces, but we have kept this parameter as a constant which can be expected at

a resonance for radio frequency wave deposition. Finally, the toroidal plasma current

enclosed within each flux surface is prescribed as vanishing.

The finite β calculations we have undertaken are all at fixed 〈β〉 ≃ 4.5% with a thermal

component 〈βth〉 ≃ 2.87%. We treat four separate cases

1. HF deposition (BC = 4.9T ), p⊥ > p||

2. HF deposition (BC = 4.9T ), p|| > p⊥

3. LF deposition (BC = 4.2T ), p⊥ > p||
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4. LF deposition (BC = 4.2T ), p|| > p⊥

The cases with p⊥ > p|| have
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 while those with p|| > p⊥ have
〈

βh
⊥

〉

/
〈

βh
||

〉

≃

1/3.4.

The coils for the quasiaxisymmetric stellarator device investigated are described with

a 10-filament model per field period that carry a current of 16.2MA each and is shown in

Fig. 3. The Biot-Savart law is applied to compute the vacuum magnetic field components

in a rectangular toroidal structure enclosed within the coils. We also display in Fig. 3 the

mod-B distribution on a toroidal surface corresponding to the edge of the plasma (the

darker shade represents the minima of B).

An important benchmark for the accuracy of a 3D equilibrium code is to reproduce the

vacuum magnetic flux surfaces of a stellarator. The dotted points in Fig. 4 correspond to

Poincaré plots of the magnetic field as it traverses one of four cross sections within a field

period computed with a magnetic field line tracing code. The solid contours correspond

to the vacuum magnetic flux surfaces obtained with the equilibrium code. The agreement

is very good with some small discrepancies at the tips of the elongated cross sections near

the edge.

The main difference between fixed and free boundary equilibrium calculations is that

the plasma-vacuum interface position and shape can change with finite pressure and

plasma current when the boundary is allowed to move. We can see in Fig. 5 a significant

outward shift of the plasma column away from the major axis when 〈β〉 ≃ 4.5% compared

with that of the vacuum. The shape of the boundary flux surface also changes with the

tips of the elongated cross sections becoming sharper. The differences between the HF

deposition, the LF deposition, the p|| > p⊥ and the p⊥ > p|| cases examined shows that

the plasma-vacuum interface remains more or less the same with the plasma volume. The

toroidal magnetic flux is fixed at 2πΦe = 120.4Wb.

A magnetohydrodynamic equilibrium state is achieved when the forces FR, FZ and Fλ

vanish. The volume averaged value of the horizontal force FR as a function of the num-
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ber of iterations is shown in Fig. 6 for the configuration examined with LF hot particle

deposition having p⊥ > p|| and 〈β〉 ≃ 4.5% which corresponds to the slowest converging

case that we have treated. The preconditioning algorithm is activated when the averaged

value of FR drops below 1 × 10−9 which occurs after 6440 iterations. After an initial

transient jump, the residual horizontal force decreases from 10−9 to almost 10−18 within

12 iterations. Fewer than 3500 iterations are required to converge the remaining finite β

cases we have investigated. To verify whether this level of force is tolerable, we then eval-

uate the flux surface averaged radial force balance given by Eqn. (20). We normalise the

expression for the radial force balance by dividing it by the sum of the absolute values of

the components depicted in Eqn. (20) and then we evaluate its absolute value for plotting

purposes. For comparative purposes, we show in Fig. 7 the flux surface averaged radial

force balance errors for the equilibrium state (LF p⊥ > p||, 〈β〉 ≃ 4.5%) computed with

an old version of VMEC [6] where the model described was first implemented, with ANI-

MEC just before the preconditioning is turned on and with the preconditioned ANIMEC

result. We obtain an order of magnitude improvement between the old VMEC code and

the non-preconditioned ANIMEC code with respect to the averaged radial force balance

error and another 3-4 orders of magnitude reduction with preconditioning. The absolute

values of the normalised averaged radial force balance profiles for the finite β cases treated

are displayed in Fig. 8. The force balance error remains below 0.0001% for all the cases

considered, the worst corresponding to HF deposition with p⊥ > p|| where the error levels

remain below 1× 10−8 within the plasma interior and climbs to just below 1× 10−6 close

to the plasma edge. These levels of radial force balance achieved are more than acceptable

for magnetohydrodynamic stability and orbit analysis applications.

Charge conservation constitutes another useful diagnostic for the quality of an equi-

librium state. For the anisotropic pressure model we investigate, this requires that

∇ · K = 0. This condition is not required in the computation of the equilibrium. We

extend the charge conservation analysis of Ref. [24] to anisotropic pressure plasmas in the
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Boozer coordinate frame. The Fourier amplitudes of
√
g(∇ · K) can be written as

[
√
g(∇ · K)]mBnB

=

[

mBI(s) − nBJ(s)

σ
√
gB2

] {(

√
g
∂p‖
∂s

∣

∣

∣

∣

∣

B

)

mBnB

− [mBψ
′(s) − nBΦ′(s)](σBs)mBnB

}

,(21)

where mB and nB are the poloidal and toroidal mode numbers in Boozer coordinates.

Larger values of mB and nB are needed to recover the equilibrium state compared with

the spectrum of the optimal coordinates used in ANIMEC and VMEC. The Fourier am-

plitude of Eqn. (21) for mB = 8, nB = 2 is displayed in Fig. 9. It shows that the best

results occur when the maximum poloidal mode number used in the ANIMEC calculation

is between 8 and 9. Matrix preconditioning does not significantly alter the solution. We

believe this is due to errors in the transformation of coordinates, but must be verified in

the future.

The vacuum and finite β rotational transform profiles for the free boundary quasiax-

isymmetric stellarator equilibria are examined in Fig. 10. Finite β effects reduce the value

of the rotational transform quite significantly in the absence of a driven or a bootstrap

current. Large parallel anisotropy decreases the rotational transform by a slightly larger

fraction than perpendicular anisotropy. The p|| > p⊥ rotational transform profiles align

more closely with each other than the corresponding p⊥ > p|| profiles. The differential

volume profiles for the vacuum and the 〈β〉 ≃ 4.5% cases are plotted in Fig. 11. The vac-

uum case has a weak magnetic well (dV/dΦ < 0) which deepens significantly in the outer

3/4 fraction of the plasma volume with finite β. With the hollow fast particle profiles

considered, the inner 20% of the plasma volume develops a magnetic hill. The dV/dΦ

profiles at finite β align very closely one with another except for the LF side p⊥ > p|| case

which has a stronger inner magnetic hill and a deeper well between one quarter and half

the plasma volume.

In Fig. 12, we present the contours of constant hot particle perpendicular pressure

ph
⊥ (top row) of constant fast particle parallel pressure ph

|| (middle row) and of constant

13



modulus of the magnetic field strength B for the case of HF side hot particle deposition

(BC = 4.9T ) and p⊥ > p|| on three cross sections that span half of a field period in the

quasiaxisymmetric stellarator reactor. We undertake a comparative analysis of the locali-

sation of the fast particle pressure distributions at 〈β〉 ≃ 4.5% for the cases we investigate

by concentrating on the up-down symmetric cross section at midperiod (v = π/2). For

the cases with
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4, the ph
⊥ is peaked at, and the contours concentrate in

an annular domain on the HF(LF) side for HF(LF) hot particle deposition as shown in

Fig. 13. On the other hand, in Fig. 14, the ph
|| contours are localised on the low field

side regardless of the position of the fast particle deposition layer. For the cases with

large parallel pressure anisotropy (
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4), both the ph
⊥ and the ph

|| contours

remain more or less uniform around the flux surfaces with a slight tilt towards the high

field side as displayed in Fig. 15 for ph
⊥ and Fig. 16 for ph

||.

7. Summary and conclusions

A free boundary version of the 3D VMEC code [6] combined with the NESTOR code [5]

has been modified to compute anisotropic equilibria with nested magnetic flux surfaces

(called the ANIMEC code). The energetic particle pressure moments are calculated ana-

lytically from the variant of a bi-Maxwellian distribution function that satisfies the con-

straint B · ∇Fh = 0 consistent with the lowest order solution of the Fokker-Planck

equation. A steepest descent energy minimisation procedure of the functional W =

∫

V d
3x[B2/(2µ0) + p||/(Γ − 1)] coupled with a preconditioning algorithm to improve con-

vergence is applied to compute the minimal energy state. A Green’s function method is

employed to determine the magnetic field at the plasma-vacuum interface with the condi-

tion that its normal component at the boundary surface vanishes and the total pressure

p⊥ +B2/(2µ0) is continuous across the interface.

We have concentrated the applications to a comparative study of off-axis high and
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low field side energetic particle deposition with large parallel and perpendiuclar pressure

anisotropy at 〈β〉 ≃ 4.5% with zero net toroidal current enclosed within each flux surface

in a 2-period quasiaxisymmetric stellarator reactor system. As a first step, we have ver-

ified that the equilibrium calculation recovers that vacuum flux surfaces obtained from

magnetic field line tracing. At finite β, the entire plasma column shifts significantly away

from the major axis. The flux surface shapes are altered with finite pressure particularly

near the tips of the elongated cross sections, but the variation is minimal with respect to

changes in the ratio of p⊥ to p|| at finite β.

Under current-free conditions, the rotational transform decreases markedly with finite

β. This decrease is somewhat larger for p|| > p⊥. The magnetic well at finite β be-

comes stronger in the outer 75% of the plasma volume, but develops a hill in the inner

20%, however the effects of p⊥ 6= p|| though visible, are small. For
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4,

(p|| > p⊥), the hot particle pressure contours do not differ significantly whether high field

or low field side energetic particle deposition is applied and the pressures remain more

or less uniform on a flux surface. On the other hand for
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4, (p⊥ > p||),

the hot particle perpendicular pressure contours become localised to the regions where

the energetic particle deposition occurs. This can be understood by the fact that the

trapped fast particles spend most of their orbit time within the confines of the deposition

layer locally enhancing the perpendicular pressure. For p⊥ > p||, the hot particle parallel

pressure localises in the low field region regardless of the position where the fast particle

deposition occurs.
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L. Giraud, S. Gratton and J. Langou, CERFACS Technical Report TR/PA/03/3,

public domain software on www.cerfacs.fr/algor/Softs, 2003

[22] S. Okamura, K. Matsuoka, M. Fujiwara, M. Drevlak, P. Merkel and J. Nührenberg,

J. Plasma Fusion Res. 1, 164 (1998).

[23] W. A. Cooper, S. Ferrando i Margalet, S. Allfrey, J. Kisslinger, H. F. G. Wobig,

Y. Narushima, S. Okamura, C. Suzuki, K. Y. Watanabe, K. Yamazaki and

M. Yu. Isaev, Fusion Sci. Technol. 46 (2004) 365.

[24] R. Moeckli and W. A. Cooper, Nucl. Fusion 33 (1993) 1899.

18



Figure Captions

Figure 1. Contours of constant hot particle distribution in v⊥ versus v|| space. The distri-

bution function plotted corresponds to N (mh/2πT⊥)3/2[α(T⊥/Tt)
3/2 exp(−mhE/Tt)+(1−

α) exp(−µBC/T⊥−|E −µBC |/T||) where the thermal, hot particle perpendicular and hot

particle parallel temperatures are Tt, T⊥ and T||, respectively. The parameters required

are given by α = 0.1, T⊥/Tt = 20 , T⊥/T|| = 4.2 and BC/B = 1.3.

Figure 2. The flux surface averaged thermal pressure p, the hot particle parallel pressure

ph
|| and the hot particle perpendicular pressure p⊥ profiles as a function of the radial vari-

able s (roughly proportional to volume enclosed).

Figure 3. Filament coil model for a 2-field period quasiaxisymmetric stellarator reactor

and the last closed vacuum magnetic flux surface depicting the mod-B distribution. The

low magnetic field side is presented in dark shade, the high magnetic field side in lighter

shade.

Figure 4. A Poincaré plot computed with a magnetic field line tracing solver (green dots)

and the vacuum magnetic flux surfaces calculated with the ANIMEC code on four cross

section spanning three fourths of a field period in the quasiaxisymmetric stellarator.

Figure 5. The shape of the plasma-vacuum interface boundary under vacuum conditions

(green curve) and at 〈β〉 ≃ 4.5% for four cases a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side

hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF

side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4

(HF side hot particle deposition with p|| > p⊥), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF

side hot particle deposition with p|| > p⊥) (black curve) on three cross sections spanning

half a field period of the quasiaxisymmetric stellarator reactor. The boundaries in cases

c) and d) are virtually indistinguishable and also very close to case a). Case b) bulges

out at the elongated up-down symmetric cross section.

Figure 6. The volume average of the residual horizontal force FR as a function of

the number of iterations for the case at 〈β〉 ≃ 4.5% corresponding to Bc = 4.2T and
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〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 in a 2-field period quasiaxisymmetric stellarator reactor.The precondi-

tioning algorithm is turned on after 6440 iterations.

Figure 7. The absolute values of the flux surface averaged radial force balance profiles

for a 2-field period quasiaxisymmetric stellarator reactor system with off-axis hot particle

deposition at 〈β〉 ≃ 4.5% corresponding to Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF side hot

particle deposition with p⊥ > p||), computed with an old version of VMEC (black curve),

with ANIMEC without matrix preconditioning (blue curve) and with the preconditioned

ANIMEC code (red curve).

Figure 8. The absolute values of the flux surface averaged radial force balance profiles for

a 2-field period quasiaxisymmetric stellarator reactor system with off-axis hot particle de-

position at 〈β〉 ≃ 4.5%. The cases investigated have a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF

side hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4

(LF side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃

1/3.4 (HF side hot particle deposition with p|| > p⊥) (magenta curve), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF side hot particle deposition with p|| > p⊥) (black curve).

Figure 9. Convergence of the mB = 8, nB = 2 Fourier component of
√
g(∇ · K) in

the Boozer coordinate frame as a function of the inverse of the maximum value of the

poloidal mode number m used in the equilibrium computation for the case Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side hot particle deposition with p⊥ > p||) in a 2-period quasiax-

isymmetric stellarator. The ordinate has not been normalised so its units are A/m.

Figure 10. The vacuum (green curve) and the finite 〈β〉 ≃ 4.5% rotational transform pro-

files in a 2-field period quasiaxisymmetric stellarator system with off-axis energetic particle

deposition. The finite β cases investigated have a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side

hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF

side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4

(HF side hot particle deposition with p|| > p⊥), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF

side hot particle deposition with p|| > p⊥) (black curve). The curves with p|| > p⊥ lay
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approximately on top of one another.

Figure 11. The vacuum (green line) and the finite 〈β〉 ≃ 4.5% differential volume profiles

in a 2-field period quasiaxisymmetric stellarator system with off-axis energetic particle de-

position. The finite β cases investigated have a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side

hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF

side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4

(HF side hot particle deposition with p|| > p⊥), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF

side hot particle deposition with p|| > p⊥) (black curve). The curves with p|| > p⊥ lay

approximately on top of one another.

Figure 12. The contours of constant hot particle perpendicular pressure ph
⊥ (top row),

hot particle parallel pressure ph
|| (middle row) and the mod-B (bottom row) in a 2-field

period quasiaxisymmetric stellarator reactor system with high field side energetic particle

deposition at 〈β〉 ≃ 4.5% with large perpendicular anisotropy (p⊥ > p‖) corresponding to
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 on three cross sections spanning half of a field period.

Figure 13. The hot particle perpendicular pressure ph
⊥ contours for p⊥ > p|| HF side depo-

sition (BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (left) and p⊥ > p|| LF side deposition (BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (right) at midperiod in a 2-field period quasiaxisymmetric stellarator

reactor at 〈β〉 ≃ 4.5%.

Figure 14. The hot particle parallel pressure ph
|| contours for p⊥ > p|| HF side deposition

(BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (left) and p⊥ > p|| LF side deposition (BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (right) at midperiod in a 2-field period quasiaxisymmetric stellarator

reactor at 〈β〉 ≃ 4.5%.

Figure 15. The hot particle perpendicular pressure ph
⊥ contours for p|| > p⊥ HF side

deposition (BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (left) and p|| > p⊥ LF side deposition

(BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (right) at midperiod in a 2-field period quasiaxisym-

metric stellarator reactor at 〈β〉 ≃ 4.5%.

Figure 16. The hot particle parallel pressure ph
|| contours for p|| > p⊥ HF side deposition

21



(BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (left) and p|| > p⊥ LF side deposition (BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (right) at midperiod in a 2-field period quasiaxisymmetric stellara-

tor reactor at 〈β〉 ≃ 4.5%.
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Figure 1: Contours of constant hot particle distribution in v⊥ versus v|| space. The distri-

bution function plotted corresponds to N (mh/2πT⊥)3/2[α(T⊥/Tt)
3/2 exp(−mhE/Tt)+(1−

α) exp(−µBC/T⊥−|E −µBC |/T||) where the thermal, hot particle perpendicular and hot

particle parallel temperatures are Tt, T⊥ and T||, respectively. The parameters required

are given by α = 0.1, T⊥/Tt = 20 , T⊥/T|| = 4.2 and BC/B = 1.3.
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Figure 2: The flux surface averaged thermal pressure p, the hot particle parallel pressure

ph
|| and the hot particle perpendicular pressure p⊥ profiles as a function of the radial

variable s (roughly proportional to volume enclosed). cp
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Figure 3: Filament coil model for a 2-field period quasiaxisymmetric stellarator reactor

and the last closed vacuum magnetic flux surface depicting the mod-B distribution. The

low magnetic field side is presented in dark shade, the high magnetic field side in lighter

shade.
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Figure 4: A Poincaré plot computed with a magnetic field line tracing solver (green dots)

and the vacuum magnetic flux surfaces calculated with the ANIMEC code on four cross

section spanning three fourths of a field period in the quasiaxisymmetric stellarator.
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Figure 5: The shape of the plasma-vacuum interface boundary under vacuum conditions

(green curve) and at 〈β〉 ≃ 4.5% for four cases a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side

hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF

side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4

(HF side hot particle deposition with p|| > p⊥), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF

side hot particle deposition with p|| > p⊥) (black curve) on three cross sections spanning

half a field period of the quasiaxisymmetric stellarator reactor. The boundaries in cases

c) and d) are virtually indistinguishable and also very close to case a). Case b) bulges

out at the elongated up-down symmetric cross section.
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Figure 6: The volume average of the residual horizontal force FR as a function of the

number of iterations for the case at 〈β〉 ≃ 4.5% corresponding to Bc = 4.2T and
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 in a 2-field period quasiaxisymmetric stellarator reactor.The precondi-

tioning algorithm is turned on after 6440 iterations.
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Figure 7: The absolute values of the flux surface averaged radial force balance profiles

for a 2-field period quasiaxisymmetric stellarator reactor system with off-axis hot particle

deposition at 〈β〉 ≃ 4.5% corresponding to Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF side hot

particle deposition with p⊥ > p||), computed with an old version of VMEC (black curve),

with ANIMEC without matrix preconditioning (blue curve) and with the preconditioned

ANIMEC code (red curve).
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Figure 8: The absolute values of the flux surface averaged radial force balance profiles for

a 2-field period quasiaxisymmetric stellarator reactor system with off-axis hot particle de-

position at 〈β〉 ≃ 4.5%. The cases investigated have a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF

side hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4

(LF side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃

1/3.4 (HF side hot particle deposition with p|| > p⊥) (magenta curve), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF side hot particle deposition with p|| > p⊥) (black curve).
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Figure 9: Convergence of the mB = 8, nB = 2 Fourier component of
√
g(∇ · K) in

the Boozer coordinate frame as a function of the inverse of the maximum value of the

poloidal mode number m used in the equilibrium computation for the case Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side hot particle deposition with p⊥ > p||) in a 2-period quasiax-

isymmetric stellarator. The ordinate has not been normalised so its units are A/m.
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Figure 10: The vacuum (green curve) and the finite 〈β〉 ≃ 4.5% rotational transform pro-

files in a 2-field period quasiaxisymmetric stellarator system with off-axis energetic particle

deposition. The finite β cases investigated have a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side

hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF

side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4

(HF side hot particle deposition with p|| > p⊥), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF

side hot particle deposition with p|| > p⊥) (black curve). The curves with p|| > p⊥ lay

approximately on top of one another.
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Figure 11: The vacuum (green line) and the finite 〈β〉 ≃ 4.5% differential volume profiles

in a 2-field period quasiaxisymmetric stellarator system with off-axis energetic particle

deposition. The finite β cases investigated have a) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (HF side

hot particle deposition with p⊥ > p||) (blue curve), b) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 (LF

side hot particle deposition with p⊥ > p||) (red curve), c) Bc = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4

(HF side hot particle deposition with p|| > p⊥), d) Bc = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4 (LF

side hot particle deposition with p|| > p⊥) (black curve). The curves with p|| > p⊥ lay

approximately on top of one another.
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Figure 12: The contours of constant hot particle perpendicular pressure ph
⊥ (top row),

hot particle parallel pressure ph
|| (middle row) and the mod-B (bottom row) in a 2-field

period quasiaxisymmetric stellarator reactor system with high field side energetic particle

deposition at 〈β〉 ≃ 4.5% with large perpendicular anisotropy (p⊥ > p‖) corresponding to
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4 on three cross sections spanning half of a field period.
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Figure 13: The hot particle perpendicular pressure ph
⊥ contours for p⊥ > p|| HF side depo-

sition (BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (left) and p⊥ > p|| LF side deposition (BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (right) at midperiod in a 2-field period quasiaxisymmetric stellarator

reactor at 〈β〉 ≃ 4.5%.
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Figure 14: The hot particle parallel pressure ph
|| contours for p⊥ > p|| HF side deposition

(BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (left) and p⊥ > p|| LF side deposition (BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 3.4) (right) at midperiod in a 2-field period quasiaxisymmetric stellarator

reactor at 〈β〉 ≃ 4.5%.

36



8 10 12 14 16
−6

−4

−2

0

2

4

6

v=π/2

R

Z

ph
⊥  contours in 2−period QAS system

0.05

0.1

0.15

8 10 12 14 16
−6

−4

−2

0

2

4

6

v=π/2

R

Z

ph
⊥  contours in 2−period QAS system

0.05

0.1

0.15

Figure 15: The hot particle perpendicular pressure ph
⊥ contours for p|| > p⊥ HF side

deposition (BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (left) and p|| > p⊥ LF side deposition (BC =

4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (right) at midperiod in a 2-field period quasiaxisymmetric

stellarator reactor at 〈β〉 ≃ 4.5%.
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Figure 16: The hot particle parallel pressure ph
|| contours for p|| > p⊥ HF side deposition

(BC = 4.9T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (left) and p|| > p⊥ LF side deposition (BC = 4.2T ;
〈

βh
⊥

〉

/
〈

βh
||

〉

≃ 1/3.4) (right) at midperiod in a 2-field period quasiaxisymmetric stellarator

reactor at 〈β〉 ≃ 4.5%.
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