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The adjoint approach is a standard tool for calculating the current drive (CD) efficiency in

electron cyclotron ray-tracing codes. In the most common version of this approach, the first

Legendre harmonic of the solution of the (first order) linearized drift-kinetic equation (DKE)

with a parallel momentum conserving collision operator is used. This treatment is equivalent

to a generalized Spitzer function for arbitrary collisionalities [1, 2] and would require the solu-

tion of the DKE in 4D-phase space for stellarators (3D for tokamaks). Momentum correction

techniques are based on mono-energetic transport coefficients calculated from the solution of

the equivalent DKE with the simple Lorentz form of the pitch-angle collision term without

momentum conservation, where the radius, r, and the velocity, v, are only parameters. Only

the flux-surface-averaged momentum-corrected parallel flows are then estimated without again

solving the DKE. With precalculated databases of mono-energetic transport coefficients (from

DKES [3] or NEO-MC [4] code), this technique is well suited for calculating the electric con-

ductivity and the bootstrap current (also for NBCD) in arbitrary magnetic configurations [2].

The ECCD source function, i.e., the quasi-linear diffusion term with the Maxwellian in lin-

ear theory, however, is highly localized in 4D-phase space. In principle, this requires also the

4D-solution of the (adjoint) DKE which may only be obtained analytically in the collisional

(classical Spitzer problem) and in the collisionless limits. The collisionless solution, g(x, λ),

given in Ref. [5] with the normalized magnetic moment, λ, is constant on the flux-surface
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where x = v/vth, b = B/Bmax, Cl=1 is the first Legendre term of the full linearized collision op-

erator, and ft is the trapped particle fraction. The collisionless Spitzer function, S(x), is defined
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by K = S(x) · exp(−x2) (the collisional limit is obtained for ft = 0). The integro-differential

equation (2) is solved numerically. A fast and accurate approximation to the collisionless Spitzer

function is obtained from a generalization of the variational principle [6] introduced in Ref. [7].

The simple test function used (polynomial of 5th degree in x) leads to an overestimate for x > 4.
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Figure 1: Spitzer function calculated for

different temperatures.

In the high-speed-limit (HSL) approach widely

used for ECCD calculations (see, e.g., Ref. [8]),

the energy diffusion as well as the integral contri-

butions from the first-order Rosenbluth potentials

are omitted in the collision operator at high veloc-

ities, i.e., parallel momentum conservation is vio-

lated. This simple-minded approach leads to a sig-

nificant underestimation of ECCD for x < 3.5 (see

Figs. 1 and 2).

The second term in the Spitzer Eq. (2) represents

the parallel mono-energetic viscosity describing the

friction of circulating particles with the trapped

ones, and is generalized [2] for arbitrary collision-

alities by introducing the effective trapped particle fraction, f eff

tr
(x), which is defined using the

mono-energetic conductivity coefficient, D33, by f eff

tr
= 1 − f eff

c = 1 − 3

2
(ν(x)/vvth) D33(ν

∗)

with the mono-energetic “collisionality”, ν∗ = ν(x)R/vῑ (R is the major radius). This defi-

nition guarantees the limits f eff

tr
(x → 0) = 0 and f eff

tr
(x → ∞) = ft given in Eq. (2). Both

collisional (at very low Te) and collisionless (at very high Te) limits are confirmed; see Fig. 1.

For ECRH/ECCD scenarios with high Te (in ITER up to 30 keV), electrons interacting with

the RF-field are very close to the collisionless limit. However, relativistic effects must be taken

into account. This solution is obtained analytically for the HSL approach [8], but the problem

is not trivial if momentum conservation is needed. The simplified weakly relativistic solver [1]

based on the variational principle[6, 7] is fast enough for ray-tracing calculations. Here, the fully

relativistic collision operator [10] is expanded in a power series in (Te/mc2). The fully relativis-

tic solver SYNCH [11], which solves the Spitzer problem in the collisionless limit, can also be

used for ray-tracing. The present version, being oriented originally only to tokamaks, is already

applicable for an arbitrary configuration. In Fig. 2, solutions of the Spitzer problem from the dif-

ferent approaches are shown: i) weakly relativistic solver implemented in the code TRAVIS, ii)

fully relativistic solver SYNCH, iii) HSL-solution (for reference). Calculations are performed

for Te = 25 keV, where relativistic effects become significant. In the range u < 3, correspond-
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ing to energies 200 keV, the weakly relativistic and the fully relativistic solutions coincide well.

0 1 2 3 4 5
0.01

0.1

1

10
Te = 25 keV
Zeff = 1

u = p/pth

 travis, mc, non-relativ.
 travis, mc, weakly relativ.
 synch, mc, fully relativ.
 travis, hsl, fully relativ.

Figure 2: Spitzer function, S(u), calcu-

lated with different approaches (mc de-

notes momentum conservation).

The HSL-solution converges to the fully relativis-

tic solution with momentum conservation only for

ultra-relativistic electrons, γ & 1.9, i.e., E & 0.5

MeV. Currently, SYNCH is being implemented in

the code TRAVIS.

With the field-line integration technique, the

NEO-2 code [9] solves the linearized DKE for ar-

bitrary magnetic configurations. Equivalent to the

moment equation approach, a Sonine polynomial

expansion with respect to x2 is applied to the dis-

tribution function and the full linearized collision

operator (which conserves momentum and energy).

The resulting set of coupled partial differential

equations (with respect to the normalized magnetic moment, λ, and spatial coordinates) is

solved using an adaptive grid over λ. Contrary to the momentum correction technique, the com-

plete local solution (along the field line) can be calculated for arbitrary collisionalities. So far,

NEO-2 with the full energy dependence (with momentum conservation) is restricted to toka-

mak (3D-phase space) since the field-line integration is very time-consuming for stellarators,

where this technique is efficient enough only for mono-energetic calculations. Consequently,

only tokamak configurations are used for benchmarking.

For the highly localized ECCD, the collisionless solution of Eqs. (1,2) must be extended to

very small, but finite collisionalities using momentum correction techniques. Except in the close

vicinity of the maximum of B on the flux-surface, the current diffuses from the passing particle

region (λ < 1) into a narrow sheath of barely trapped particles (the width of this sheath scales

with the square-root of the collisionality). This feature is modelled by adding a constant to the

integral of Eq. (1) for λ < 1 with an exponential decay for λ > 1 (with continuous derivative

at λ = 1) with the normalization to f eff

c (x). In the close vicinity of the maximum of B, this

approach fails and g is simply scaled by the factor f eff

c (x)/fc.

In Fig. 3, preliminary results of benchmarking for the circular tokamak with aspect ratio

equal to 4 are shown for Te = 1 keV, ne = 6.65 · 1019 m−3, Zeff = 1 and ι = 0.52. In order to

estimate the effect of barely trapped electrons, the function g was calculated for such sufficiently

collisional plasma by the code NEO-2 and the approximation described above. As reference,

the collisionless solution from SYNCH in the non-relativistic limit is added. At the minimum-B
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Figure 3: Pitch-dependence of the Spitzer function calculated for v/vth = 2 by different codes.

point (left) both calculations with finite collisionality show the effect of current diffusion from

the trapped region: the Spitzer function remains finite in the trapped-passing boundary layer.

At the maximum-B point (right) an additional effect of finite collisionality can be seen from

the NEO-2 curve: very slow particles starting from this point produce a current higher than

that expected from the collisionless approach (this is seen by higher g values). This is due to

the combined effect of acceleration of these particles by the magnetic mirroring force and their

collisional diffusion further into the passing region within a single transit time.
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