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Abstract. The tritium inventory is one critical issue of the present ITER design.
Gas balance measurements in all tungsten ASDEX Upgrade show different phases of a
semi-detached H-mode discharge. After the limiter start-up, the wall is loaded during
a high retention phase. After this a steady state retention is reached. During this
phase only 1.5± 3.2% of the puffed D atoms are retained in the vessel. During plasma
ramp down outgassing of the wall starts, resulting in a remaining inventory of about
1.6 % 10 s after the discharge. The low retention is confirmed by post mortem analysis
of tiles. To reach steady state a wall loading of typical 1.9 · 1022 D atoms is needed.
After applying boronisation only 1.4 · 1022 D atoms are sufficient. The mechanism of
this transient wall loading is still unclear, but from the amount of gas needed it seems
to be plausible that not only the divertor, but all in-vessel components are involved.

Residual gas analysis is hampered by uncertainties of the H/(H + D) ratio for the
different water and hydrocarbon molecules. Especially water seems to be produced by
outgassing of in-vessel components. Nevertheless a first evaluation yields a D content
of hydrocarbons of about 1 %, which has only a minor effect for the gas balances.



Wall retention of deuterium and gaseous impurities in all tungsten ASDEX Upgrade 2

1. Introduction

Today most of the fusion devices are using plasma facing components (PFCs) consisting

of carbon. Whereas graphite is beneficial for present experiments, the high erosion rate

and especially the co-deposition of hydrogen isotopes with the eroded carbon will be a

critical issue in a future fusion reactor. In ITER the amount of tritium stored in the

vacuum chamber has to be kept below the total amount of T allowed by the site licensing.

Alternative PFCs are high Z materials, which will have a much lower H retention, but

are more critical in view of the plasma performance. To test this, all plasma facing

components in ASDEX Upgrade (AUG) were exchanged from carbon to tungsten during

the last years [1]. The reduction of the carbon deposition was demonstrated using

marker tiles and post mortem analysis of the PFCs by ion beam techniques [2,3]. These

measurements provide only campaign averaged information, whereas time resolved data

are needed to identify scenarios, which cause high retention. To extrapolate from present

day short discharge lengths to ITER pulses, the temporal evolution of the retained

gas during a discharge is needed. Only gas balance measurements yield time resolved

information on the retained D.

The basic idea of gas balances is to measure the retained gas from the difference

of the gas input to the amount of removed gas. Comprehensive investigations had been

done in the super conducting tokamak Tore Supra, which provides shot lengths up to

400 s [4,5]. Retention of 5 0 % of the amount of gas puffed was found, but the puffing

rate was, as usual for limiter devices, as low as only 3 · 1020 at/s. To reduce the power

load to the divertor plates, ITER has to operate in semi-detached divertor conditions.

To reach this operation regime high gas flows are needed in the scrape off layer. For

example a gas puff of 3 · 1022 at/s is needed to reach a semi-detached divertor for the

standard H-mode discharge in AUG. To measure gas balances under these conditions

highly accurate calibrations of the gas inlet and pumping systems are needed. Extensive

gas balance work has been also done at JET [6].

2. Experiments

Deuterium is injected into AUG by the gas inlet valves and the neutral beam heating

system. The gas is pumped by the torus pumping system, the in vessel cryo pump and

the neutral beam injection (NBI) boxes. All these systems are calibrated with respect to

one high accuracy capacitive pressure gauge. The measured pumping speeds are nearly

proportional to the pressure, demonstrating the restriction of the pumping speeds by

the conductance in the vessel. Details of the calibrations are discussed in [7,8].

Recently high accuracy gas balances had been reported for Alcator C-mod [9].

These experiments are done without active pumping, which allows to measure the non

retained gas by the pressure in the vessel 10 minutes after the discharge. The same idea

was used at AUG to calibrate the pumping speed of the in vessel cryo pump. These

static measurements yield high accuracy results, but in AUG the experiments would be
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restricted to non relevant discharges, i.e. mainly discharges with ohmic heating.

As AUG is operated with tungsten wall and without wall coatings, like boronisation,

the impurity behavior is quite critical. Regular ELM’s, which flush the impurities out

of the pedestal, are needed for stable high performance discharges [10]. Additionally a

collision dominated flow towards the divertor plates is desired. Consequently the gas

balance deals with the difference of big quantities, which is limited by the accuracy

of the individual calibrations. Another problem is the gas temperature, which needs

to be known to derive particle fluxes from the pressure measurements. The liquid N2

shielding of the cryopump, which influences about 10 % of the vessel volume, is always

kept at 70 K. On the other side, radiation shielding of some diagnostics are designed

with low thermal contact, to reduce the power flux to the instruments and to keep the

surfaces clean. After a high power H-mode discharge these parts reach temperatures up

to 400 K after 10 min. So the gas temperature in AUG is not homogenous. To estimate

the effective gas temperature a known small amount of gas was injected into the closed

vessel after plasma discharges. From the pressure rise the effective gas temperature

could be deduced. For different discharges it varies between 285 K and 300 K, leading

to an error of 1.5 % for the amount of gas.

The gas balance measurements under consideration were performed during the 2008

campaign under non-boronised conditions [11]. Commonly wall coatings as amorphous

boron layers are used as wall conditioning technique in fusion devices. The main purpose

of these boron layers is to getter O, which affects the plasma performance. In high-Z

devices these low-Z layers are additionally used to cover the surface, i.e. to reduce

the impurity production. To investigate the pure tungsten surface, all layers had been

removed during a vent and AUG was operated without wall coating during the 2007

and parts of the 2008 campaign. The data discussed in this paper have been collected

after the initial conditioning (# 22764) till the first boronisation (# 23093)[7]. Almost

no boron had been observed by spectroscopy during this time [11].

As database for the gas balance the standard H-mode discharges in AUG is used.

This is a typical semi-detached 1 MA discharge with 5 MW neutral beam heating and

a line averaged density of 9 · 1019m3. This discharge scenario is used as basis for many

different experiments. The flat-top length of this discharge is about 5 s, much less than

the discharge time in ITER. Therefore a careful analysis of the time dependence of the

retention is needed to extrapolate for long duration discharges.

3. Phases of a discharge

In view of gas balances a typical AUG discharge consists of 5 different phases: limiter,

wall loading, steady state, ramp down and finally outgassing phase (see Fig. 1). The

plasma is started in a limiter configuration, which requires only low D puff of typical

7 · 1020 at/s. Although the pumping speed is quite low in a limiter configuration, the

gas balance depends strongly on the wall conditioning. For the gas balance of the

whole discharge this phase is negligible. After typical 0.4 s the divertor is formed and
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the plasma density and current are ramped up to the flat-top value. Plasma flat-top

conditions are reached at 1 s, but the time to establish steady state conditions for the

gas inventory is 2.4 s. If the puffing rate is not high enough, the steady state phase may

not be reached until the end of the discharge. Here we refer to the data of the standard

H-mode discharge [12] # 22820, which uses an average puffing rate of 1.9 · 1022 at/s

during the wall loading phase. The retention during the wall loading phase varies, but

on average 40 % of the puffed gas is retained. In total 5.0 ·1022 D atoms had to be puffed

to reach the steady state phase, which leads to a dynamic retention of 2.0 ·1022 D atoms.

As AUG operates with a semi-detached divertor the high gas puffing rate of 3.6 · 1022

at/s is continued. The divertor pressure adjusted itself so that, within the error-bars of

the measurement, the same amount of gas (3.6 · 1022 at/s) is pumped. To estimate the

retention of long term discharges, this phase has to be extrapolated. Unfortunately, it

was not possible up to now to extend the flat top time to 10 s, as it will be possible

with the restored fly wheel generator. The discharge is smoothly ramped down to avoid

disruptions. During this phase the gas puffing is strongly reduced to 6.7 · 1020 at/s.

Now the wall starts to outgas and 5.3 · 1021 at/s are removed. In total 1.2 · 1022 D

atoms are pumped during the plasma ramp down, i.e. 8.9 · 1021 D atoms remain in the

vessel at the end of the discharge. This equals to 9 % of the amount of gas puffed. The

discharge ends with a minor disruption, which has no significant influence on the gas

balance. After the discharge the outgassing phases starts. During the first 10 s after

the discharge additional 7.4 · 1021 D atoms are pumped. Only an inventory of 1.6 % of

the gas puffed remained after this time in the vessel. Measurements of the long term

outgassing for this discharge is disturbed by the progressing operation.

More accurate data could be gathered using all similar discharges during the interval

mentioned above. In total 24 discharges are available, which show some variation on the

gas input due to variations of the shot programm. If the integral over the whole discharge

is used for the gas balance 1.1 ·1021 at/s or 8.2±3.3% of the puffed gas is retained during

the shot. If one compares the relative values, the retention in AUG during a discharge

is by a factor of 2 to 5 less than at other devices [4]. From the time evolution it is

clear that one has only to extend the steady state phase to extrapolate for long time

discharges. During the steady state phase a retention of only 1.5± 3.2% is found. The

error, taken from the statistical variation, indicates that the accuracy reached is not

sufficient to distinguish whether deuterium, additionally to the wall loading, is retained

during this phase or not.

In relation to the total amount of gas puffed, the amount of retained gas is quite

low. On the other hand, if one takes the average value of 2.7 · 1020 at/s this is almost

the same absolute amount as in Tore Supra. One has to keep in mind that the neutral

particle fluxes to the wall in AUG are more than 2 orders of magnitude larger than in

a limiter device.

The amount of deuterium retained was also measured post mortem by ion beam

analysis of tile and collection probes. For tungsten PFCs the total amount of deuterium

found equals to 0.5 % of the gas input [3]. These kind of investigations yields always a
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lower limit of the total retention, as some deposition areas may be not covered by the

analysis. After the outgassing, a retention of about 1 % is derived from the gas balances.

In contrast to ion beam investigations gas balances yield an upper limit, as some gas

will outgas on a long time scale. Variations of the base pressure due to warming up of

the cryo pump and other events did not allow to measure this fraction with an sufficient

accuracy. Even for the low retention found, the gas balance and the probe analysis show

very good agreement within the error-bars.

4. Wall saturation

The amount of gas retained during a discharges in AUG is restricted by the wall

saturation. The occurrence of saturation affects the extrapolation to long term

discharges significantly. Wall saturation is reached if the amount of puffed and pumped

gas during a are equal at any given time . For tungsten PFCs this is always observed,

if a high enough amount of gas is puffed. The amount of gas which has to be puffed

to reach saturation for the data set mentioned above is shown in Fig. 2. On average a

gas input of 5.4 · 1022 D atoms is needed to load the wall. The variation of this amount

by a factor up to 1.6 indicates that other parameters, as for example the variation of

the pumping efficiency by the strike point position, affects this value. The amount of

gas retained is also plotted in Fig. 2. These data show much less variation, indicating

that the amount of retained gas does not strongly depend on the plasma properties. On

average the wall has to be loaded with 1.99± 0.14 · 1022 D atoms to reach saturation.

No D is retained in AUG if D molecules are injected without plasma operation.

The retention must be due to D ions, atomic D or an activated surface. As the surface

activation is by ions or atomic D, the amount of retained gas should be normalized to

the flux of these species towards the PFCs. Unfortunately, these fluxes in AUG are

presently not known with the required accuracy. A more refined data analysis may be

available in the future. Here we restrict ourselves to a more qualitative interpretation.

The ion flux is concentrated to the divertor plates, which has a wetted area of about

0.5m2. If only ions are involved at the divertor, a deposition of about 4000 mono-layers

[ML] is required, too much for a surface adhesion. If this amount is dissolved in the

tungsten layers with an atomic fraction of 0.1 the top 4 microns of the layers will be

filled. In the divertor PVD and plasma sprayed tungsten coatings are used in AUG.

The gas retention of these layers depends on the individual production mechanism, no

literature values are available. On the other hand atomic D is also produced by ions and

radiation at the main chamber. If we assume a uniform distribution of the retained gas

at the main chamber, only a 40 ML deposition is expected (for the geometrical surface).

This value is still too high for a pure surface layer, but neutral species can reach also

side surfaces and structural material. Additionally, the true surface roughness has to

be taken into account: the real surface area will be larger. Another hint for the storage

process is the behavior after boronisation. To saturate the wall, higher puffing rates

have to be used. During the 2008 campaign boronisations are used to investigate low
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density scenarios. For this reason no high gas puff shots had been done with a fresh

coating. The long term behavior of this campaign reveals however that the amount of

gas needed to reach steady state conditions drops continuously (Fig. 3). At the end of

the campaign only 1.4 ·1022 D atoms are retained in the wall when saturation is reached.

This can be explained, if the effective surface area of the layers were reduced by erosion

or more plausible as influence of the boron coatings. More investigations on the storage

process are obviously needed.

The plasma discharge was ramped down smoothly to avoid disruptions. Soon as the

gas puffing rate is reduced the outgassing of the wall starts and the in-vessel inventory

is reduced. The typical time constant is equal to the capacity of the pumping system.

The retained wall inventory seems to be a dynamic equilibrium of D capture and release

at the vessel. The influence of the boronisation, which does not coat the divertor, and

the total amount of gas hint that the D is stored not only at the divertor, but at the

whole vessel.

5. Residual Gas Analysis

Analysis of the residual gases offers additional insight into the gas storage mechanism.

AUG is equipped with several residual gas analyzers (RGA) based on the quadruple

principle. These instruments are commonly used for gas analysis, but in a tokamak

environment some restrictions have to be overcome. The first problem is the magnetic

field: ions are used inside the quadruple mass filter. Even small magnetic fields can

influence the calibration of the instruments significantly. Consequently the instruments

are shielded and mounted far away from the divertor. To deal with the typical divertor

pressure during discharges differential pumping is needed. The mounting position results

in an effective possible time resolution of about 300 ms. To deal with the different

requirements three instruments are mounted at AUG. A standard type is located at

a main chamber port, it operates without magnetic shielding and differential pumping

system. This allows a high sensitivity, but the instrument can be used only in between

discharges. The second one is a commercial one designed for high pressure operation.

This type uses a very short quadruple, which restricts the mass resolution. But the short

analyzer tolerates a higher residual magnetic field, so the size of the shielding could be

minimized. This instrument is mounted at the same position as the divertor capacitive

gauge. The third instrument is a high resolution type, which allows to separate the

He peak from the D peak. This instrument is mounted at a remote position, the

operation during discharges is quite critical. During a plasma discharge the instruments

are switched into the peak jump mode, i.e. only some discrete masses are measured

to enable a sufficiently good temporal resolution. The instruments are calibrated using

a test gas mixture with the same kinds of hydrocarbons as observed after a plasma

discharge.

As a first step a whole spectrum obtained shortly after a discharge was fitted

to a model for the residual gas. The model contains the following molecules:
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He, Ne, Ar, H2, D2, N2, O2, CO, CO2, H2O, CH4, C2H4, C2H6 and different

combinations, where H is substituted by D. Unfortunately some peaks of the spectrum

are produced by more than one species. A fitting procedure takes this into account,

but the accuracy reached for some molecules is limited. A real problem arises due

to the hydrocarbons. AUG is routinely operating in D, but some H remained due

to the non perfect baking of the carbon tiles. After the initial conditioning typically

H/(H + D) < 0.05 is found in the main plasma. As the residual gas is more influenced

by the wall, a higher hydrogen content is expected there. To deal with this problem

we measure H/(H + D) by the high resolution RGA and use this value for the data

evaluation. Theoretically calculated cracking patterns for the molecules mentioned

above are available [13]. Using the H/(H+D) ratio obtained from the hydrogen

molecules, no satisfactory fit of the model to the data was possible. It turned out

that the H/(H + D) ratio for water and hydrocarbon are different from the hydrogen

molecule value. A H/(H +D) = 0.1 is found for hydrogen molecules, H/(H +D) = 0.15

for the hydrocarbons but H/(H +D) = 0.8 for water. The high ratio for water suggests

that most of the water is produced by outgassing of the wall after the discharge. Even

though the PFCs are tungsten coated, the tiles contain about 1 ton of graphite, which

can be baked only to 150oC in AUG. So the release of hydrogen dominated water after

a discharge is plausible. Clearly, a more refined model seems to be necessary to get a

realistic H/(H + D) ratio in the residual gas during discharges.

As an example the spectra after the discharge # 23968, which uses a N2 puff for

divertor cooling are evaluated. In Fig. 4 the results of the fit, which takes the different

H/(H + D) ratio into account are shown. Here, 97.5 % of the residual gas is D and

He. The high He content is due to a calibration pulse just before the data are taken

and the fact, that He is only pumped by the turbo pumps, so that it is enriched for the

pumping system. The dominant impurity is water, which is produced by outgassing of

hot PFCs. A significant amount of N2 (3500ppm) but no oxygen (≤ 10ppm) is observed.

For discharges without nitrogen seeding, no significant amount of N is found. CO and

CO2 sum up to 400ppm, reflecting the low oxygen content of the discharges after a

boronisation, hydrocarbons are dominated by methane (6200ppm), higher hydrocarbon

molecules are about 100ppm.

The effect of the hydrogen containing residual gas can be neglected for the gas

balances. A high He content could cause a problem for gas balances. The He is

implanted in the PFCs by HeGD before a discharge and is released during the shot.

This would lead to an overfilled gas balance, as the pumping speed of the cryopump is

overestimated. For this reason HeGD was omitted for the discharges used for the gas

balances above.

6. Summary

Gas balance measurements in AUG with all tungsten PFCs are presented. A typical

semi-detached H-mode discharge consists of different phases. First, the wall is loaded
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with 1.99 ± 0.14 · 1022 atoms D. After this, a steady state phase, during which only

1.5± 3.2% of the puffed D is retained, is reached. Most of the wall inventory is pumped

during plasma ramp down and during the first 10 s after the discharge. The remaining

D inventory derived from gas balances is compatible to the amount measured by post

mortem analysis. The gas loaded at the wall is only dynamically retained, as it will be

released during ramp-down and shortly after the discharge. The total amount stored

and the influence of the boronisation suggests that the whole first wall and not only the

divertor stores the D. The amount of gas needed to saturate the wall is reduced after

boronisations. Residual gas analysis are hampered by the different H/(H + D) ratio

for hydrogen, methane and water molecules. The total amount of hydrocarbons is less

than 1 % and dominated by methane. To enhance the accuracy of the measurements

the torus pumping system of AUG will be fitted with a special volume, which stores the

pumped gas and enables high accuracy measurements. The evaluation of the residual

gas will be used to study surface processes involved.
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Fig.1 : Gas balance of the discharge # 22820 showing the different phases of the

retention. In Fig. 1A the gas input is plotted in black and the gas removed in red. For

comparison the content of the plasma discharge, scaled by a factor of 10 is also shown.

In Fig. 1B difference of the gas input and gas removed is displayed. Wall loading is

indicated in red, wall depletion in green. The temporal integral of this value, indicating

the wall inventory, is additional shown in blue.
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Fig.2 : The amount of gas puffed needed to reach the steady state phase for the

data set mentioned in the text is shown in magenta. The transient wall retention to is

shown in blue.



Wall retention of deuterium and gaseous impurities in all tungsten ASDEX Upgrade11

0.0E+00

5.0E+21

1.0E+22

1.5E+22

2.0E+22

2.5E+22

22600 22800 23000 23200 23400 23600 23800 24000 24200 24400

Shot Number

R
e
te

n
ti

o
n

 [
a
t]

boron

pure

Fig.3 : Wall retention needed to reach steady state conditions. The cyan triangles

show the data for non boronised wall ( same data set as used in Fig 2). The retention

after boronisations ( indicated by vertical lines) are shown as magenta squares.
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Fig.4 : Result of the residual gas analysis after the shot # 23968. The molecules

used for the fit are shown at the abscissa. Different H/(H + D) ratios are considered

for molecule hydrogen, water and hydrocarbons.


