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Abstract

Data adaptive planing determines the expected utility of a single
new measurement using existing data and a data descriptive model.
The method can be used for experimental planning. It is applied to
scaling laws for magnetic fusion devices. Explicitly, the scaling of the
stellarator W7-AS is examined for a subset of t=1/3 data. In control
parameter space regions of high utility are identified and serve for
fixing discharge and machine parameters for upcoming discharges. It
will be shown that a skillfull analysis of experimental uncertainties is
of utmost importance for significant results.

PACS 52.55.-s Magnetic confinement and equilibrium
PACS 52.25.Fi Transport Properties
PACS 02.50.-r Probability theory, stochastic processes, and statistics

1 Motivation: Planning of fusion experiments

A prominent task in experimental sciences is the choice of settings for future
measurements. This issue becomes crucial if experimental access is expensive
or limited.

Examples particularly motivating this study are experiments in nuclear
fusion devices. In magnetic confinement fusion experiments, a large number
of different data from a couple of diagnostics are taken to derive data for
physics inferences. For the ITER device, the largest thermonuclear magnetic
confinement device planned [ITER team(1999)], the burning fusion plasma
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will also result in an expected limitation of experimental time due to its
harsh experimental conditions. But even for existing devices, the limitation of
experimental time motivates procedures which allow the validation of physics
models at highest possible efficiency.

JFrom an abstract point of view, experimental planning may be regarded
as the optimal choice of control parameters for the assessment of a physical
model, i.e., the response to these control parameters. Hence, the physical
model is part of the planning strategy.

For fusion devices, the parameter space of settings is not only limited but
even structured. Certain combinations of control parameters (e.g heating
power and density) require more effort than other ones. Consequently, the
question arises which data contribute to the validation of a hypothesis most
and which data are redundant. The answer to this question may prevent
the experimentalist to repeat measurements or to choose parameters which
result in a setting with small informational content.

In the example discussed here, the physical model is a scaling law for the
energy confinement time 7,. Scaling laws are used for estimates of device per-
formance and have proven to be extremely useful for planning and design of
new devices. 7. is a measure of thermal insulation of a particular magnetic
configuration and its plasmas. The confinement time is derived from the
stored plasma energy and the deposited heating power 7. = W/P. Scaling
laws for the energy confinement in magnetic fusion devices are formulated
as functional dependencies of the energy content W on control parameters.
The plasma confinement can be controlled by gas flows, heating power, the
magnetic configuration and geometry of the device. While change of geome-
try meets with difficulties during experiments, the other control parameters
allow wide variations in parameter space.

With this background, two issues are addressed in this paper for the first
time: (1) the assessment of relevance of data, (2) planning of experimental
campaigns in nuclear fusion by means of Bayesian Experimental Planning
[Lindley(1956)]. The proposed method assumes an existing set of control
parameters for confinement measurements and employs information measures
to quantify the impact of a new measurement. Since the method is formulated
very generally, the approach is relevant to other disciplines of experimental
sciences apart from plasma physics.

Specifically, the method uses an expected utility function, the kernel of
which is chosen to be the information gain due to the measurement. As data
adaptive exploration (DAE) we define the evaluation of individual expected



utilities for existing data, data adaptive planning (DAP) is the maximization
of the expected utility with respect to the control parameters for a future
experiment. The use of Bayesian experimental design for the planning of
future experiments was put forward by [Loredo(2003)] to estimate the op-
timum observation time for orbital parameters of extra-solar planets. An
example in fusion is the choice of optimum lines of sight for an interferome-
ter [Dreier et al.(2006)].

In this paper, the method of data adaptive planning is applied to a mul-
tivariate linear case. A prominent result of this study is the impact of a
proper uncertainty treatment. Considering improper uncertainties, or even
the neglect of uncertainties, leads to wrong results.

2 Scaling Laws for Fusion Devices

Scaling laws for fusion devices are a predestined field for application of DAP
and DAE: First, data bases containing several hundred data sets exist (e.g.
the International Stellarator Confinement Data Base (ISCDB) [Yamada et al.(2005)])
and can be analysed with respect to individual data. Second, it is possible
to plan experiments at running machines. And, finally, the scalings are also
used to design future devices.
In the special case of a logarithmic scaling law, the DAP/DAE approach
for a multi dimensional linear problem can be used.

2.1 Background

Scaling laws connect plasma and machine parameters with quantities relevant
for plasma and energy confinement. They are widely used for inter-machine
comparison of different discharges and prediction of the confinement perfor-
mance of future experiments. The first point is motivated by the limitations
in the parameter range for a single experiment (e.g. restrictions in geometri-
cal variations). This can be overcome by a comparison of different machines.
The second application arises from the fact that transport mechanisms in
fusion plasmas are not fully understood in the sense that the functional de-
pendence of the energy content W on the experimental parameters density
n, magnetic field B, effective minor radius a, major radius R and total heat-
ing power P and the quantity describing the plasma confinement cannot be
calculated from first principles.



For toroidal magnetic fusion devices, semi-empirical scalings are used
instead. For a stellarator with given major radius R and fixed rotational
transform this relation reads:

W = exp{a,}a® P*"n* B . (1)

The «y, are the scaling exponents describing the dependencies of W on the
scaling parameters. In most cases these scaling parameters have been found
by regression procedures from available data sets. Commonly, the logarithm
is applied to linearize Eq. (1)

W => oz . (2)
k

with £ = {1,Ina,In P,Inn,In B}T. Tt has been shown previously that this
transformation allows for unbiased estimates for the coefficients of  [Dose et al.(1996)],
provided that uncertainties in a, P, n and B are transformed accordingly.

3 Bayesian Probability Theory

The Bayesian approach [Jaynes(2005)] is a powerful and self-consistent in-
ference framework to analyse data and to design experiments. It rests on
the product and sum rule of probability theory for the treatment of condi-
tional probability distribution functions (PDF). An immediate consequence
of these rules is Bayes theorem

ple|lp(dle, 1)
p(d|l)

The prior knowledge about the model parameters a encoded in the prob-
ability distribution p(a|l) is modified by the likelihood of a due to the
newly accumulated data d, p(d|a, I) to obtain the posterior distribution of
a, p(ald, I). The condition I summarises all other information related to
the problem which need not be made explicit for the intended calculation.
The denominator in (3), p(d|I), ensures normalisation of p(a|d, I).

pdiD) = [ daplalp(de.D) = [dapla.dI) . (@)

plald, I) = (3)

The second equality in (4) results from the above mentioned product rule.
Eq. (4) is also known as the Bayesian marginalisation rule and allows to
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remove variables from a calculation which may be necessary for the initial
formulation of the problem but are of no interest per se. Both, Eqn. (3) and
(4), are used repeatedly in the following.

The goal of the present work is the identification of optimal operation
parameters for the information gain on energy confinement of a toroidal
magnetic confinement fusion device. Let W denote the energy stored in the
plasma, x the vector of operation parameters and r the error associated with
the measurement of W. For a data set of N measurements d = W and r
become vectors and the operation parameters are represented by the matrix
X = {x,x,...,xy}T. The model equation for explaining the data is then

d—X -a=r . (5)

In planning an experiment one is interested in the utility of the next data
point D, described by the same linear model as above

D_ST'a:p ) (6)

where p is the measurement error of the datum D. Our interest is in the opti-
mal choice of the experimental settings & = {1,Ina,In P, Inn,In B}T for this
new datum D. Following [Lindley(1956)] and [Loredo(2003)] we define the
information gain, hence forth called utility, of (D, &) as the Kullback-Leibler
distance [Kapur and Kesavan(1992)] between the posterior distribution of a
with and without the new datum D.
(a|D,d, &, X, 1) -
plald, X, I) (M)

The Expected Utility (EU) is the expectation value of the utility function
over the data space for D:

EU(¢) = [aD p(D|d. & X, 1) U(D,€) . (8)

U(D,§) = /da plalD.d,&,X, ) n?

By virtue of the marginalization rule the first term in the above integral is
p(DId.&X.1) = [ da p(ald. X, I) p(Dle.€.1). (©)

In order to evaluate (9) we need to specify the two distributions under the
integrand. This is simplest for the second term. If we know a and & then D
follows from the data description model and is given by

p(Dla, &, 1) =6 (D —&"a) . (10)
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The first term in (9) on the other hand is the posterior distribution of o given
only the data set d. Assuming a flat prior for a and using Bayes’ theorem
(3) p(ar]d, X, I) becomes proportional to the likelihood p(d|a, X, s,I). As-
suming that the r; are samples from a Gaussian distribution with zero mean
and variance s?, the likelihood becomes

p(dla, X, s, 1) = %GXP _(d—Xa) 2C(d—Xo() a1

where C is a diagonal matrix with elements Cy;=1/s?. Finally we need to
specify p(a|D,d, &, X, I) x p(D,d|a, &,X,0,8,1). Since the measurements
d and D are independent one gets for the latter

p(D,d|e,§,X,0,8,1) = p(D|a,§,0,1) - p(dfe, X, s, 1). (12)

Assuming again that p of Eq. (6) is a sample from a Gaussian distribution
with zero mean and variance o2 the likelihood for the new datum D becomes
1

1
V2mo? P { 202 (D - gTa)Q}

p(Dle, €, 0,1) = (13)

With the above settings the integrations in Eqn. (7) and (8) can be done
analytically. After some algebra the Expected Utility results in

—_

EUE) = [m(u@)-ufG)Q] | (14)

2
¢ (X"CX) ¢

2

G =

o

The result does not depend on the data values of the existing data d, since

the model function Eq. (5) is linear in a. It depends, however, on the

uncertainty of d as well as the uncertainty of X which are condensed in

the matrix C. Moreover, the uncertainty o of the future datum and the
respective experimental configuration & enter the final result.

An approximation to (14) has been obtained earlier by [MacKay(1991)].
The difference between this and our results is that EU(&) vanishes quadrat-
ically as a function of G in (14), while MacKay obtains a linear dependence
due to the missing second term in the brackets in (14).



4 Results

The principle of Data Adaptive Exploration shall now be implemented for a
subgroup from the ISCDB [Yamada et al.(2005)]. This subset comprises 153
data from the WT7-AS stellarator taken at a rotational transform of r=1/3
and is the only subset for which not only data but also associated uncertain-
ties for every parameter a, P, n, B and W are available.

4.1 Data Adaptive Exploration

As mentioned before, the parameters of interest are now the scaling param-
eters a of Eq. (1). The design parameters, however, are the quantities
effective minor radius a, toroidal magnetic field B, the heating power P and
the line averaged density n.

According to Eq. (2), the scaling law model reads:

InW=a.+a, Ina+ap-nP+a, -Inn+ag-InB. (15)

The design parameters are now given by &; = {1,Ina,In P,Inn,In B}?. The
existing data d is a set of logarithmised values of the energy content {In W;}.

The uncertainty s; is calculated from simple error propagation law ac-
cording to equation (15) with

512 = (‘SlinW>2 + a%,a(‘g’lina)z + ag,P(SlinP)2

_'_Oég,n(sfnn)Q + CY%,B(SlirlB)z' (16>

The single uncertainties si i, st ., st p, st and si 5 are the uncertainties of
the logarithmised coordinates in the parameter space and can be calculated
from the values given in the database accounting for the logarithmic transfor-
mation. Since a prior: the scaling parameters o are unknown in 16, values
from the theoretical Lackner-Gottardi scaling [Lackner and Gottardi(1990)]
are used as first estimates. Given these definitions, the expression for the
Expected Utility (14) can now be evaluated.

In the following, a distinction is made between the measured value of
W, WeP and the theoretical value, calculated by the power scaling law,
Wthee  The uncertainty of W€ is given by the measurement uncertainty of
the diamagnetic energy W and can be found in the database. For W the
uncertainty is computed by error propagation according to Eq. (16).



The scaling law for the 153 data sets from W7-AS is calculated by regres-
sion with

InWihee = (—0.831+ 0.082) + (2.264+ 0.093) Ina
+(0.4524 0.035) In P + (0.440+ 0.022) Inn
+(0.618+ 0.049) In B (17)

These values for «; differ from the findings of ISS04 since a sub-set of
the data was taken. Using these parameters, In W€ can be calculated and
compared with the experimental value In WP,

The DAE allows now to determine the utility of individual measurements
from a given data set. For this purpose, a selected measurement is deleted
from the data set, and its utility is calculated with respect to the remaining
(¢ —1) data points by equation (14). Here, {£, 0} is the experimental config-
uration for the extracted datum. The remaining data sets are described by
{/X, s}. Note, that the EU calculated for different individual measurements
is not comparable quantitatively, because the reference data set {/)E, s} is
different in every case. Fig. 1 shows the In W plot for all 153 data points.
The expected utility of every single datum is expressed in the colour code. An
average tendency of higher expected utilities at high In W is clearly visible.

Since Eq. (14) incorporates all reference data the Expected Utility is a
context sensitive quantity, it depends on what has been measured beforehand.
Therefore, it is instructive to analyse the reason for the different EU values
of the data points in Fig. 1.

WT7-AS was operated at two values for the magnetic field, at B ~ 2.54T
and at B ~ 1.24T. While the maximum EU value is given for the smaller
field, high values of the EU can be found for both B values. The scatter
of EU vs. B allows one to conclude that there is no obvious B dependence
for the data set under investigation. A similar conclusion can be drawn for
the dependence on the minor radius a for which data cluster at values of
a~0.175 m and a ~ 0.12 m.

Considerable variation in the parameter space shows up for the line-
averaged density n and the heating power P. To show possible interde-
pendencies, the EU is displayed as a function of both parameters in Fig. 2.
High utilities are found in regions of high heating power and high densities.
In these regions of the P —n plane only a few data points are available. The
point which is farthest away from the origin shows the highest utility. It
appears that regions of high sampling density give small information gains.
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Figure 1: Comparison of We and W< for 153 data sets from W7-AS. The
colour code expresses the utility of the respective data point. For comparison,
the function log W = log W is also displayed (black line).
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Figure 2: Power - density dependence of the utility, the EU is encoded in the
colour scheme.
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As expected by common sense, a new measurement should lie in a parame-
ter range not yet covered by previous experiments. This conclusion can be
proven quantitatively by calculating the EU of a candidate new data point.
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Figure 3: EU as a function of density n and heating power P for the W7-AS
data set without the datum with the highest utility (encircled).

4.2 Data Adaptive Planning

For the planning of a future experiment the expected utility of the new data
point is calculated. For the analysed W7-AS data set, the EU depends for
the scaling law Eq. 2 in leading order on the heating power and the line
averaged density. Therefore, the EU is determined in the P — n plane.

The principle of planning is illustrated in Fig. 3. Here, the datum with
the highest utility (see white circle in Fig. 3) was eliminated from the data
set and the EU was determined for all n and P values yielding the two
dimensional plot of EU vs n and P. The EU of the erased datum was
plotted for reference. This plot indicates parameter combinations for which
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Figure 4: The same plot as Fig. 3, but now for a proposed 154th data point,
given the 153 data sets from W7-AS. These sets are also shown for compar-
ison.
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the information gain is expected to increase most. The EU for this new
data point is lowest for small densities and heating powers. For intermediate
densities (2 x 10 m™3 < n, < 2 x 102 m~3) the EU depends mostly on the
heating power. Since there is no distinct maximum in Fig. 3, the planning
strategy is to extend the covered parameter space into regions with highest
EU values and the result indicates that a variation of density is much less
informative than an increase of heating power.

In order to show the impact of new data on the planning procedure,
the EU is now calculated for all data in Fig. 3. The EU was determined
again in the P — n plane, see Fig. 4. For the proposed new data point, the
parameter settings for the uncertainty, minor radius and magnetic field have
been deliberately taken from the data point with the highest EU from the
given data set.

The result confirms the conclusions from the previous example: The re-
gions with a high EU are restricted to areas where no previous measurement
exists. By comparison with Fig. 3 one also finds, that the area of smaller
EU increases slightly around the data point with the highest EU. This shows
the impact of this measurement on the EU distribution: Because this data
point is now taken into account, measurements with similar P and n settings
become less informative.

4.3 Influence of the error statistics

The influence of the measurement uncertainty on experimental planning shall
be discussed next. In figure 5, the Expected Utility is given with respect to
Wiheo and Wy, whereas the uncertainty of Wipe,, calculated by equation
(16), is displayed as the size of the circles. As a tendency one finds that
larger EUs correspond generally to smaller uncertainties (e.g. in case of the
datum with the highest EU).

For further analysis of the influence of the measurement uncertainty on
the EU, the change in the EU if no measurement uncertainty is specified. This
assumption has been used frequently in the analysis of energy confinement
in fusion devices. To eliminate the influence of the measurement uncertainty,
the diagonal elements of the uncertainty matrix C and the uncertainty of the
new datum are set equal to one. The results of these assumptions are shown
in figure 6 which should be compared to figure 3. The utility for the given
data changes dramatically if the influence of the measurement uncertainty is
neglected. The shape of the EU distribution shows significant differences in
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Figure 5: Comparison of We* and W for 153 data sets from W7-AS, the
EU is colour coded. The symbol size is given by the uncertainty of In W
scaled by a factor of 2000.

the range of small values for n and P: Whereas in the case of correct treat-
ment of the uncertainties the EU is low for these regions in parameter space,
the values of the EU become large if uncertainties are neglected. The reason
for this behavior is that an absolute constant uncertainty in primary space
(cf. Eq. 1) transforms into a relative uncertainty in logarithmic space with
the consequence that measurements at small n and P become as important
as the measurements at larger values. This offends common sense.

One also finds that the EU of the given 153 data points changes in com-
parison to figure 3: E.g., the datum with the maximum EU from this figure
shows a strong decrease in its utility if the uncertainty is neglected. The effect
can be explained as follows: The measurement uncertainty of this data set
is relatively small as shown in Fig. 5. Therefore, the EU value indicates the
datum to be more valuable compared to other data points. This conclusion
cannot be drawn if the measurement uncertainties are slighted all together.
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Figure 6: The influence of the measurement uncertainty on the EU for scal-
ing laws: EU distribution for the encircled datum in figure 3, but now the
uncertainty was taken equal 1 for all data points (no effect of considering the
uncertainty).

One can conclude here that the influence of the measurement uncertainty
is significant, data points with large uncertainties are not beneficial. There-
fore, the measurement uncertainty has to be taken into account and its value
has to be estimated with due care.

5 Conclusions

In this paper it was shown that the Bayesian approach can be used for the
planning of a future measurement, taking into account a data base with
already measured data. Given a multi variate linear physical problem, the
Expected Utility of a new datum depends on the experimental configuration
of the existing data sets and of the new datum. Also, the EU is significantly
influenced by the measurement uncertainty of the new datum. It has often
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been claimed in Bayesian data analysis that the uncertainty of the data are
as important as the data themselves. Here we have the extreme situation
that the results of an analysis do not depend anymore on d, D but only on
s,0. This result which goes much beyond the specific problem treated here
but is of general interest.

It can easily be seen from Eq. (14) that the EU decreases with an increas-
ing measurement uncertainty o. Consequently, for a future experiment the
measurement uncertainty should be kept as small as possible.

Concerning the dependency on the experimental configuration one can
conclude that measurements in regions of the configuration space with a
sparse number of given data points show the highest Expected Utility, in
other words, one should choose experimental configurations which have not
been applied before to gain maximum information. This agrees with common
sense.

For the planning of the next measurement, an experimental configura-
tion with high EU should be chosen. Not every configuration may be re-
alisable, technical and/or physical constraints may limit the configuration
space. Furthermore, one can also implement a cost function which expresses
the necessary effort for the realisation of a certain parameter combination.
The optimal experimental configuration is then given by the best relation of
cost and expected information gain.

For the problem presented here, the EU is independent of the data values
from the data base. This allows one to design experimental campaigns with
more than one new measurement: If the experimental conditions of the next
measurement were estimated by DAP this configuration can be added to
the existing data set. Then, the next experiment can be planned using the
DAP approach, and so on. The only assumption to be made is about the
measurement uncertainty of future experiments, which may be estimated
from experience with previous measurements. With this method, more than
one future experiment can be planned. Therefore, the approach of DAP can
also be used for the planning of full experimental campaigns.
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