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Abstract.

The ability to predict the stability of fast-particle-driven Alfvén eigenmodes in

burning fusion plasmas requires a detailed understanding of the dissipative mechanisms

that damp these modes. In order to address this question, the linear gyro-kinetic, elec-

tromagnetic code Ligka [11], [12] is employed to investigate their behaviour in realistic

tokamak geometry.

Recently, the model and the implementation of Ligka were extended in order to cap-

ture rigorously the coupling of the shear Alfvén wave to the drift and sound waves.

This coupling becomes important for the investigation of low frequency modes like the

Alfvén cascade modes (AC), the beta-induced Alfvén eigenmodes (BAE), the geodesic

acoustic modes (GAM), the energetic particle modes (EPM) and - at even lower fre-

quencies - the resistive wall modes (RWM).

The authors report on an effort to close the gap between high-n micro-scale turbulence

codes (in their linear phase) and low-n global MHD codes. More precisely, the aim is to

describe both regimes within the same framework of equations and with the same nu-

merical implementation by improving the range of applicability and validity of Ligka:

an eigenvalue code allows to explore both the local complex dispersion relations for

e.g. kinetic Alfvén waves (electromagnetic), ion acoustic waves (electrostatic) or drift

waves in realistic geometry and also the their global eigenfunctions.

As an application of this extension, an investigation of the kinetic RWM damping

mechanisms is carried out.

1. Introduction

The destabilising effect of fusion-born α-particles on global MHD modes is of

great interest because of their serious consequences for plasma heating and plasma-

wall interaction. In order to make predictions for the stability of such modes

in a predominantly α-particle heated plasma like ITER, the background damping

mechanisms of these modes have to be investigated carefully. These mechanisms

are electron and ion Landau damping, continuum damping, collisional damping and

radiative damping. The latter mechanism requires a non-perturbative description, since

the MHD properties of the mode structures are modified by coupling to the kinetic

waves e.g. the kinetic Alfvén wave (KAW) [2]. Examples for these modes are the
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toroidal Alfvén eigenmodes (TAEs) [3],[4]that exist in gaps in the Alfvén continuum

due to toroidal coupling, or the Alfvén cascade modes (ACs) [5] that can exist if

the q-profile exhibits a local minimum or is very flat. Extensive theoretical and

numerical investigations have been carried out concerning their drive [1][6] and damping

[7][8][9][10].

There are two reasons why the accurate determination of damping rates is particularly

difficult: firstly, the damping rates for modes of the very same type can vary over several

orders of magnitude depending on the different plasma background conditions, i.e. the

mode can be exponentially sensitive to these conditions. Secondly, the spatial structure

of the mode can range from sub-ion-radius scales up to the dimensions of the whole

plasma, i.e. from millimetre to metre for typical tokamak parameters. Therefore, a tool

is needed that describes both micro and macro scales within the same model and the

same numerical implementation.

In order to address this problem the linear eigenvalue code Ligka [11],[12] has been

extended in several aspects. Ligka was originally designed for global modes in the

TAE frequency regime (TAEs, kinetic TAEs, Alfvén Cascades). It is based on a self-

consistent model by Qin et al. [14][15] consisting of the quasi-neutrality equation and the

moment equation for the perturbed current. It is non-perturbative, since it allows for a

non-linear dependence of the eigenvalue through the velocity space integrals and also for

a mode structure which is not prescribed by ideal MHD calculations. The propagator

integrals along the drift orbit of ions and electrons are carried out numerically using

the drift kinetic code HAGIS [16],[17], and the resonance integrals are solved accurately

applying rational interpolation and grid refinement techniques.

However, as shown in section 2, the model also describes small scale and low-

frequency phenomena such as ion acoustic, electrostatic and electromagnetic drift waves.

Therefore, no changes in the equations themselves had to be made, i.e. the theoretical

model of the ’old’ and the ’new’ LIGKA remained the same. On the numerical side, a

few improvements and extensions were necessary to solve this set of equations in the

low-frequency limit: firstly, because of ωmode ∼ ωd ∼ ωb,t, two poles in the resonance

denominator for the background species (see eqns 7,8) appear frequently instead of

usually one pole for high frequency modes. Therefore, the rational interpolation scheme

for the denominator [12] had to be adopted. Secondly, the grid refinement in the radial

direction was improved to check if the assumption k⊥%i ≤ 1 is fulfilled for the ’new’

small-scale-modes . (Ligka employs an expansion of the Bessel function up to second

order, that is relatively accurate for k⊥%i ≤ 0.5 and still acceptable for 0.5 ≤ k⊥%i ≤ 1).

Thirdly, the matrix build-up and storage procedure was improved to account for the

coupling of up to 20 poloidal modes. (The old LIGKA version allowed for maximal

9). Finally, a local solver allows to trace the real and imaginary part of the dispersion

relation throughout the whole plasma, making comprehensive comparisons of global and

local results possible. Basic tests and benchmarks are shown in section 3.

As a first application of this extension, the kinetic damping of the resistive wall mode

(RWM) is investigated. If there is no conducting vessel wall close to the plasma edge,
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this mode is essentially a rather global, pressure driven external kink mode that grows

very fast i.e. on the typical MHD timescale. In the presence of a wall, the growth rate

of the mode is slowed down to the resistive time scale of the wall due to the generation

of mirror currents in the wall that counteract the mode perturbation. This slowly

growing mode can be stabilised by toroidal plasma rotation or a set of external feedback

coils [18], [19]. In order to predict the critical rotation frequency that is needed to

stabilise the mode, the kinetic damping mechanisms have to be studied carefully. So far

simple, perturbative MHD models based on an extended energy principle have been used

[20]. Magnetic and diamagnetic drifts as well as electrostatic coupling were neglected

there. LIGKA includes this missing physics. However, so far there is no vacuum part

implemented in LIGKA. Therefore, the ideal MHD code CASTOR [21] is applied to

calculate the vector potential of the ideal MHD eigenfunction that is used as boundary

condition on the last closed flux surface for the vector potential in LIGKA. Details and

results are presented in section 4.

2. Model, relevant limits and numerics

Ligka solves the following system of equations [14],[15],[11][12]: the linearised

gyrokinetic equation, where h is the non-adiabatic part of the perturbed distribution

function f :

ha = −ieaei(nϕ−ωt)
∑

m

∫ t

−∞
dt′ei[n(ϕ′−ϕ)−m(θ′−θ)−ω(t′−t)]e−imθ

·∂F0a

∂E
(ω − ω∗a)J0 · [φm(r′)− (1− ωda

ω
)ψm(r′)], (1)

the quasi-neutrality equation:

∑

a

e2
ana
Ta

[
%2
a∇2
⊥
]
φ+ea

∫
J0fad

3v = 0; E = −∇φ−∂A

∂t
; A‖ =

1

iω
(∇ψ)‖(2)

and the gyrokinetic moment equation:

− ∂

∂t

[
∇ · ( 1

v2
A

∇⊥φ)

]
+ (B · ∇)

∇×∇× c
iω

(∇ψ)‖
B2

+ [
1

iω
∇(∇ψ)‖ × b] · ∇µ0j0‖

B

= −
∑

a

µ0

∫
d3v(evd · ∇J0f)a +

3

4

µ0e
2
ana
Ta

%4
a∇4
⊥
∂

∂t
φ. (3)

Here,
∑
a indicates the sum over different particle species with the perturbed distribution

function fa, mass ma, charge ea, unperturbed density na0, thermal velocity vth,a =√
Ta/ma, cyclotron frequency Ωa and gyro-radius %a. φ is the perturbed electrostatic

potential and ψ is a measure for the electromagnetic potential according to equation 2 ,

ω∗a = b×∇F0a

ieaB
/∂F0a

∂E
·∇ is the diamagnetic frequency and ωda = −ivda ·∇ is the magnetic

drift frequency acting on the perturbed potentials. j0‖ is the equilibrium background

current and vA the local Alfvén speed.

Simple limits of these equations can be obtained, e.g. the ’reduced kinetic limit’ [22],[23]:

[1 + ξeZ(ξe) + 1 + ξiZ(ξi)](φ− ψ) = Te/Ti%
2
i∇2
⊥φ
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∇⊥ ·
ω2

v2
A

∇⊥φ+
∂

∂s
∇2
⊥
∂ψ

∂s
=

3

4
%2
i

ω2

v2
A

∇4
⊥φ

Applying the hot electron, cold ion expansion immediately gives the Alfvén branch, the

KAW, the ion acoustic wave and the drift wave:

%2
sk

2
⊥φ = (

c2
sk

2
‖

ω2
− 1 +

ω∗e
ω

)(φ− ψ);
ω2

v2
A

φ− k2
‖ψ = 0

The basic version of Ligka solves equations (2), (3) and the linear gyro-kinetic equation

(1) for the perturbed distribution function f up to 2nd order in k⊥%i. Straight field line

coordinates for the background quantities given by the equilibrium code Helena [24] are

chosen. Ligka has been extended to calculate correctly the residual part of the Landau-

type integrals for the case of negative growth rates, i.e. damped modes. It uses a rational

interpolation scheme for the resonance denominator (see formula 8 )which allows for

accurate and fast evaluation of the pole contributions without employing derivatives. In

particular for the low frequency extension, multiple poles in the resonance denominator

(due to ωb,t and ωd) have to be accounted for. Furthermore, a very fine radial grid is

needed to resolve the small scale modes near the rational surfaces. Grid refinement

techniques are also applied for the velocity space integration. When examining the rich

spectrum over a large frequency domain, sometimes many closely spaced modes are

expected. Using a Nyquist solver is cumbersome under these conditions because a large

number of poles require a high number of sample points along the integration contour.

Thus an antenna-like version of Ligka was developed: A drive vector is added to the

right hand side of the homogeneous equation:

M(ω)

(
φ

ψ

)
= d (4)

where d is only nonzero for the last finite element at the plasma edge, prescribing a

small perturbation from the outside. The eigenfunctions are found by inverting M(ω)

resulting in:

I

(
φ

ψ

)
= M(ω)−1d, (5)

and the plasma response is ‘measured’ by an integral over the eigenfunction:

R =
∑

m

∫ a

0
φmφ

∗
mdr (6)

3. Low Frequency Benchmarks

For a model equilibrium based on JET parameters, B0 = 3.53T, R0 = 2.96m, β ≈ 2%,

a flat density profile (∇n/n = 0.01) and the other relevant profiles given in figure 1,

the local continua are determined by a local solve of the complex matrix coefficients.

For comparison with analytical theory at this point just one harmonic is kept : m = 1,

n = 1. Employing a Nyquist contour integration for determining the residue enclosed by

a circle in the complex plane, allows to find up to 20 eigenvalues at the same time (see
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Figure 1. q, temperature profile and the corresponding Alfvén continuum
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Figure 2. Nyquist contour including roots in the complex plane and the real part of

the KAW/IAW dispersion relation. The MHD solutions are over-plotted as described

in the right plot. Different colours/symbols refer to different integration circles.

figure 2). However, for very small eigenvalues which require high accuracy the circles

have to be smaller including less roots. Typically 16 to 32 points on the contour are

enough for this local solve.

Clearly, two branches, the KAW branch and the ion acoustic (IAW) branch can

be identified by comparison with the formulae ω = k‖va and ω = k‖cs. Figure 3 shows

the real (left) and the imaginary (right) part of the dispersion relation in logarithmic

scale. For this local solve the quantity k⊥%i has been set to 0.1 and Te = Ti. The radial

coordinate close to the q = 1 surface can also be seen as k‖ coordinate. Both branches

are stable, the IAW is heavily damped. One can compare the KAW damping rate with

the simple slab result

γ/ω ≈ −1

2

√
π

2

√
me

mi

k2
⊥vA
Ω2
i

cs ≈ 0.38% (k⊥%i = 0.1)

and finds that this expression gives a lower limit for the damping rate except very close

to the k‖ = 0 surface. For k‖ = 0 the real part of the dispersion relation reduces to

ω = ω∗e, the electrostatic drift wave, which was chosen to be very small via a flat density

gradient as a test for the numerics.

One can make this sound branch more unstable by setting Te > Ti and increasing the

density gradient. The resulting dispersion relation is shown in figure 4 for the parameters

Te = 3Ti and ∇n/n = 0.9.
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Figure 3. Real and imaginary part of the dispersion relation for the KAW and IAW.

The different colours again refer to different contours in the complex plane that are

identical to the contours in figure 2
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Figure 4. Real and imaginary part of the dispersion relation for the KAW and IAW

for Te = 3Ti and ∇n/n = 0.9. Different colours refer to different contours in the

complex plane.

The two branches couple now stronger to the drift wave: the ion acoustic branch

turns into the electrostatic drift branch, the KAW turns into the drift Alfvén wave.

Again the two limits of ω = ω∗e resp. ω = −ω∗i are found in the real part of the

spectrum. The imaginary part shows a small unstable region for the electrostatic drift

wave under these conditions.

After these checks for the correct implementation and numerical accuracy, one can start

to solve the system globally. This requires considerably more time: it is much faster to

solve 256 (number of radial grid points) times a 4×4 matrix (for one poloidal harmonic)

than to solve once a (2 ∗ 256) × (2 ∗ 256) matrix. Additionally, it is much harder to

obtain convergence, i.e. finding the zeros of the determinant of a large matrix. However,

the combination of the Nyquist contour solver and a 2d Newton method allows one to

find converged solutions in typically about 32 (Nyquist) +10 (Newton) evaluation steps.

Figures 5 and 6 show two global solutions for the KAW wave and the IAW. The red and

the blue line refer to the electrostatic and the electromagnetic potential, respectively.

The crosses indicate the actual grid points (of the electromagnetic potential) of the

calculation. Clearly, the KAW is well resolved (almost 10 grid points per wavelength)

in the critical region. When comparing the KAW in figure 5 and the IAW in figure 6

it becomes obvious that the KAW is an electromagnetic mode where both potentials
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Figure 5. Global eigenfunction of a KAW, details on the right. Electrostatic and

electromagnetic potentials are shown. The crosses on top of the electromagnetic

potential indicate the actual grid points used in the simulation. The maximal k⊥%i is

about 0.4 for this mode.
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Figure 6. Global eigenfunction of a IAW, the electrostatic part is much larger than

the electromagnetic part.

are comparable, in contrast to the IAW where the electrostatic component dominates.

As a last question in this section the damping rates of the global modes close to the

diamagnetic frequency are investigated. For these calculations, the density gradient was

artificially increased such that ω∗ = 0.01ωA. As can be seen in figure 7, the damping

rates out of this global calculation are considerably higher than the local ones. The

least damped modes are found just below ω∗ with a radial mode structure that is again

dominated by the electrostatic potential with only a small electromagnetic contribution.

In order to destabilise this mode one would need steeper gradients (density and/or

temperature), or one would have to go to higher toroidal mode numbers. The instability

threshold behaviour (ITG threshold) or also the trapped electron mode is beyond the

scope of this paper and will be investigated elsewhere.

4. Application: Kinetic damping of the resistive wall mode (RWM)

As shown in the last section, LIGKA is now able to treat small scale modes near rational

surfaces with the same system of equations and with the same numerical methods as

for the global modes. As an application of this development, we investigate here the

kinetic damping mechanisms of the RWM.

Since there is neither a vacuum part nor a model for rotation implemented in LIGKA
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%pol = 0.92 and q = 5 at %pol = 0.96 are shown

the problem cannot be treated in a complete self-consistent way. Instead, the ideal

MHD-Code CASTOR [21] is used to obtain the eigenfunctions of the external kink

mode (see figure 8 for equilibrium quantities, the radial velocity perturbation vr and the

electromagnetic potential perturbation Ar, Ti = Te). The amplitudes of the poloidal

harmonics at the last closed flux surface as given by CASTOR are used as boundary

conditions for LIGKA, i.e. as the drive vector (equation 4) of the antenna version. The

rotation is therefore modeled by rotating boundary conditions.

Now we can vary the drive frequency and measure the plasma response. It should be

noted that for a start the growth rate γ of the RWM is assumed to be very small and

is therefore set to 0. A non-zero γ will be considered at the end of this section.

Figure 9 shows the response function over a large range of frequency. Of course,

frequencies above ∼ 20kHz cannot be interpreted as a plasma rotation but rather as

perturbations generated by external antennas (like e.g. the saddle coil antennas at JET

[25]). The maxima correspond to modes that are less damped than the surrounding

solutions. Going from high to low frequencies one can easily identify the TAE mode

(ω ≈ 0.18ωA), a kinetically modified TAE (ω ≈ 0.165ωA) and the end of a continuum-

free region at the edge at about (ω ≈ 0.1ωA). Below that region the damping increases

considerably, not only due to the coupling to the KAW but also due to sound wave

damping. It is interesting to note, that for weakly damped modes like the TAE mode

the details of the excitation i.e. the prescribed external kink perturbation via the drive

vector d do not influence the eigenfrequency at all and alter the eigenfunction only

slightly very close to the edge.
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The next peak in the spectrum appears at about ω ≈ 0.03ωA. The corresponding

eigenfunction is (figure 10) electromagnetic. From it’s shape one can identify this mode

as a stable micro-tearing mode close to the q = 4 rational surface. Figure 10 also shows

the position of this mode relative to the local spectrum: it still lies within the KAW

branch and therefore is a low-frequency Alfvén-type mode.

This (almost) pure Alfvén-type character is lost when one goes to even lower

frequencies. As shown in the last section, at ω ≤ ω∗ the KAW and the drift branch

couple. Figure 11 shows the response function for these very low frequencies that are now

comparable to typical plasma rotation frequencies. For typical ASDEX-Upgrade plasma

parameters 0.0025ωA corresponds to 1.5kHz. The three maxima in the response are due

to modes with predominantly electrostatic character localised in a not too narrow region

around the q = 3 and mainly q = 4 surface. The modes exhibit three resp two resp one

maximum of the electrostatic potential near the q = 4 surface. Therefore the two upper

modes can be identified as radial harmonics of the lowest mode. The 3-maxima mode

(mode1) is least damped since it is closest to the end of the local KAW branch and

therefore finds a rather wide radial region without continuum intersection (see figure

12). Close to the edge the eigenmodes show the typical radial shape of an external kink

mode.

In order to identify the main damping mechanism one can use an intermediate
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Figure 12. Response function for very low frequencies (ω ∼ ωrot) and the

corresponding local spectrum

diagnostic of LIGKA: the imaginary part of the non-adiabatic response for trapped

IM
∫

trapped
dv3

∑

k

∂F0

∂E

(ω − ω̂∗)
ω − ω0

d − kωb
Km,m′,kâkm (7)

and for passing particles:

IM
∫

passing
dv3

∑

k

∂F0

∂E

ω(ω − ω̂∗)
ω2 − (ω0

d − (nq −m+ k)ωt)2
Km,m′,kâkm. (8)

Here ωt,b are transit resp bounce frequency, ω0
d is the orbit-averaged drift frequency and

Km,m′,k and âkm are orbit-averaged phase factors [14, 12]. Figure 13 shows this quantity

for both passing/trapped ions and electrons as a function of the normalised radius. One

can see that the damping is mainly due to ions close to the rational surfaces. Trapped

ions only play a minor role, the electron contribution completely vanishes. Therefore one

can conclude that ion acoustic wave damping is the main kinetic damping mechanism

for RWMs. In order to determine if the q = 3 or the q = 4 surface contributes more to
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Figure 13. imaginary part of the non-adiabatic kinetic response for m = 3, m = 4
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Figure 14. dependence of the response function on the growth rate γ

the overall damping, one has to fold the non-adiabatic response with the eigenfunction.

This it not carried out here in detail, however it is obvious that the q = 4 surface con-

tributes most since although the non-adiabatic responses for q = 3 and for q = 4 are

comparable, the eigenfunction is much larger at %pol = 0.92 (q = 4).

As a last point the dependence of the response on a finite growth rate γ is investi-

gated. Typical growth rates for RWMs are very small (γ ≤ 10−3ωA) - small enough

to be stabilised by a set of external feedback coils. A finite γ changes the resonance

denominator in equations 7 and 8 and moves the pole(s) into the complex plane. The

resonance becomes less sharp and therefore the width of the mode peak in the response

function broadens (fig. 14). If γ becomes comparable to the real mode frequency then

there is no proper wave resonance any more and the peak completely disappears.

From the discussion above one can conclude that the RWM mode is mainly damped by

ion acoustic damping. In addition, if the local ion diamagnetic drift frequency becomes

comparable to the rotation frequency, electrostatic effects near the rational surfaces

play a role and lead to modes that are less damped than the ones in the surrounding

frequency regions.

The limitations of this model are obviously a) that the eigenfunction is not calculated

self-consistently and therefore the radial shape differs slightly from the CASTOR

eigenfunction, b) that there is no distinction between co- and counter-passing

background particles in the propagator coefficients âkm and Km,m′,k what might broaden

the peaks also slightly and c) that there are no collisions included. The last point seems

to be the most severe limitation, but since the local ion collision frequency at the q = 4

surface is about 0.0016ωA or 1kHz, the first and strongest response peak (mode1 in fig.

11 ) is expected to persist even when collisions are included.
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5. Conclusions

The first part of the paper presents the kinetic model and numerical benchmarks/results

concerning low frequency modes in tokamak plasmas. Both local and global solutions

for electrostatic (IAW), electromagnetic (KAW) and drift-type modes are shown. The

possibility to switch easily between global and local for the same background parameters

allows one to find both the complex dispersion relation and the global eigenfunction

together with its damping or growth rate. Radial grid refinement allows for sub-%i-

resolution and therefore for thorough numerical convergence checks.

The second part is an application of this multi-scale-length extension of LIGKA: the

main kinetic damping mechanism of the external kink mode is sound wave damping, as

also other publications have concluded before. However, for the first time also magnetic

and diamagnetic drifts were included. It was found that there may exist less damped

modes if the local ion diamagnetic drift frequency at a certain rational surface becomes

comparable to the rotation frequency. A detailed quantitative analysis and comparisons

with previously published results [20] lie beyond the scope of this paper and will be

carried out in the next future.
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