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Quasi{linear gyrokinetic calculations of the transport of fast � particles

with a slowing down equilibrium distribution function in the trace limit are

presented. Di�usive and convective contributions to the total 
ux are sep-

arated and their dependence on the ratio of the fast particle energy to the

background plasma temperature is investigated. The results are compared

with those obtained in the case an equivalent Maxwellian distribution func-

tion is assumed for the fast particles. On the basis of the gyrokinetic results,

simple models for � particle transport are proposed for transport modelling

purposes.
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I. INTRODUCTION

The study of fast particle transport due to the background turbulence has received

recently particular interest [1{6], as motivated by previous analytical and numerical works

[7{13], as well as by the last stage of the ITER design [14], and related recent [15] and past

[16{19] experimental results.

Here we investigate the transport of � particles, using a quasi{linear gyrokinetic model

for core tokamak plasma turbulence in which, di�erently from previous works, the equilib-

rium distribution function of the fast particles is more realistically described by a slowing
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down distribution. The present study is dedicated to the transport of fast particles produced

by usual core plasma microinstabilities, like ion temperature gradient (ITG) and trapped

electron modes, which are mainly of electrostatic nature, and not to the transport produced

by fast particle driven electromagnetic modes, like toroidal Alfv�en eigenmodes (e.g. Refs.

[20,21]). Here, we compute the transport produced by 
uctuations of the electrostatic po-

tential in the presence of an unperturbed magnetic con�nement con�guration of concentric


ux surfaces. We shall not consider the important although di�erent problem of the losses of

fast particles generated by the presence of large scale magnetic perturbations, like magnetic

islands, [22{24] or by the presence of magnetic perturbations leading to regions of stochas-

ticity [25]. We mention that the latter problem is of interest not only in magnetic fusion

plasmas but also in astrophysical plasmas (e.g. Ref. [26] and references therein).

Our work starts from the consideration that, as it will be shown, the concentration of

� particles foreseen in the ITER standard scenario [27] is small enough that the passive

tracer limit is practically applicable. Such a small concentration limit allows us to express

the results in a physically meaningful form, separating the di�usive and the convective

contributions to the particle 
ux in an unambiguous way. This is also particularly practical

for transport modelling purposes. The numerical calculations presented here have been

performed utilizing two gyrokinetic codes, GS2 (GKS) [28,29] and Gyrokinetics@Warwick

(GKW) (LINART) [30,31]. These codes have been both appropriately modi�ed for the

purposes of the present work, by implementing a slowing down equilibrium distribution

function, in addition to the usual Maxwellian distribution. The results obtained assuming

a slowing down equilibrium distribution function are compared with those provided by an

equivalent Maxwellian, namely by a Maxwellian whose temperature is such to provide the

same second order moment (v2) as the slowing down distribution. The latter approach was

already applied for the gyrokinetic description of � particle transport in a recent work [4].

We underline that the present work is dedicated to the study of � particle transport as

fusion products, therefore of � particles largely more energetic than the background plasma.

As we already mentioned, for these kind of particles, a slowing down distribution provides
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the most appropriate description. The present work is not dedicated speci�cally to the study

of transport of He ash, although some of the present results can be applied to that purpose,

as it will be shown. He ash transport is more appropriately described by a Maxwellian

distribution at the same temperature of the background plasma, namely, He ash can be

treated more appropriately in the same way as a usual plasma impurity.

In the next Section, the gyrokinetic equation with a slowing down equilibrium distribu-

tion function is derived, and is compared to that with a Maxwellian equilibrium distribution.

The consequences of the new terms in this gyrokinetic equation on the expression of the

particle 
ux are identi�ed analytically in Sec. III, by introducing a kernel function which

captures the dependence of di�usivity on the energy variable, independently of the speci�c

choice of the unperturbed distribution function. In Sec. IV the reference case is de�ned

and the results of a scan in the � particle concentration are presented. In Sec. V, the

dependence of the di�usivity on the energy variable in the velocity space is investigated. In

Sec. VI and Sec. VII, the numerical results related to the dependence of the di�usion and

convective coeÆcients as a function the background plasma temperature are presented. In

Sec. VIII, a method which utilizes a �tting formula of the energy dependence of the kernel

function for the calculation of the transport coeÆcients for any choice of the unperturbed

distribution function is outlined and demonstrated. In Sec. IX, a transport model for �

particles summarizing the code results is derived and compared with an analogous model

for He ash. In Sec. X, the comparison of present results with previous results published in

the literature is discussed, and, �nally, in Sec. XI, the conclusions of the present work are

drawn.

II. THE GYROKINETIC EQUATION FOR AN EQUILIBRIUM SLOWING

DOWN DISTRIBUTION FUNCTION

The gyrokinetic equation usually considered and solved in numerical codes assumes an

equilibrium (unperturbed) Maxwellian distribution. While such an equilibrium distribution
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is appropriate for thermal particle species, it does not describe appropriately fast particles

in the slowing down process. More speci�cally, for fusion � particles, a realistic equilibrium

distribution is an isotropic slowing down distribution function, namely a slowing down dis-

tribution dependent only on the particle kinetic energy and independent of the velocity pitch

angle. This is provided by the solution of the Fokker-Planck equation with an isotropic par-

ticle source at a single energy, as a D{T fusion reaction is for � particles. The analytic form

of such a distribution function has been derived and presented in the literature [32{34]. Such

a distribution can also be considered for beam ions which do not have a strong anisotropy

in the velocity pitch angle [35]. We start our derivation here from the linearized gyrokinetic

equation in a form in which no assumption is made yet on the actual energy dependence of

the unperturbed distribution function, while assuming that it is independent of the velocity

pitch angle, or the magnetic moment (e.g. [36,37]). We note that the extension of the present

derivation to a nonlinear Æf equation is straightforward, since the nonlinear terms do not

require any modi�cation. From Eq. (35) of Ref. [37], dropping terms involving the deriva-

tive of the unperturbed distribution function versus the magnetic moment, the linearized

gyrokinetic equation reads

@h�

@t
+
�
vkez + vd �

�
rh� = � e�

@F0�

@E

@hUi
@t

+
c

B
hrU � ezi � rF0� (1)

where vk is the velocity parallel to the magnetic �eld line, vd is the gyrocenter perpendicular

velocity, combination of the rB and curvature drifts, h i is the gyroaverage operator, and

U is the generalized potential

U = �� 1

c
v �A: (2)

The distribution function h� is related to the perturbed distribution function f� by the

relation

h� = f� � e�
@F0�

@E
�+

1

B
A� ez � rF0�: (3)

Here F0� and f� are respectively the equilibrium (unperturbed) and the perturbed distribu-

tion functions of the generic species with index �, which can be identi�ed with the fusion �
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particles. We have de�ned a local set of right-handed perpendicular axes, ex, ey, ez, where

ez = B=B is aligned with the magnetic �eld line, ey is locally perpendicular to the �eld

line and belongs to the magnetic 
ux surface, and ex is in the radial direction. The energy

variable is de�ned as E = m�v
2=2, where m� and e� in previous equations are respectively

the mass and the charge of the species �. Finally, � and A are the perturbed electrostatic

and magnetic vector potentials.

Assuming that the equilibrium distribution function is a Maxwellian,

FM� =
n�

�3=2v3th�
e�v

2=v2
th� ; (4)

the derivatives of F0� occurring in Eq. (1) take the well known forms

dFM�

dE
= �FM�

T�
; (5)

and

dFM�

dr
= FM�

"
d logn�
dr

+
�
E

T�
� 3

2

�
d logT�
dr

#
; (6)

where v2th� = 2T�=m�, with T� the temperature of the species �.

In the presence of a background distribution function which is not Maxwellian, the

expressions for dF0�=dE and dF0�=dr have to be recomputed and the �nal form of the

gyrokinetic equation modi�ed consistently.

We consider an equilibrium distribution function as given by a slowing down distribution

function F0� = FS, with

FS =
n�

4�I2

H(v� � v)

v3c + v3
: (7)

Here v� is the maximum fast particle velocity, namely the birth velocity of � particles,

corresponding to an energy E� = m�v
2

�=2 = 3:5 MeV for fusion � particles, and vc is the

slowing-down critical velocity (we do not quote here the index � to lighten the symbols).

This is related to the background plasma electron thermal velocity vthe by the relation

v3c =
3
p
�

4

me

m�

ZI v
3

the; (8)
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where ZI is an e�ective charge where charges are weighted inversely over the corresponding

ion mass, ZI = m�

P
i ni(Z

2

i =mi) = ne, and equal to 5/3 for a mixture of 50 % D and 50 % T.

As customary, in Eq. (7), the quantity I2 = I2(vc=v�) is introduced in order to ensure that

the integral in the velocity space of the distribution gives the actual zero-order moment n�,

namely the density (we refer to Sec. II of the recent Ref. [4] for a more complete derivation),

I2

�
vc

v�

�
=

1

3
log

 
v3�
v3c

+ 1

!
: (9)

The expression of the slowing down distribution function presented in Eq. (7)

is appropriate for large ratios of the birth energy of the energetic particles to

the background plasma temperature, namely E�=Te >> 1. This ratio is larger

than 100 in the range of temperatures foreseen in a fusion reactor plasma, which

fully justi�es the expression in Eq. (7) for the � particle distribution function.

In order to fully explore the dependence on energy of the transport coeÆcients,

here the same expression of the distribution function is used also in the limit

of Te � T�, with no aim of consistency with the actual form of the distribution

function in those unrealistic conditions.

The derivative versus energy of such a distribution, excluding the discontinuity at the

upper energy boundary, reads

d log(FS)

dÊ
= �3

2

Ê0:5

Ê1:5 + Ê1:5
c

; for 0 � Ê < 1; (10)

where Ec = m�v
2

c=2, and where we have introduced the dimensionless energy variable Ê =

E=E�, and consistently Êc = Ec=E�. The radial derivative reads,

d log(FS)

dr
=

d logn�
dr

+KS(Ê)
d log(Êc)

dr
(11)

where we have introduced the function

KS(Ê) =
3

2

2
4 1

log
�
1=Ê1:5

c + 1
� �

1 + Ê1:5
c

� � Ê1:5
c

Ê1:5
c + Ê1:5

3
5 : (12)

At this point, it is practical to introduce also the function
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HS(Ê) = �d log(FS)

dÊ
=

3

2

Ê0:5

Ê1:5 + Ê1:5
c

: (13)

We note that in the case of an equivalent Maxwellian, namely a Maxwellian whose

temperature T� is such that

Z
FMv

2d3v =
Z
Fsv

2d3v; (14)

the corresponding expressions for the functions HM and KM read

HM = �d log(FM)

dÊ
= 1 (15)

and

KM =
�
Ê � 3

2

�
d logT�
d logEc

; (16)

where we de�ne the dimensionless energy variable for the Maxwellian in the customary form

Ê = E=T�. We recall that an analytical expression for the equivalent temperature T� can

be derived (see e.g. Eq. (15) in Ref. [4]). The radial derivative of the equivalent Maxwellian

can be expressed in a form absolutely analogous to that of Eq. (11),

d logFM�

dr
=

d logn�
dr

+KM

d logEc

dr
: (17)

We underline that in the previous expression, it has been taken into account that the equiva-

lent Maxwellian temperature T� is a function of the slowing down critical energy Ec through

the relationship provided by Eq. (14).

In the present work, we limit the investigation to the fast particle transport produced by

electrostatic microinstabilities in a simple circular s�� geometry. In this limit, for a single

toroidal mode in the ballooning representation for an s�� equilibrium [38], Eq. (1) can be

written in the following form, analogous to Eq. (2) of Ref. [28],

@ĝ�

@t
+

vk

qR

@ĝ�

@�
+ i !d� ĝ� =

e�

E�

FS�J0

"
HS(Ê)

@�̂(�)

@t
+ i !S� �̂(�)

#
; (18)

where q is the safety factor, R is the major radius, and � is the extended ballooning angle

and J0 = J0(k?v?=
�). The non{adiabatic part of the perturbed distribution function ĝ�

is related to the perturbed distribution function f̂� by

7



ĝ� = f̂� + e�FS�HS(Ê)�̂(�): (19)

In Eq. (18) we have introduced a slowing down diamagnetic frequency

!S� =
k�E�

e�BR

�
R

Ln�

+KS(Ê)
R

LEc

�
: (20)

In the above expression, we have introduced the customary dimensionless logarithmic gradi-

ents R=Ln� = �Rd logn�=dr and R=LEc = �Rd logEc=dr. We note that, provided that the

ion species concentrations are homogeneous along the minor radius, namely ZI is constant,

R=LEc = R=LTe, as it can be easily deduced from Eq. (8). The gyrokinetic equation Eq.

(18) has absolutely analogous form to the usual gyrokinetic equation with an equilibrium

Maxwellian distribution (e.g., see speci�cally Eq. (2) in Ref. [28] for comparison). The gy-

rokinetic equation with an equilibrium Maxwellian distribution is indeed directly obtained

with the obvious replacement of E� by T� in the right hand sides of Eqs. (18) and (20), and

using consistently HM and KM , de�ned by Eqs. (15) and (16), at the place of HS(Ê) and

KS(Ê) respectively.

We have modi�ed the GS2 code, as well as the GKW code, in order to solve the above

mentioned equation (18). In the case of the equilibrium slowing down distribution function,

we have considered an energy grid from 0 up to E� which excludes the upper boundary

E = E�, namely 0 � Ê < 1, and by this neglects the discontinuity at E = E� in the energy

derivative. We note that the two codes utilized in these work make a di�erent choice of

variables for the discretization of the velocity space. While GS2 discretizes the variables Ê

and � = �B0=E, with � = m�v
2

?
=(2B), the GKW code discretizes the variables vk and �.

Also the numerical schemes are di�erent. More importantly, however, the implementation

was made independently by the authors, such that the benchmark gives strong support to

the correctness of the results.
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III. PARTICLE FLUX FOR A SLOWING DOWN FAST PARTICLE

Here we investigate analytically the role played by the new terms in the gyrokinetic equa-

tion on the expression of the particle 
ux of the � particles. We shall make the assumption

that the fast particle concentration is small enough, that its contribution to the Poisson

equation can be considered negligible (passive tracer limit). Introducing the complex eigen-

frequency !, in such a way that @=@t ! �i!, and developing the right hand side of the

gyrokinetic equation Eq. (18), including Eq. (20), we obtain

�i!ĝ� +
vk

qR

@ĝ�

@�
+ i !d� ĝ� = i

e� !D�

E�

F�J0�̂

�
R

Ln�

+KS(Ê)
R

LEc

� !

!D�

HS(Ê)
�
;

where we have introduced the frequency !D� = (k�E�)=(e�BR) for normalization purposes.

We observe that the solution ĝ� of the equation can be expressed in the form,

ĝ� =
e�

E�

F� hD

�
R

Ln�

+KS(Ê)
R

LEc

� !

!D�

HS(Ê)
�
;

where the function hD is the solution of the following equation in �,

vk

qR

@hD

@�
+ i(!d� � !) hD = i !D� J0 �̂(�):

For particle species in small enough concentration to be negligible in the Poisson equation,

this procedure is completely general, and the function hD is completely independent of the

actual shape of the equilibrium distribution function.

This equation can be solved symbolically in the form

hD =
�!D�

! � kkvk � !d�

J0 �̂ (21)

where we have introduced a parallel wave number kkĝ = @ĝ=@� =(qR), and treated it formally

as a �xed number. Obviously the real solution involves the one dimensional integration along

the �eld line, and this is performed consistently in the codes. However, as we shall also

discuss later, the symbolic solution in Eq. (21) is useful to identify the resonance condition

to be ful�lled for hD to be large, namely that !d�+ kkvk of the fast particles be comparable

to the eigenvalue ! of the background plasma instability.
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The non-adiabatic part of the density perturbation ~nn:a: is provided by the integral of ĝ

in the velocity space. This reads

~nn:a: =
e�

E�

�
��Z

hDF�J0d
3v

�
R

Ln�

+
�Z

hDF�KS(Ê)J0d
3v

�
R

LEc

�
�Z

hDF�HS(Ê)J0d
3v

�
!

!D�

�

The quasi{linear particle 
ux produced by the 
uctuating E � B velocity at a given

wave number k� is given by �k = hIm(k� ~�y~n=B)i, where the symbol y indicates the complex

conjugate, and the brackets h i indicate the 
ux surface average.

By replacing the expression for ~n presented above, the quasi{linear particle 
ux for a

given wave number k� can be written in the form

R�k

n�
= Dk

R

Ln�

+DEk

R

LEc

+RVpk; (22)

where

Dk = h k�R
n�B

e�

E�

Im
�Z

d3v J0F� hD �̂y
�
i (23)

DEk = h k� R
n�B

e�

E�

Im
�Z

d3v J0F�K(Ê) hD �̂y
�
i (24)

and

RVpk = �h k�R
n�B

e�

E�

!

!D�

Im
�Z

d3v J0F�H(Ê) hD �̂y
�
i (25)

Provided that the unperturbed distribution function depends only on the energy variable,

by noting that the order of integration on the energy variable and on the ballooning angle �

in the 
ux surface average can be inverted, and by introducing the following integral of the

function hD, over the customary pitch angle variable � = �=E (or other analogous velocity

variable),

GDk = h k�R
n�B

e�!D�

E�

Im

8<
:
Z

B d�q
2(1� �B)

J0 hD �̂y

9=
;i; (26)
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we obtain that the di�usion and convective coeÆcients can be expressed in the compact

forms

Dk =
1

n�

Z
GDk(E) F� (2�

p
E) dE; (27)

DEk =
1

n�

Z
GDk(E) F�K(Ê) (2�

p
E) dE; (28)

RVpk = � 1

n�

!

!D�

Z
GDk(E) F�H(Ê) (2�

p
E) dE: (29)

We remind that the unperturbed distribution function is such that
R
F�(2�

p
E) dE = n�.

Finally, it is useful to de�ne the following coeÆcients

CEk =
DEk

Dk

; Cpk =
RVpk

Dk

; (30)

in such a way that the quasi-linear particle 
ux can be expressed in the form

R�k

n�
= Dk

�
R

Ln�

+ CEk

R

LTe

+ Cpk

�
; (31)

where we have considered that R=LEc = R=LTe for homogeneous charge concentrations of

the thermal ion species, as given by the dependence of the critical energy Ec on the electron

temperature de�ned in Eq. (8).

From this derivation, we �nd that the � particle 
ux is made of three contributions,

one perfectly di�usive, proportional to its logarithmic density gradient, and two convective

terms, one proportional to the electron temperature logarithmic gradient, and one which is

a pure convective contribution. We shall call CEk the thermal convection coeÆcient, and

Cpk the pure convection coeÆcient. The auxiliary functions K(Ê) and H(Ê), introduced in

the previous Section and de�ned respectively through the radial and the energy derivatives

of the equilibrium distribution function F�, like in Eq. (11) and in Eq. (13), occur directly

in the expressions of the thermal convection, Eq. (28) for DEk, and of the pure convection,

Eq. (29) for RVpk.

It is interesting to note that, with respect to the case of a Maxwellian distribution,

with a slowing down distribution the so{called thermodi�usive contribution to the particle

11




ux, namely that proportional to the logarithmic gradient of the temperature of the same

particle species, is replaced by a term proportional to the logarithmic gradient of the electron

temperature. This justi�es why we prefer to refer to this term as thermal convection rather

than thermodi�usion.

We observe also that the kernel function GDk, de�ned as the 
ux surface average of

the integral over the pitch angle variable � of the function hD in Eq. (26), is completely

independent of the speci�c choice of the equilibrium distribution function F�. Therefore it

can be considered as a Green function. Once the energy dependence of such a function is

known, all the di�usive and convective transport coeÆcients, for whatever kind of choice of

the equilibrium distribution function F�, can be computed as convolutions over the energy

variable of this function with the equilibrium distribution and with the related auxiliary

functions K(Ê) and H(Ê).

In the following sections we compute the quasi-linear particle 
ux, as well as the kernel

functionGD, with the modi�ed versions of GS2 and GKW.We investigate the behavior of the

coeÆcients D, CE and Cp as a function of the electron temperature Te, while keeping �xed

E� = 3500 keV. We note that equivalent plots can be produced in terms of the parameter

E�=Te. The method applied to separate di�usive and convective contributions to the total

particle 
ux is the same already applied for gyrokinetic studies of impurity transport [39,40].

We describe � particles with a slowing down distribution function in negligible charge

concentration (passive limit), as well as, for comparison, with an equivalent Maxwellian

distribution, namely a Maxwellian distribution with an equivalent temperature T�, de�ned

by Eq. (14). Table 1 shows the values of Te, E�=Te, T� and T�=Te for the set of values of Te

which has been used for the numerical calculations with the GS2 code.

IV. SCAN ON THE � PARTICLE CONCENTRATION

The starting point of our work has been to establish a relevant reference case for the

background plasma. We have chosen the following parameters r=a = 0:5, R=a = 3, q = 1:4,
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s = 0:8, Te = Ti, R=LT i = R=LTe = 6, R=Ln = 3, electrostatic, collisionless at k��i = 0:18.

In the previous expressions, r is the minor radius, a is the corresponding minor radius

of the last close 
ux surface, q is the safety factor and s is the magnetic shear, while

�i = ci=
i, where ci = (Ti=mi)
0:5 and 
i = eiB=mi is the cyclotron frequency. These

physical parameters have the following properties. First they are average values of the

parameters which are measured at mid-radius in low collisionality plasmas in a large tokamak

like ASDEX Upgrade , second they are approximately the values (rounded to the closest

integer) obtained by GLF23 [41] at mid-radius in a ITER standard scenario simulation [42],

third they ful�ll approximately the condition of background plasma particle 
ux equal to

zero [43,44], which is realistic for present tokamaks as well as for ITER in the usual condition

of small particle source in the plasma core. The speci�c choice of the wave number, namely

k��i = 0:18, at which the runs presented in this work are made, is motivated by the fact that

this value is in the usual range where the nonlinear ion temperature gradient transport is

maximum (e.g. Ref. [45]). Moreover analogous values, namely smaller than those at which

the maximum linear growth rate is located, have been found to provide a good agreement

between fully nonlinear simulations and quasi{linear calculations of fast particle transport

similar to those presented here [4]. Of course, a quasi{linear treatment does not

allow us to take into account the e�ects of nonlinear interactions between the

fast particle motion and the background turbulence. The results of [4] suggest

that, at least in plasma conditions such as those considered in the present work,

these e�ects are small.

In Fig. 1 we show a � particle concentration scan. In these calculations, performed

with the GS2 code with a slowing down equilibrium function for the � particles, the bulk

background temperature has been taken to be a realistic ITER value, namely Te = Ti = 10

keV. The � particle species has been considered with the same other physical dimensionless

parameters as the plasma background. We observe that up to the maximum concentrations

foreseen in the ITER standard scenario, namely Z�n�=ne = 0:016 [27], the growth rate of

the mode is rather insensitive to the variation of the � charge concentration. A charge
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concentration of 2 % modi�es the growth rate of the mode by less than 4 %, while a

concentration of 20 % reduces the growth rate by more than 25 %. On one side, these

results show that in the ITER standard scenario the fast particle concentration is too small to

provide an e�ective mechanism for turbulence stabilization as instead observed for instance

in AUG in the formation of internal transport barriers at low density with neutral beam

injection heating [46]. On the other side, these results suggest that, particularly at mid{

radius, where charge concentrations below 1 % are expected, the behavior of the � particles

is very close to that of the passive tracer limit. Since in this limit, the transport coeÆcients

de�ned in the previous section become independent of the fast particle radial gradients, this

limit not only is more suited for the kind of results we are looking for, but also remains

realistic for the description of the transport of � particles in ITER. For this reason, all the

calculations presented in the remainder of this paper are performed with a � particle charge

concentration of 5 10�4, well inside the passive tracer limit (corresponding variation of the

growth rate below 1/1000). We note that, however, the � particle species is treated as an

active species by both the codes we have applied.

V. DEPENDENCE ON THE ENERGY VARIABLE

The dependence of the kernel function GD, de�ned in Eq. (26), on the dimensionless

energy variable E=Te is illustrated in Fig. 2. This has been computed with GS2 with

background plasma parameters given by the reference case introduced in the previous section.

We remind that, although the function GD(E=Te) is independent of the speci�c choice of

the equilibrium distribution function, it remains dependent on the physical parameters of

the background plasma. As indicated by Eq. (27), the di�usion coeÆcient D is given by

the convolution of this function with the equilibrium distribution function. Therefore, the

function GD can be interpreted as providing the actual dependence of the di�usivity on

the energy variable in the velocity space. We �nd that the transport of the fast particles

becomes negligible above the slowing down critical energy Ec=Te = 33:05. More precisely,
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as shown in the inset in logarithmic scale, particles with energies equal to 10 times the

background temperature have a di�usivity reduced by almost one order of magnitude with

respect to those which are in the thermal range. Therefore transport is produced only in the

lowest energy range of the distribution, and the di�usivity decreases quickly with increasing

energy. This can be understood as due to the combination of two e�ects. One is given by

the decrease of the function J2

0
with increasing energy (we remind that in Eq. (26) one J0 is

included in the solution hD) . The second is given by the fact that only the slow particles are

resonant in the denominator of the integrand of Eq. (21). Here the mode eigenfrequency !

is of the order of the drift frequency of the background thermal particles, and therefore it is

only in the proximity of the corresponding thermal energy range that the phase shift between

the density 
uctuations of the fast particles and the electrostatic potential is signi�cantly

non{zero.

It is useful to derive a simple �tting formula of the function GD in terms of the dimen-

sionless variable E=Te. This reads,

GD(E=Te) = 1:25 for E=Te � 2:7; (32)

GD(E=Te) = exp[�8:14 10�5 (E=Te)4 + 3:77 10�3 (E=Te)
3 �

0:0553 (E=Te)
2 + 0:036 (E=Te) + 0:45] for E=Te > 2:7;

and it is shown in Fig. 2 by a dashed curve.

In Sec. VIII, we shall show that the gyrokinetic results presented in the following sections

for the di�usion and convective coeÆcients, as computed directly by GS2 and GKW, can be

also obtained, with good accuracy, by performing simple integrals of this �tting formula with

the chosen distribution function, as indicated by the analytical derivation of the particle 
ux

presented in Sec. III.
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VI. DEPENDENCE ON THE BACKGROUND TEMPERATURE OF THE

DIFFUSION COEFFICIENT

With a charge concentration of fast particles equal to 5 10�4, we have computed the

di�usion coeÆcient D� of the � particles as a function of the background electron tempera-

ture, or of the ratio E�=Te, which is the same for these electrostatic collisionless calculations,

since only the energy ratio matters in this case. In Fig. 3, the coeÆcient D� is plotted as

a function of the background electron temperature. The coeÆcient has been normalized to

the di�usion coeÆcient DMax(T� = Te), namely the di�usion coeÆcient the � particles have

in the case they are a thermal species at the same temperature of the bulk and described by

a Maxwellian distribution. Such a di�usion coeÆcient used for normalization has a direct

physical interpretation, namely it is the di�usion coeÆcient of He ash DHe.

First of all, Fig. 3 shows the excellent agreement obtained between the two gyrokinetic

codes, with di�erences below 5 %. The curve obtained with a slowing down distribution

function is compared to the one obtained with an equivalent Maxwellian distribution. Small

but non{negligible di�erences are obtained. In particular we note that, di�erently from

the Maxwellian case, which shows a constant asymptotic behavior, already observed and

explained analytically in [4], the curve obtained with the slowing down distribution function

provides values of the � particle di�usion coeÆcient which are below those provided by

an equivalent Maxwellian at large background electron temperatures, or correspondingly

at low ratios E�=Te, while it becomes larger at smaller background electron temperatures.

Interestingly, the region at which the two curves cross is in between 10 keV to 20 keV, which

makes that the description in terms of an equivalent Maxwellian is applicable in the range of

temperatures predicted for ITER. We observe as well that in the ITER range of background

plasma temperatures, D�=DMax(T� = Te) < 0:05, namely the di�usivity of the � particles

is at least 20 times smaller than the di�usivity those particles would have if they where

thermalized at the same temperature of the bulk.

On the one hand, these theoretically predicted small values of the di�usivity of the
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fast particles with respect to the di�usivity of thermal particles are consistent with the

observation in beam blip experiments on TFTR that the amount of radial spreading of

beam ions during slowing down is fairly small, implying a fast ion di�usion coeÆcient which

is an order of magnitude smaller than typical thermal transport coeÆcients [18]. On the

other hand, our theoretical results might appear in stark contradiction with the results

of some recent theoretical studies (e.g. Ref. [1,2,4]). We shall show in Sec. X that, at

least speci�cally with respect to Ref. [4] in which a gyrokinetic model analogous to the

present one was applied, this contradiction is only apparent, and originated by the di�erent

normalizations of the particle transport applied in the two works.

The di�erences between the curve of the di�usivity in the slowing down case and that

of the di�usivity in the equivalent Maxwellian case can be explained easily in terms of the

di�erent weight that the two unperturbed distributions give to di�erent energy ranges, along

the idea indicated by the analytical derivation of Sec. III. To show this e�ect in more detail,

we explore the dependence of the di�usion coeÆcients as a function of the energy variable

in the velocity space. In Fig. 4(a-c), we plot the derivative of the di�usion coeÆcients

versus the energy variable, namely the integrand in the right hand side of Eq. (27), for three

di�erent values of the background electron temperature. In Fig. 4(d-f) the corresponding

equilibrium distribution functions, slowing down and equivalent Maxwellian, are plotted. We

observe that � particles are transported only in the very slow energy tail of the distribution,

consistently with the curve of GD presented in Fig. 2.

Fig. 4(d-f) shows that, due to the displacement of Ec=E� as a function of Te=E�, the

number of fast particles in this slow energy range provided by the slowing down distribu-

tion changes relatively to the equivalent Maxwellian. In particular for Te < 20 keV, the

slowing down distribution has more particles in the slow energy range, where fast particles

are transported by the background turbulence, with a consequent value of DSlD > DMax.

Around Te = 20 keV the two distribution functions are very close in the resonant energy

range, as illustrated by Fig. 4(e), with consequent DSlD ' DMax. Finally, for Te > 20 keV,

there are more particles in the low energy range in the equivalent Maxwellian distribution
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rather than in the slowing down, with consequent DSlD < DMax. We see therefore that the

di�erences with respect to the equivalent Maxwellian distribution are a consequence of the

modi�cation of the slowing down distribution function produced by the variation of Ec=E�

as a function of Te, which implies that di�erent numbers of � particles are present in the

resonant energy range where fast particles are transported.

A simple algebraic expression �tting the code results which provides the dependence of

D�=[DMax(T� = Te)] as a function of the background plasma temperature reads

D�

DMax(T� = Te)
= 0:02 + 4:5

�
Te

E�

�
+ 8

�
Te

E�

�2
+ 350

�
Te

E�

�3
; (33)

which is applicable in the range 5 keV < Te < 150 keV, namely 23 < E�=Te < 700, with an

error below 3% with respect to the original numerical results.

We have veri�ed that such a dependence on Te=E� of the normalized di�usivity, shown

in Fig. 3 for k��i = 0:18 and described by the �t of Eq. (33), is insensitive of the value of

k��i at which the linear calculations are performed, in the usual range of long wave length

instabilities, namely k��i < 1.

VII. DEPENDENCE ON THE BACKGROUND TEMPERATURE OF THE

CONVECTIVE TERMS

In this section we investigate the dependence of the convective coeÆcients CE� =

DE�=D� and Cp� = RVp�=D� on the background electron temperature Te. The results

of the GS2 calculations, as well as those of GKW, with both the equilibrium slowing down

and the equivalent Maxwellian distribution functions, are shown in Fig. 5. The results of the

two codes for the slowing down case are found in excellent agreement also on these terms.

For both these coeÆcients, non{negligible di�erences are found with the two choices of

unperturbed distribution functions. As it will be explained in detail, these arise from the

di�erent expressions of the functions H(Ê) and K(Ê) derived from a slowing down or from

a Maxwellian.
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In Fig. 5(a), the coeÆcient related to the convective contribution proportional to the

logarithmic gradient of the critical energy, namely proportional to R=LTe, is plotted. For

comparison we have included two curves for the Maxwellian case, one (open symbols) com-

puted with the usual Maxwellian expression for KM , namely Ê � 3=2, the second (full

symbols) computed for the appropriate expression for the Maxwellian equivalent to the cor-

responding slowing down function, namely KM as provided by Eq. (16). We observe that

the ratio d logT�=d logTe is around zero for Te � T� and increases up to around 0.2 for Te in

the range of 10 keV to 20 keV. The consequence of this is that the equivalent temperature

pro�le of the � particles is rather 
at, as already underlined in Ref. [4].

We observe that the curve with open symbols is positive (outward 
ux) for Te ' E�,

while it becomes negative with decreasing Te and approaches �3/2 for very small values

of the electron temperature. This can be understood from Eqs. (23) and (24). In the

limit Te ' E�, Ê dominates over �3=2 in the integrand of Eq. (24), providing an overall

positive term, while in the limit Te << E�, Ê can be neglected with respect to �3=2 in the

expression of KM(Ê), with the consequence that the ratio DEk=Dk reaches the asymptotic

value of �3/2. The numerical results approach this analytical limit as it should be expected.

The positive (outward) value of this term obtained for Te ' E� is in agreement with the

direction of the thermodi�usion for impurities in the case of ITG instabilities [47,48,39,49].

This will be discussed more in detail at the end of Sec. IX, where a comparison with the He

ash transport is made.

Once the curve in open symbols is multiplied by the appropriate ratio d logT�=d logTe,

we observe that the inward contribution provided by the equivalent Maxwellian (full squares)

becomes smaller than that obtained with the slowing down distribution function (full cir-

cles). However, in both cases, the thermal convective contribution is directed inwards. This

contribution, related to the temperature gradient, is the same that was observed in Ref. [4]

to provide a He pinch. In the case a slowing down distribution is considered at the place of

an equivalent Maxwellian, such an inward particle 
ux contribution is even larger.

In order to better understand the behavior of the result obtained with a slowing down
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equilibrium distribution function, in Fig. 6 we plot the analytic function KS(Ê) provided

by Eq. (12) as a function of Te for di�erent values of Ê. The reason of such an unusual

way of plotting this function will appear clear below. In the limit of Te � E�, KS is

equal to zero, since the two terms of opposite sign in the expression for KS(Ê) balance in

that limit. This is re
ected by the fact that in the description provided by an equivalent

Maxwellian, d logT�=d logTe is close to zero in the same limit. With decreasing Te, KS(Ê)

provides an increasingly larger negative contribution for low values of Ê, namely the second

term dominates over the �rst in the right hand side of Eq. (12). For Ê = 0, KS takes

the values which are approached by the numerical results in the limit of Te << E�. The

general consequence of this behavior is that the actual full numerical curve for CE� is not

signi�cantly di�erent from the curve KS(Ê = 0). The latter can be used as analytical

expression for this term in a simpli�ed transport model for the � particles to be applied in

transport simulations, as it will proposed in Sec. IX.

Even larger di�erences between the slowing down case and the equivalent Maxwellian

case are found for the pure convection coeÆcient Cp�. We observe however that in the range

of temperatures 10 keV< Te < 20 keV, the two curves are close and both very close to

zero. On the contrary, for values of E� � Te, the Maxwellian case provides a strong inward

particle 
ux, while the slowing down distribution case has a 
ux close to zero. All these

di�erences can be understood recalling Eqs. (23) and (25), and the di�erent de�nitions of

HS and HM in Eqs. (13) and (15) respectively. To this purpose, in Fig. 7 we have plotted

HS as a function of Ê for di�erent values of Te. We recall that in the Maxwellian case, this

function is a constant equal to 1. The behavior of HS presented in Fig. 7 can be more easily

understood by recasting the expression for HS in the form

HS(Ê) =
3

2

E�

Ec

(E=Ec)
0:5

(E=Ec)
1:5 + 1

: (34)

From this expression it is straightforward to observe that this function has maximum value

(0:5)1=3 (E=Ec) at (E=Ec)
1:5 = 0:5. Since HS(Ê) is proportional to E�=Ec, we observe that

it implies that Vp� has given by Eq. (25) has the same dependence with decreasing Te=E�
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of D� for Te << E�, with consequent asymptotic constant behavior of Cp� in that limit,

as found in the numerical results. Such a behavior is di�erent from that obtained in the

equivalent Maxwellian case, for which HM(Ê) = 1 and therefore Vp� has an additional 1=E�

factor in front as compared to D�, which explains why in the equivalent Maxwellian case the

asymptotic value of Cp� for Te << E� is zero. In the range of temperatures 10 keV< Te <

20 keV, this pure convective contribution is negligible, by at least one order of magnitude,

with respect to that provided by CE�R=LTe. The e�ect of this pinch term can therefore be

neglected in transport simulations of � particles.

VIII. CALCULATION OF THE TRANSPORT COEFFICIENTS ADOPTING A

FITTING FORMULA FOR THE ENERGY DEPENDENCE OF THE

DIFFUSIVITY KERNEL FUNCTION

In the present section, we provide an example of a general procedure that we propose

with the purpose of computing transport coeÆcients for fast ions with any unperturbed dis-

tribution function. We utilize the formula introduced in Eq. (32), which �ts the dependence

of the kernel function GD on the energy variable in the velocity space, and by direct integra-

tion on the energy variable along the relations provided by Eqs. (27) and (28), we compute

both the coeÆcients D� and CE = DE=D�. We compare the results from these calculations,

performed externally of the gyrokinetic codes, with the results of the codes, presented in

the previous sections in Figs. 3 and 5. The comparison is shown in Fig. 8 and is performed

over di�erent values of the background temperature Te, assuming both a slowing down and

a Maxwellian distribution functions. We note that these have signi�cantly di�erent shapes,

as shown, for instance, in Fig. 4(d{f) with increasing Te. The calculations applying the

formula provide di�usion and thermal convection coeÆcients which are in good agreement

(within 10 %) with the original GS2 and GKW results, over a wide range of temperatures,

and with both the slowing down and the Maxwellian distribution functions.

By this example, we demonstrate that such a procedure, which utilizes a �tting formula
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for the kernel function GD(E=Te) to compute the transport coeÆcients, can be applied for

general purposes, with any equilibrium distribution function. In particular, the method

described in the present section is certainly of interest in the framework of gyrokinetic

calculations of the transport of beam ions or radiofrequency (RF) accelerated ions. We have

to remind the caveat that the present derivation is performed exclusively for equilibrium

distribution functions which are isotropic in the velocity pitch angle, namely which depend

only on the energy variable. This condition is usually not ful�lled by the distribution

functions of beam ions and even less by those of RF accelerated ions. However, we argue

that the dependence of the equilibrium distribution function on the pitch angle is not likely

to a�ect strongly the dependence on energy of the kernel function GD. The main reason

for this is that, di�erently from electrons, for which are usually exclusively the trapped

particles to be transported, the ion particle transport is usually not a strong function of

the velocity pitch angle. Then, in the case that the dependences on energy and on the

velocity pitch angle can be expressed in separate factors in the unperturbed distribution

function, a derivation analogous to that presented in Sec. III shows that the presence of

a dependence on the pitch angle in the distribution function does not modify the energy

dependence of the kernel function GD, except for an overall factor in front which, for the

reasons expressed above, is of the order unity, and which, in any case, can be estimated

separately. On the other hand, it is worth mentioning that the presence of a dependence on

the pitch angle in the equilibrium distribution function can introduce additional convective

contributions in the total expression of the particle 
ux. Nevertheless, these arguments

suggest that, for �rst order estimates, the function GD, computed assuming an isotropic

equilibrium distribution function as in the present work, can be used also for calculations

of the di�usion coeÆcients with non{isotropic equilibrium distribution functions, like those

of beam and RF accelerated ions. Moreover, a �tting formula of the kernel function GD,

like Eq. (32), can be also included in Fokker{Planck or Monte Carlo codes to describe the

additional e�ect of the transport produced by the background turbulence on the slowing

down process.
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In conclusion, the method described in the present section, making use of a �tting for-

mula for the kernel function GD, is proposed as a fast and simple procedure for very general

purposes of gyrokinetic calculations of fast ion transport, in the experimentally applicable

limit of small concentration (passive tracer). It is rigorous when applied with equilibrium

distribution functions which depend only on the energy variable, while it provides only a

�rst order estimate in the case of equilibrium distribution functions which depend also on

the velocity pitch angle. Of course, the function GD depends on the background plasma

parameters, and has to be recomputed when these change signi�cantly. However, such a

method can be applied without introducing any modi�cation in a gyrokinetic code. Other-

wise, the obtention of the exact solution directly within a gyrokinetic code implies the need

of implementing a di�erent version of the gyrokinetic code for each speci�c choice of the

equilibrium distribution function.

IX. TRANSPORT MODEL FOR � PARTICLES

The numerical results obtained with the codes GS2 and GKW and presented in the pre-

vious sections can be summarized in the form of a transport model for � particle transport.

Here we gather together the formula for the di�usivity as a function of E�=Te in Eq. (33),

and the analytical expression for the function KS(Ê), evaluated at Ê = 0, which provides

the appropriate description of the numerical results of the thermal convection coeÆcient

CE�, as discussed in Sec. VII. Furthermore, we exclude the negligible contribution from

CP�,

A simple algebraic expression which �ts the numerical results in the range 23 < E�=Te <

700, and provides the � particle 
ux as a function of the background electron temperature

pro�le, for plasma conditions not far from those predicted for the ITER standard scenario,

reads,

R��

n�
= DHe

"
0:02 + 4:5

�
Te

E�

�
+ 8

�
Te

E�

�2
+ 350

�
Te

E�

�3# � R

Ln�

+KS(0)
R

LTe

�
; (35)
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where KS(0) is de�ned in Eq. (12) and is reported here below, with Ec being the slowing

down critical energy,

KS(0) =
3

2

(
1

log [(E�=Ec)1:5 + 1] [1 + (Ec=E�)1:5]
� 1

)
; (36)

where we remind that Ec=E� = 33:05Te=E�.

The above expression for the � particle 
ux is proposed for applications in transport

modelling. The coeÆcient DHe = DMax(T� = Te) is the di�usivity of a He particle at the

same temperature as the background electron temperature, namely the di�usivity of He ash,

and can be computed consistently by the transport model applied in the simulation. We

recall that the above formula is proposed for the description of fast � particles, and it is

not applicable for the description of He ash, for which the treatment as a normal impurity,

e.g. at the same temperature of the background plasma, is certainly more appropriate.

It is interesting to compare the transport model for � transport introduced above with a

transport model for He ash, derived in an analogous way, with the background plasma in

the speci�c conditions of our reference case. We describe He ash as an impurity species at

the same temperature as the background plasma with a Maxwellian distribution function.

Therefore DHe = DMax(T� = Te). We note that the condition T� = Te is ful�lled at the

electron temperature Te = 1401 keV, therefore the values of CEHe and CpHe for the He ash

can be obtained from the curves plotted in Fig. 5 at this value of the electron temperature

(dash{dotted vertical lines). We note as well that for He ash the CEHe coeÆcient has to

be considered as a thermodi�usion coeÆcient for a Maxwellian distribution, and therefore

taken from the dashed curve with open symbols in Fig. 5(a). We �nd CEHe = 0:03 and

CpHe = �2:2, which leads to the following expression for the He ash particle 
ux,

R�He

nHe
= DHe

�
R

LnHe

+ 0:03
R

LTHe

� 2:2
�
: (37)

The thermodi�usive term for He ash (CEHe R=LTHe = 0.174) is positive (outward) and small

for our reference case, while the pure convection term (sometimes called \curvature pinch")

is large and directed inward. These results are consistent with the well known directions

24



of thermodi�usion and pure convection of impurities in the presence of ITG turbulence

[47,48,39,49]. For comparison, we remind that for the fast � particles, we �nd that it is

the thermal convection to be inward and large while the pure convection is still inward, but

negligible (CE� R=LTe = �5:25 and Cp� = �0:137 at Te = 15 keV).

X. COMPARISON WITH PREVIOUS RESULTS

As we mentioned in the introduction, fast particle transport has been already the object

of several studies in the past. The results reported in the literature however can di�er even

qualitatively, and contradictory statements can be found about whether the transport of fast

particles is signi�cantly smaller or as large as or even larger than the transport of the back-

ground turbulent plasma. Original works (e.g. [8]) concluded that, on the basis of simple

orbit average arguments, the transport of energetic � particles produced by the background

turbulence corresponds to di�usivities two orders of magnitude smaller than that of the

background thermal plasma. Our numerical results give a fully quantitative measurement,

and are found in agreement, within a reasonable factor 5, with that simple estimate. In

the same period, other works [7,9], comparing the total quasi{linear particle 
uxes of the

fast particles with those of the background plasma, found contradictory situations, in which

the fast particle 
uxes were small [7], as well as situations in which the fast particles 
uxes

were comparable to those of the background plasma [9]. It was then concluded that the fast

particle transport could be large, depending on the conditions of the background plasma

[9]. Later, numerical simulations of electrostatic turbulence [10,11], using the Hasegawa{

Mima model [50], concluded that the di�usion rate of energetic test particles was strongly

reduced by the large Larmor radius averaging e�ect. Recently, studies applying the so{called

decorrelation trajectory method [1,2], found the surprising and opposite result that in condi-

tions of relatively strong turbulence, the di�usivity of particles can increase with increasing

gyroradius of the particles, by up to several orders of magnitude. More recently, a more

complete treatment by a similar approach [3] has shown that those results were not correct,
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and results consistent with those of Ref. [11] were found in the same limits. In the same

period, within a fully consistent gyrokinetic treatment [4], using the widely benchmarked

gyrokinetic code GYRO [51], it was found that the turbulent � particle transport at high

temperatures \remains stronger than the deuterium transport". These gyrokinetic results

were presented as being in qualitative agreement with those of Ref. [2], and to some extent

in contradiction with the orbit average arguments of the above mentioned previous works

[4].

Since in the present work we are applying a gyrokinetic model, as well as gyrokinetic

codes, completely analogous to that used in Ref. [4], an agreement between our results and

those of Ref. [4] has to be expected. However, the results presented in the previous Sections,

and in particular those of Sec. V and Sec. VI, providing very small values ofD� as compared

to the corresponding thermal di�usivity, in the range of temperatures 10 keV< Te < 20

keV, could be considered opposite to those presented in Ref. [4]. We felt therefore bound

to include this section, in which the speci�c problem of the comparison of our results with

previous works in the literature is considered. We do hope that this section will help, at least

partly, to reconcile the otherwise rather controversial situation of the literature described

above.

In the following, we show that our results, while they agree qualitatively with the past

simple orbit average estimates [8], as already pointed out above, at the same time they are

not in disagreement with the recent gyrokinetic results [4].

In particular, we demonstrate that the disagreement of our results with those of Ref. [4]

is only apparent, and caused by the di�erent normalizations applied in the two works, and

is not due to a major disagreement between the codes used in the present work, GS2 and

GKW, and the GYRO code used in Ref. [4].

To this purpose, in Fig. 9(a) we plot our results for the same reference case as the one

studied in Ref. [4], the General Atomics (GA) (or Waltz) standard case. Also in our results,

when the same normalization as in Ref. [4] is adopted, a 
ux of � particles much larger than

the deuterium particle 
ux is found when the � particles have comparable temperature to
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the deuterium. In the range of expected temperatures 10 keV< Te < 20 keV, the 
ux of

� particles remains larger than the reference deuterium 
ux, in the equivalent Maxwellian

case. We note that the � particle 
ux of the slowing down case is slightly lower, mainly

due to the larger inward contribution of the thermal convection coeÆcient CE� in the case

of a slowing down unperturbed distribution, as shown in Fig. 5(a), in Sec. VII. In Fig.

9(b), we plot the same results in terms of the normalization applied in the present work.

The � di�usion coeÆcient is normalized to the di�usion coeÆcient of He ash, namely the

di�usion coeÆcient that � particles have if they are thermal at the same temperature of the

background plasma, with a Maxwellian distribution. With this normalization, in the range

10 keV< Te < 20 keV, very small values of the normalized di�usivity are found, below 0.07.

For a more detailed and relevant comparison, we compute the ratio of the � particle 
ux

per particle to the He ash 
ux per particle, namely (��=n�)=(�He=nHe), and we compare this

ratio with the result presented in Ref. [4], adopting, of course, the same input parameters

(see Table IV of Ref. [4]), and treating � particles by an equivalent Maxwellian as made in

that Reference. For � particles, at Te = 15 keV, namely T� = 896 keV, we �nd (R=Ln� = 15,

R=LT� = 1:5),

R��

n�
= 0:053�DHe � (15� 1:34� 1:5� 0:20) = 0:678 DHe:

For He ash, we �nd (R=LnHe = 3, R=LTHe = 9),

R�He

nHe
= DHe � (3 + 0:085� 9� 2:71) = 1:055 DHe:

The ratio (��=n�)=(�He=nHe) = 0.64, is in good quantitative agreement (di�erence below

10 %) with the value obtained in Ref. [4], and shows clearly that comparable 
uxes per

particle are obtained for � particles and He ash, as found already in Ref. [4], although the

di�usivities are in the ratio 1/20 (we �nd a factor 0.053 as quoted above), consistently with

the results of the present work.

The plots in Fig. 9 as well as the numerical comparison made above show that the

disagreement is only apparent, and is originated by the di�erent normalizations applied. We
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note in particular that in Fig. 9(a) we have been considering the ratio between two particle


uxes which not only are obtained from signi�cantly di�erent density and temperature

gradients, but which are actually unrelated. As a demonstration of this, the Reader can

�gure out the case in which the normalization adopted in Fig. 9(a) is applied to a realistic

reference case, namely a case like the one adopted in this work in the previous sections, in

which for the background plasma �D ' �e ' 0. In this case, adopting the normalization

proposed in Ref. [4], arbitrarily large values of the 
uxes of the � particles would have been

found with respect to the background deuterium 
ux, since the latter is close to zero.

Besides this, we note that the value of D�=[DMax(T� = Te)] obtained with the GA

standard case at Te = 10 keV is around 0.05, and therefore is larger than the value ob-

tained with the reference case applied in the previous sections in this work, for which

D�=[DMax(T� = Te)] = 0.034. This di�erence can be understood from Eq. (21). The

larger is the (complex) frequency of the unstable mode produced by the background plasma,

namely, roughly speaking, the more the mode is unstable, the larger is the number of fast

particles ful�lling the resonance condition and contributing to the fast particle transport.

The ITG mode of the GA standard case, with R=LT = 9, is signi�cantly more unstable than

the ITG mode of the reference case applied in this work with R=LT = 6, which explains this

di�erence. We note that such an e�ect is only partly included in our normalization for D�,

and would require an additional investigation of the dependence of D�=[DMax(T� = Te)]

as a function of the background plasma parameters, to be fully described. Such an inves-

tigation goes beyond the scope of the present work. We have however performed a set of

gyrokinetic calculations with GS2 and veri�ed that the curves shown in Figs. 2 and 3 are

not strongly modi�ed by limited variations of the background plasma parameters around

our reference case. This allows us to propose the �ts in Eqs. (32), (35) and (36) for rather

general purposes of � transport modelling.

In conclusion, in this section we have shown that no real strong disagreement is present

between the results of this work and those of Ref. [4]. In our opinion, this reconciles qualita-

tively the results of the latter Reference with those of previous works, in which a reduction
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of the di�usion rate was found with increasing energy of the particles. We believe that the

normalization for the � particle transport adopted in the present work is physically more

meaningful. Here the actual di�usivity (and not the 
ux or the e�ective di�usivity) of the

fast � particles is compared to the di�usivity that the particles would have if they were

thermal, at the same temperature as the background plasma, namely the di�usivity of He

ash.

XI. CONCLUSIONS

In this work, we have presented an investigation using a quasi{linear gyrokinetic model

for the transport of � particles with a slowing down equilibrium distribution function, in

small concentration. The explicit form of the gyrokinetic equation with such an unperturbed

distribution function has been derived and the consequences of this on the expression of the

quasi{linear particle 
ux have been identi�ed analytically and compared to the equivalent

Maxwellian case. It has been shown that the transport coeÆcients can be elegantly expressed

as integrals of an energy dependent kernel function, independent of the speci�c choice of the

equilibrium distribution, times the chosen equilibrium function, with the inclusion of related

auxiliary energy dependent functions, which are needed for the calculation of the convective

terms.

The new terms in the right hand side of the gyrokinetic equation provided by the slowing

down equilibrium distribution have been implemented in two gyrokinetic codes. Di�usive

and convective contributions to the total � particle 
ux have been computed numerically,

and a good agreement between the two codes has been found, ensuring the correctness of

the implementation. The dependences on the background plasma electron temperature, or

on the ratio of the birth energy of the � particles to the background temperature, have been

investigated. Small but non{negligible di�erences with respect to the equivalent Maxwellian

case have been found in the dependence of the � di�usivity on the bulk plasma Te. In the

range of electron temperatures predicted for the ITER standard scenario, the assumption
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of an equivalent Maxwellian, as made in Ref. [4], provides a reasonable approximation, with

di�usivities which di�er by less than 40 % as compared with those computed with a slowing

down distribution. Larger di�erences have been found in the dependences of the convective

coeÆcients. All these di�erences have been explained in detail as a direct consequence of

the presence of di�erent terms in the gyrokinetic equation introduced by the more realistic

assumption of a slowing down distribution function for the energetic � particles, consistently

with the results of the analytical derivation.

The main physical results of this work are that for electron temperatures Te < 20 keV,

the � particle di�usivity D� is at least 20 times smaller than the di�usivity � particles would

have if they were thermal at the same temperature of the background plasma, namely the

di�usivity of He ash. Moreover, it has been shown that, for a given value of the electron

temperature, the � particles are transported only in the very slow energy range of the

distribution, and no fast particle transport occurs above the slowing down critical energy.

Despite � particle di�usivities are a factor 20 smaller than He ash di�usivity, � particles

and He ash can have comparable 
uxes per particle, mainly as a consequence of the di�erent

density gradients, the � particle density being signi�cantly more peaked, as already pointed

out in Ref. [4]. By a detailed comparison, our results have been shown to be in agreement

with those presented in Ref. [4]. This reconciles the results of this Reference with those of

previous works, e.g. [8,10,11,3], which �nd a decrease of the fast particle di�usion rate with

increasing energy.

Inspired by the analytical derivation of the � particle 
ux, in which a kernel function

is introduced which captures the dependence on the energy variable, independently of the

speci�c shape of the equilibrium distribution function, a general procedure has been outlined

by which transport coeÆcients can be computed for whatever choice of the equilibrium

distribution. This utilizes a �tting formula of the energy dependence of the kernel function

for the fast particle di�usivity as a function of the energy variable in the velocity space. As

a demonstration, a simple analytical formula �tting this dependence as a function of the

dimensionless energy variable E=Te has been derived in Eq. (32). By simple integrations
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on the energy variable, the formula has been shown to provide di�usion coeÆcients in good

agreement with the original code results over a wide range of variation of the background

electron temperature, and with both the slowing down and the Maxwellian distribution

functions. A similar procedure is proposed to be used for direct applications in Fokker{

Planck and Monte Carlo codes, for instance in the calculation of the transport of beam and

radiofrequency accelerated ions.

A simple analytical expression for the � particle 
ux as a function of the ratio E�=Te

has been derived, which �ts the numerical results. This provides a transport model for �

particles, as a function of the background electron temperature pro�le, applicable in the

range 23 < E�=Te < 700, with plasma conditions not far from those predicted for the ITER

standard scenario. The transport model is reported in Eqs. (35,36).
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Table 1. Values of Te and corresponding values of E�=Te, T� and T�=Te used in the

gyrokinetic numerical calculations with GS2.

Te [keV] E�=Te T� [keV] T�=Te

5 700.0 692.1 138.4

8 437.5 772.7 96.6

10 350.0 814.6 81.5

15 233.3 896.1 59.7

20 175.0 957.3 47.9

30 116.7 1045.5 34.8

40 87.5 1107.1 27.7

60 58.3 1188.0 19.8

90 38.9 1256.9 14.0

150 23.3 1321.1 8.8

250 14.0 1361.0 5.4

500 7.00 1387.9 2.8

1000 3.50 1398.4 1.4

2000 1.75 1402.2 0.7

3500 1.00 1403.4 0.4

Table 1.
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Figure Captions

FIG. 1. (Color online) GS2 calculations of the growth rate as a function of the charge concen-

tration of the � particles for the reference case described in the text. The dashed{dotted vertical

line shows the concentration value adopted in all the other gyrokinetic calculations presented in

this paper.

FIG. 2. (Color online) Kernel function GD, de�ned in Eq. (26), as computed by GS2 for the

reference case parameters introduced in Sec. IV, as a function of the dimensionless energy variable

E=Te (solid line). The dashed curve shows the approximation with the �tting formula in Eq. (32).

In the inset, the curve computed by GS2 is plotted in logarithmic scale.

FIG. 3. (Color online) GS2 and GKW calculations of the di�usivity of the � particles for the

slowing down (circles, solid line) and the equivalent Maxwellian (squares, dashed line) cases as a

function of the electron temperature of the background plasma normalized to the di�usivity the �

particles have in case they are thermal, with T� = Te and a Maxwellian equilibrium distribution

function. The dash{dotted vertical line shows the temperature Te = 1401 keV for which T� = Te.

FIG. 4. (Color online) Dependence of the energy derivative of the di�usion coeÆcient (a-c) and

of the equilibrium distribution function (d-f) as a function of the energy variable in the velocity

space for both the slowing down (solid line) and the equivalent Maxwellian (dashed line) cases for

three di�erent values of the background electron temperature. The dashed vertical line shows the

slowing down critical energy.

FIG. 5. (Color online) GS2 and GKW calculations of the the convective coeÆcients CE� and

Cp� as a function of the background plasma electron temperature for the slowing down (circles,

solid line) and the equivalent Maxwellian (squares, dashed line) cases, as well as for the normal

Maxwellian (open squares, dashed line). The dash{dotted vertical line shows the temperature

Te = 1401 keV for which Te = T�.
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FIG. 6. (Color online) Dependence of the function KS(Ê) as a function of the background

electron temperature for di�erent values of the energy variable E=E�. Curves are labelled in the

plot.

FIG. 7. (Color online) Function HS(Ê) as a function of the energy variable E=E� for di�erent

values of the background electron temperature. Curves are labelled in the plot.

FIG. 8. (Color online) Di�usivity D� (a) and thermal convection coeÆcient CE (b) computed

with GS2 (full symbols) and recomputed using the formula in Eq. (32) for the kernel function GD,

along the integrals de�ned in Eq. (27) and Eq. (28) respectively (open symbols).

FIG. 9. (Color online) Flux of the � particles normalized to the 
ux of the background deuterium

(a) and � di�usivity normalized to the � thermal di�usivity, with a Maxwellian distribution, as a

function of the background electron temperature for the GA standard case.
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