
Locking of neoclassical tearing modes by error fields and its stabilization by

RF current

Q. Yu and S. Günter

Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany

The  locking  of  neoclassical  tearing  modes  (NTMs)  by  error  fields  is  studied

numerically.  In the regime with low mode frequency and large plasma viscosity, the required

field amplitude for mode locking is found to be proportional to the plasma viscosity and the

mode frequency but inversely proportional to the square of the magnetic island width and the

Alfven velocity, being similar to that of the classical tearing mode. This indicates that NTMs

will be locked to low amplitude error fields in a fusion reactor.  The stabilization of NTMs by

RF current  in  the presence of a  static helical  field  is  therefore further  investigated.   The

applied helical field allows to control the location of the island's o-point to be in the RF wave

deposition region, to enable the NTM stabilization by RF current after mode locking. When

the island is large enough to be locked by a small amplitude helical field in the desired phase,

the island is reduced to a smaller width by RF current compared to the case without the helical

field.  This suggests a possible way to enhance the stabilization of NTMs by RF current.

PACS: 52.35.Py, 52.35.Vd, 52.55.Tn, 52.35.-g
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1. Introduction 

Neoclassical tearing modes (NTMs) are found to limit the tokamak plasma pressure

well below the prediction of ideal magnetohydrodynamic (MHD) calculations for positive

magnetic shear [1-7].  In recent years much effort has been devoted to NTMs, to understand

the threshold for their onset and their effect on plasma performance [1-16].  Compared to the

m/n=3/2 mode or modes with higher mode numbers, the 2/1 NTM often leads to a stronger

degradation of plasma confinement or even to mode locking and disruption once the mode

amplitude is sufficiently large.  Therefore, an active stabilization of NTMs is required for a

fusion reactor.  

A straightforward method for stabilizing NTMs is to use localized RF current drive, to

fill the current hole caused by the disappearance of the bootstrap current inside the island.

Due to its localized deposition, Electron Cyclotron Current Drive (ECCD) is very appropriate

for  this  stabilization purpose  without  causing  a  significant  change  of  the  overall  plasma

current density profile.  It has been shown in tokamak experiments that localized ECCD can

stabilize NTMs as predicted by theoretical results [17-26].  In these experiments the rotating

magnetic island passes through the RF wave deposition region periodically when the radial

wave deposition is around the rational surface, and both modulated or non-modulated ECCD

can generate RF current around the island’s o-point,  being the effective current for mode

stabilization [22,24,25].  Even large amplitude rotating 2/1 NTMs can be stabilized if the RF

current around the island’s o-point is sufficiently large [19,20].

On  the  other  hand  it  is  well  known  that  the  intrinsic  error  field  of  tokamaks  or

externally applied resonant magnetic perturbations can have a significant effect on magnetic

islands [27-39].  Once the island is large enough, it will be locked to the error field.  Even if

the error field amplitude is sufficiently small, the helical current induced in the vacuum vessel

by an unstable mode will produce a helical field to act back on the island, leading to the mode

locking of a large island [27-29].  After the island's o-point is locked at a particular toroidal

and  poloidal  angle  by  the  error  field,  being  not  necessarily  covered  by  the  RF  waves
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deposition region, it becomes impossible to stabilize the NTM by RF current.  Therefore, it is

important to understand the threshold for NTM locking, in particular as locked 2/1 modes

often lead to major plasma disruptions [27,28].   

Most recent studies on the error field focused on the field penetration threshold. The

penetration  threshold  was  found  to  be  very  small,  typically  bra/Bt~10-4-10-3 on  existing

tokamaks, where bra is the radial component of the error field at the plasma edge r=a, and Bt is

the toroidal magnetic field [33-39].  The new experimental results indicated the important role

of the electron diamagnetic drift [38,39].  The penetration threshold has a minimum when the

applied helical field frequency is the same as the mode frequency being determined by both

the plasma rotation and the diamagnetic drift.  As the field frequency deviates from the mode

frequency, the threshold significantly increases and is  asymmetry on the two sides of the

minimum [38,39].  The nonlinear numerical results based on two fluids equations agree with

the experimental results, and the asymmetry is found to be resulted from the change of the

diamagnetic drift frequency due to  parallel transport [40].  These latest results provide new

insight into the mode penetration physics and could lead to a more reasonable prediction of

the mode penetration threshold of a fusion reactor.

Similar to mode penetration, the mode locking of NTMs is also an important issue for

a fusion reactor.  The required field amplitude for mode locking should be even smaller than

that  for  mode  penetration,  since  the  electromagnetic  force  to  stop  the  island  rotation  is

proportional to the amplitude of NTMs [27-32].  It will be shown in the present paper that the

mode locking threshold is proportional to the mode frequency but inversely proportional to

the square of the Alfven velocity.  Such a scaling indicates that low-m NTMs will be much

more easily locked by the error field in a fusion reactor than in existing tokamaks.   

In  the  first  part  of  this  paper  the  locking  of  NTMs  by  an  error  field  is  studied

numerically using large aspect-ratio tokamak approximation, focusing on the dependence of

the mode locking threshold on plasma parameters.   Both the parallel and the perpendicular

heat  transport  are  self-consistently  included  in  our  calculations  to  take  into  account  the
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bootstrap current perturbation, which is essential for modelling NTMs.  It is found that NTMs

will be locked at a small amplitude by the error field in a reactor plasma.  This means that in

order to stabilize a large amplitude NTM by RF current, additional measures are needed either

to maintain the island rotation or to control the phase of the locked island according to the RF

wave deposition.

This fact motivates the second part of the present work: the stabilization of NTMs by

RF current in the presence of an applied static helical field.  The actively applied field allows

to control the location of the island's o-point to be in the RF wave deposition region, to enable

the NTM stabilization by RF current after mode locking.  Although the helical field has a

destabilizing  effect  on  the  NTM, at  given  RF  power  the  effective  RF  current  for  mode

stabilization, the RF current around the island's o-point,  is  two times larger than that of a

continuous or modulated RF current  drive for a  rotating NTM.  The presented numerical

results show that the NTM is reduced to a smaller amplitude by the larger RF current in this

case compared to that without the helical field, if the island is large enough to be locked by a

small amplitude helical field in the desired phase.  Such an enhanced stabilizing efficiency of

the RF current is expected to be useful for the stabilization of NTMs, especially of the 2/1

NTM in a fusion reactor.

In  Section 2 our  numerical  results  on the locking of  NTMs by a helical  field  are

presented.  The stabilization of NTMs by the RF current in the presence of a helical field is

described in Section 3, and the summary is given in Section 4.

2. Locking of NTMs by error fields

2.1. The model

The large aspect-ratio tokamak approximation is utilized here.  The magnetic field is

defined as B=Btet-(kr/m)Bteθ+∇ψ×et, where ψ is the helical flux function, m/r and k=n/R are

the wave vectors in eθ (poloidal) and et (toroidal) direction, respectively, R is the major radius,

and m and n are the poloidal and toroidal mode numbers.   
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The  basic  equations  utilized here are Ohm's law, the equation of motion and the

energy conservation equation. Normalizing the length to the minor radius a, the time t to the

resistive time τR= a2µ0/η, the helical flux ψ to aBt, v to a/τR, and the electron temperature Te to

its value at the magnetic axis, theses equations become
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dt
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where d/dt=∂/∂t+v⊥⋅∇, j=∇⊥
2ψ-2nBt/(mR) and jb=-cb(r/R)1/2neTe′/Bθ being the toroidal plasma

current density and the bootstrap current density, respectively.  Bθ is the poloidal magnetic

field,  cb is a constant of the order of unity,  ne is the electron density,  η is the normalized

plasma resistivity, and E is the equilibrium electric field for maintaining the equilibrium plasma

current.  The magnetic Reynolds number S=τR/τA, where  τA=a/VA being the toroidal Alfven

time.  U=-∇⊥
2φ being the plasma vorticity, and  µ is the plasma viscosity.  χ|| and  χ⊥ are the

parallel and perpendicular heat conductivities, Sp is the heating power, and Sm in equation (2)

is the poloidal momentum source which leads to an equilibrium plasma rotation.

Equations (1)-(3) provide a simple model  for modelling the nonlinear evolution of

NTMs [41], which reduce to the MHD equations if jb=0 is taken in Ohm’s law to neglect the

bootstrap current. The plasma density and the ion temperature are assumed to be constant for

simplicity.  This greatly reduces the computation time compared to the case of solving two

fluids  equations  directly  [40].   From  the  physics  point  of  view  this  approximation  is

reasonable,  since  for  a  sufficiently  large  magnetic  island  the  plasma  density  and  ion

temperature profiles become flattening in the island region similar to the electron temperature

profile.  In this case the local diamagnetic drift frequency is nearly zero, and the bootstrap

current perturbation results  from the change of plasma density is  similar to that  of plasma

temperature.  While for the mode penetration being relevant to the small island, the difference
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between the heat and particle transport is significant.  The plasma density needs to be treated

separately in order to calculate the change of the electron diamagnetic drift frequency, which is

important in determining the penetration threshold [40].

The effect of the error field is taken into account by the boundary condition 

ψm/n (r=a) = ψaaBt cos(mθ+nφ), (4)

where ψa describes the normalized error field amplitude of the m/n component at r=a.  The

radial error field at r=a  is given by bra=mψaBt.  

A monotonic profile for the safety factor q is assumed with the q=3/2 surface located

at rs=0.575a and the local magnetic shear length Lq=q/(aq′)=0.57, based on ASDEX-Upgrade

parameters. Most calculations are done for the 3/2 mode.  For vanishing bootstrap current

perturbation the plasma is stable against m/n=3/2 (classical) tearing modes.  

2.2. Numerical results

Equations (1)-(3) are solved simultaneously using the initial value code TM1, which

has  been  used  for  modelling  the  nonlinear  growth  and  saturation  of  NTMs  and  their

stabilization by RF current earlier [25,41].  Dedicated numerical methods are utilized in the

code to keep the numerical error at very low level even for high values of S and χ||/χ⊥ [41-43].

Figure 1 demonstrates the nonlinear growth and saturation of a  m/n=3/2 magnetic

island driven by the bootstrap current, showing the normalized island width w/a as a function

of the normalized time t/τR.   The input  parameters are as follows: the magnetic  Reynolds

number S=108, the viscous time  τµ=a2/µ=0.1τR,  χ⊥=30a2/τR, and  χ||=3.0×1010a2/τR.  The local

equilibrium bootstrap current density fraction fb is 12.7 percent of the local plasma current

density.  These input parameters are also used for the following simulations except mentioned

elsewhere.  The solid (dashed) curve corresponds to an error field amplitude  ψa=5×10-8 (ψa

=10-7) of the m/n=3/2 component.  The islands grow and saturate with the saturated island

widths being only slightly different for these two cases, since the error field amplitude is quite
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small.  The island width is dominated by the perturbed bootstrap current and the equilibrium

plasma current density profile.

The corresponding time evolution of the mode frequency is shown in figure 2 by the

solid (dashed) curve for ψa=5×10-8 (10-7).  The island rotation results from the poloidal plasma

rotation  sustained  by  the  momentum  source  in  equation  (2).   For  ψa=5×10-8 the  mode

frequency oscillates around a finite value, indicating that the island still rotates.  For a larger

ψa,  ψa=10-7,  the  island  is  locked  to  the  error  field,  so  that  the  mode  frequency  finally

approaches zero.  The required field amplitude for mode locking is quite small due to the high

S number.

In figure 3 the radial profile of the 3/2 component of the helical flux,  ψ3/2, in steady

state is shown for ψa=10-7, where the solid (dashed) curve represents the real (imaginary) part.

The  ψ3/2 profile looks like that of an usual NTM [41].  The much smaller imaginary part

compared to the real one indicates a small phase shift between the mode and the error field,

being required for the balance between  the electromagnetic force exerted by the error field

and the friction from the surrounding plasma on the magnetic island. 

Corresponding to figure 1, radial profiles of the m/n=0/0 component of the poloidal

plasma velocity in steady state are shown in figure 4 by the solid (dotted) curve for ψa=5×10-8

(10-7).  For the locked case with ψa=10-7, the local velocity near the rational surface is brought

to zero, while for ψa=5×10-8 the local velocity oscillates around a finite value, as shown by the

two solid curves for t=0.09680 and 0.09681τR, respectively.  Such an oscillation corresponds

to the oscillation of the mode frequency as shown in figure 2.  Away from the rational surface

the velocity only slightly changes.  The dashed curve shows the original equilibrium velocity

profile. 

 The radial profile of the m/n=0/0 component of the electron temperature in steady

state is  shown in figure 5 by the solid curve for  ψa=10-7.  The local temperature gradient

reduces to nearly zero around the rational surface due to the fast parallel transport, since the
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island  width  is  sufficiently  large  [43].   This  indicates  that  the  ion  polarization  current

associated with the diamagnetic drift can be neglected for a sufficiently large island.  The

dotted curve shows the original equilibrium temperature profile.  The temperature profile for

the case ψa=5×10-8 is essentially the same as that for ψa=10-7, since island widths are about the

same for these two cases as seen in figure 1.

To study the dependence of the mode locking threshold on plasma parameters,  in

figure 6 the required ψa to lock the island is shown as a function of the magnetic Reynolds

number S in the log(ψa)~log(S) plane.  The solid circles show the ψa leading to mode locking,

while the empty squares show the ψa for which the mode is not locked yet.  The mode locking

threshold is between these two curves.   The required  ψa to lock the NTM is found to  be

proportional to S-2.  Since the mode locking is due to the electromagnetic force exerted by the

error  field  on  the  island,  this  force  is  proportional  to  S2 when  keeping  other  parameters

unchanged as seen from equation (2).  Calculations have also been carried out for the same S

value but different plasma resistivity, and the obtained mode locking threshold is the same.

The  locking  threshold  is  therefore  proportional  to  VA
-2 but  is  independent  of  the  plasma

resistivity, being different from the error field penetration.

For  obtaining  the  above  and  the  following  results,  the  momentum  source  Sm in

equation (2) is taken to be the form Sm~[1-(r/a)2]2.  Other forms of Sm, such as Sm~[1-(r/a)2]3

and Sm~[1-(r/a)2]18, have also been used for comparison.  The obtained results are found to be

the same as long as the equilibrium rotation velocity at the rational surface are taken to be the

same.   This  indicates  that  the  detail  radial  profile  of  Sm has  little  effect  on  the  locking

threshold.  For checking numerical convergence, up to 3000 radial grid points and 30 Fourier

components have been utilized.

In figure 7 the required ψa to lock the island is shown as a function of the normalized

island width w/a.  The solid circles (empty squares) show the ψa for which the mode is locked

(not locked).  The different saturated island width results from different input values of the
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bootstrap current density fraction fb.  The slope of the curve shows that the required ψa for

mode locking is  proportional to w-2, as the electromagnetic  force applied on the magnetic

island is proportional to the amplitude of the NTM.

For mode locking, the electromagnetic force to stop the island rotation has to balance

the plasma viscous and inertia forces.  Figure 8 shows the mode locking threshold, log(ψa)

versus log(µ), where  µ is normalized plasma viscosity in the unit of a2/τR. The solid circles

(empty squares) show the ψa for which the mode is locked (not locked).  The required ψa for

mode locking is proportional to the plasma viscosity µ for large µ, but its dependence on µ is

weak for small µ.  In the large µ region the viscous force dominates over plasma inertia, so

that the required ψa to lock the island is proportional to µ.  In the small µ region the plasma

viscous force is not important, and thus the locking threshold changes little with decreasing µ.

Figure  9  shows the  mode  locking  threshold  versus  the  normalized  island  angular

rotation  frequency  ωτR for  two  cases,  τµ=0.1τR and  τµ=10-4τR.   The  solid  circles  (empty

squares) show the ψa for which the mode is locked (not locked).  For τµ=0.1τR the required ψa

for mode locking approximately linearly increases with increasing  ω for small  ω, while for

large ω the required ψa increases faster since plasma inertia becomes more important.  For τµ

=10-4τR the required  ψa for mode locking is again proportional  to  ω, because  the effect of

plasma inertia is weaker than that of the plasma viscosity in this case.  

Calculations have also been carried out for the m/n=2/1 mode.  An example is given in

figure 10,  in  which the mode locking threshold versus  ωτR is  shown for  three  cases:  the

bootstrap current density fraction fb=0 and 0.052 for  τµ=10-4τR,  and fb=0.052 for  τµ=10-2τR.

The saturated island widths are 0.097a and 0.157a for fb=0 and 0.052, respectively.  The solid

circles (empty squares) show the ψa for which the mode is locked (not locked).  It is seen that

the required ψa for mode locking linearly increases with ω for a small τµ or ω, similar to what

has been found for the 3/2 mode.  Same scaling,  ψa~ωτR, is obtained for both the classical
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tearing modes (fb=0) and the NTM (fb=0.052).  The smaller value of ψa required to lock the

NTM is due to its larger saturated island width.

2.3. Discussion on mode locking

For a fusion reactor the plasma rotation velocity is expected to be low, since neutral

beam injection (NBI) heating is not needed for a burning plasma.  The plasma rotation velocity

could be of the order of the diamagnetic drift velocity.  The momentum confinement time of

tokamak plasmas is usually about the same as the energy confinement time, indicating that the

plasma  viscosity  is  anomalous  as the  heat  conductivity.   The  results  obtained in  the last

section show that, for a sufficiently low plasma rotation frequency and a large viscosity, the

required ψa for mode locking scales as ψa~µω(VAw/a)-2.  Using the numerical results obtained,

the mode locking threshold of the m/n=3/2 mode is found to be

 ψa  = 75µω(VAw/a)-2, (5)

where µ is in the unit of m2/s, VA in m/s, and ω in s-1.

Equation (5) results from the reduction of the poloidal island rotation by the poloidal

electromagnetic force.  In tokamak experiments due to neoclassical effects the plasma rotation

is  mostly  in  toroidal  direction.   This  will  lead  to  two  modifications  [27,28]:  (a)  The

electromagnetic force to slow down the island rotation in the toroidal direction is smaller by a

factor (n/m)(rs/R) compared to  that in  the poloidal direction.  (b) To have the same mode

frequency due the plasma rotation, the toroidal rotation speed should be (m/n)(R/rs) times larger

than the poloidal  one.  These two effects lead to  a  larger ratio of the viscous force to  the

electromagnetic force, by a factor [(m/n)(R/rs)]2 for the toroidal rotation case.  Equation (5) is

therefore modified to  

 ψa = 75µω[(R/rs)(m/n)] 2(VAw/a)-2. (6)

Equation (6) implies that the NTM will be more easily locked for a lower plasma mass

density, viscosity and mode frequency.  A larger island width, minor radius of the rational

surface and toroidal magnetic field also decrease the mode locking threshold.
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For  ASDEX-Upgrade  parameters  with  Bt=2T,  a=0.5m,  R=1.7m,  ne=5×1019m-3,  µ

=0.5m2/s, w=0.1a, mi=2mp, r3/2=0.58a, and f=ω/2π=10kHz, it is found from equation (6) that

the mode locking of the m/n=3/2 mode occurs when 

brn ≡ bra/Bt = 1.64×10-3. (7)  

This value is larger than the intrinsic error field of ASDEX-Upgrade.  The result is consistent

with the experimental observation that 3/2 NTMs are not locked on ASDEX-Upgrade.

For a fusion reactor like ITER, assuming Bt=6T, a=2m, R=6m, f=1kHz, and the other

parameters as mentioned above, it is found that the m/n=3/2 mode is locked when 

brn = 2.48×10-5.  

For the 2/1 mode, assuming r2/1=0.75a and f=0.42kHz [19], one finds 

brn = 4.38×10-6.  

where the relation ψm/n(r)~(r/a)m is utilized.

It is seen that the low-m NTMs will be locked by a small error field in a fusion reactor.

If the error field amplitude of the m/n=2/1 component is assumed to be b rn=10-4, the 2/1 island

will be locked for w≥0.021a.  When the effect of a resistive vacuum vessel is further included,

the island will be locked at an even smaller width.  Using an analytical model it was found

that the 2/1 island will be locked to the vacuum vessel for w≥0.025a in ITER [19].  These

results  indicate that  NTMs will  stop rotation at  a  small  amplitude in  a  fusion reactor,  in

contrast to the observations on existing tokamaks.  

If plasma turbulence is absent around the rational surface, then the plasma viscosity is

determined by the neoclassical transport, µ≈0.1q2νiρi
2, where q is the safety factor, νi is the ion-

ion collision frequency, and ρi is the ion Larmor radius [44].  For the ITER plasma with Ti=10

kev and other parameters as mentioned above, one finds µ=0.17×10-3  m2/s (µτR/a2= 0.024)  at

r=r2/1.  This value is more than three orders of magnitude lower than that used above (µ=0.5×

10-3  m2/s or µτR/a2=70), leading to a locking threshold to be approximately ten times smaller,

when  taking  into  account  of  the  slow decrease  of  the  locking  threshold  with  decreasing
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plasma viscosity in the smaller µ regime as seen from figure 8 .

3. Stabilization of NTMs by ECCD in the presence of a helical field

Once the island is large enough to be locked at a particular toroidal and poloidal angle

by the intrinsic machine error field, its o-point is not necessarily in the region covered by the

RF waves deposition.  In this case the RF current would have essentially no stabilizing effect

[22,24,25].  In order to stabilize a large amplitude NTM by RF current for a reactor plasma,

additional methods are needed either to maintain the island rotation or to control the island's

phase required by RF wave deposition after mode locking.  

For  maintaining  the  island  rotation  one  could  use  NBI  as  a  momentum  source,

although NBI heating is not necessary for a burning plasma.  Another possible way to rotate

the island is to use a rotating helical field.  Since the 2/1 island can be locked by a small

amplitude error field in a reactor plasma, an applied rotating helical field of a small amplitude

would in turn be able to rotate the island.  

A static helical field of an appropriate phase and amplitude can be used to ensure the

island's o-point location to be in the RF wave deposition region, so that the RF current can

still play a stabilizing role after the mode locking to the actively applied helical field.  This

issue is investigated in the following. 

3.1 Model for RF current

To study the stabilization of NTMs by RF current in the presence of a static helical

field, equations (2)-(4) are still used, but equation (1) is modified to

)( db jjjE
dt

d −−−= ηψ
, (8)

where the RF driven current density jd is included into Ohm's law [24,25].

 Due to the spacial diffusion of fast electrons, the RF current density depends on both

the wave deposition region and the transport of the fast electrons generated by the RF wave.
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An appropriate model for describing the RF current density profile has to include the RF

current source as well as the parallel and the perpendicular transport of the fast electrons.

Following reference [25] the fast electron density is described by the equation 

),()()( |||| ffsfff
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∂
∂

⊥⊥ υχχ (9)

where nf, νf
-1, χ||f and χ⊥f are the density, the slowing down time, the parallel and perpendicular

transport coefficients of the fast electrons.   nfs is the fast electron source due to the RF waves

given by [24,25]   
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where nfs0, wds and rds specify the magnitude, the radial half-width and the deposition radius of

the source, respectively.  

Π(h0) in equation (10) is a square box function for describing the instantaneous wave

deposition  along  the  helical  angle  h=mθ+nφ [24,25],  being  defined  as  Π(h0)=1  for

hon<h0<hoff, and  Π(h0)=0 elsewhere.  h0 is the instantaneous helical angle of the island's o-

point, and hon (hoff) is the helical angle at which the RF wave is turned on (off).  The wave

deposition region is chosen to be centered at h=0 with a width ∆h along the helical angle, and

hon=-π/2 and hoff=π/2 are used.  This leads to Π(h0)=1 (Π(h0)=0) when the island's o-point (x-

point) is close to h=0, corresponding to modulated current drive (MCD) for a rotating island,

being more effective for stabilizing rotating NTMs than continuous current drive if the radial

RF wave deposition width is larger than the island width [22,45]. The phase of the applied

helical field is chosen to lock the island's o-point at h=0, which allows the RF current to be

around the island's o-point to stabilize the NTM after mode locking. 

Assuming that the driven current density is proportional to the fast electron density,

jd~nf, the total driven current Id is obtained by integrating jd over the plasma cross section.

Similarly,  the RF source  current,  Ids,  is  obtained by assuming the source current  density
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jds~nfs0 and integrating jds over the plasma cross section.  The half width wds and the total RF

source current Ids can be given by a ray-tracing code and a Fokker-Planck code [24]. 

3.2 Numerical results

The time evolution of the m/n=3/2 NTM frequency is shown in figure 11 for three

cases, brn=0, 9×10-7, and 3×10-6, respectively.  The input parameters are as follows: fb=0.063,

Ids/ IP =0.03, wds/a=0.1, ∆h=0.482, νf=4×103/τR, χ⊥f =1.0a2/τR, and χ||f/χ⊥f =1010,  where IP is the

total plasma current.  The minor radius of the RF current density peak, rds, is chosen to be at

the q=3/2 rational surface rs.  The other parameters are the same as those for figure 1.  For

vanishing  error  field  (brn=0)  the  normalized  mode  frequency  ωτR=-1.2×104,  being  only

determined  by  the  equilibrium plasma  rotation.   For  a  small  brn (brn=9×10-7),  the  mode

frequency oscillates around the equilibrium value.  A further increase in brn (brn= 3×10-6) leads

to mode locking to the applied static helical field.

For the parameters used in figure 11, the time evolution of the normalized RF current,

Id/Ip, is shown in figure 12 for brn=0, 9×10-7, and 3×10-6, respectively.  The RF current Id rises

in a time scale of νf
-1 and oscillates afterwards around 0.5Ids  for brn=0 and 9×10-7.  In these

two cases the island is rotating, and the source term in equation (10) is turned on for half the

time only when the island's o-point is close to the RF wave deposition region around h=0.

For a sufficiently large helical field (brn= 3×10-6 ), the island's o-point is locked by the field at

h=0, so that the RF current is always turned on, leading to Id=Ids.

The corresponding time evolution of the normalized island width w/a is  shown in

figure 13 for brn=0, 9×10-7, and 3×10-6, respectively.  The saturated island width increases a

little for a small brn (brn=9×10-7) compared to the case with brn=0.  For a sufficiently larger brn

(brn=3×10-6 ), however, the saturated island width is significantly smaller than that obtained

with brn=0, showing an enhanced stabilizing effect of the RF current in this case.  This is due

to the two times larger Id for the case brn=3×10-6 as seen in figure 12, so that the stabilizing
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effect by the RF current is larger.   

To compare the destabilizing effect of the helical field to  the increased stabilizing

effect due to a larger RF current, the saturated island width is shown as a function of brn in

figure 14 for two cases.  The first case shown by the solid line with squares is obtained with

fb=0.063, Ids=0.03 and wds=0.1a.  The straight dotted line shows the corresponding saturated

island width w=0.048a obtained for brn=0.  It is seen that the island width is smaller than that

obtained without the helical field in the region 10-6<brn<4.5×10-4.  In this region the island is

locked by the helical field, so that the stabilizing effect of the RF current is larger due to a

larger RF current.  For brn>4.5×10-4, the destabilizing effect of the helical field is too strong,

leading to a larger island width than that obtained with brn=0.  The second case shown by the

solid line with circles is obtained for fb=0.19, Id=0.02 and wds=0.04a.  The straight dashed line

shows the corresponding saturated island width w=0.074a obtained for brn=0.  The island

width is smaller than that obtained without the helical field in the region 10-6<brn<1.8×10-3.

The upper limit of the enhanced stabilization region extends to a larger value of brn compared

to the first case, since the helical field is less important in determining the island width for a

higher fraction of the bootstrap current density.  The increased stabilizing effect is  nearly

fully reached for 10-5<brn<10-4, and such a magnitude of brn is able to lock the 3/2 and the 2/1

NTM rotating in the toroidal direction in a fusion reactor as seen from Section 2.

3.3 Discussion on NTM stabilization by RF current

For m/n=2/1 NTMs, similar results to those shown in figure 14 are obtained. Above

results show that despite the destabilizing effect of the helical field, by choosing an optimum

phase of the island with respect to the RF current, the overall effect can be stabilizing due to

the two times larger RF current around the island's o-point.  These results indicate that the

helical field can not only be used to adjust the island phase after mode locking to the intrinsic

machine error field, it can also be actively utilized to increase the stabilizing efficiency of

NTMs by RF current.  Such a method is expected to be useful for  stabilizing large amplitude
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NTMs, especially the 2/1 NTM, in plasmas with a high bootstrap current fraction.  A possible

application of this method is the avoidance of disruptions caused by large locked islands.  

If the helical field causes a decrease in the frequency of a rotating NTM such that  the

rotation period is longer compared to the slowing down time of the fast electrons, a larger

stabilizing effect on a rotating NTM by the RF current is also expected  [24,25].   

4. Summary

 The mode locking of NTMs and its stabilization by RF current is investigated in the

present paper  using  large aspect-ratio tokamak approximation. The toroidal mode coupling

and Glasser effect are neglected under this approximation.  These effects are however not

expected to be significant if the considered mode is dominant [6].  Future work to use a full

toroidal geometry would allow to further take into account these effects and to give a more

precise  mode locking threshold.  In addition, using an equilibrium toroidal plasma rotation

rather than a poloidal one would be helpful to compare with equation (6).  Only single helicity

is used in our calculation.  This holds if the amplitude of the principal mode is much larger

than that of other modes, while the error field amplitude of the corresponding helicity is larger

than or comparable to that of other helicities.  The ion polarization current associated with the

diamagnetic  drift  is  neglected,  being  valid  for  a  sufficiently  large  island  that  the  radial

electron pressure profile is flattened across the island [43].  The effect of the plasma beta

value on the mode locking is implicitly included by the island width.  The saturated island

width is larger for a higher fraction of bootstrap current density fraction at the rational surface

or  a  higher  beta  value,  so  that  the  corresponding  locking  threshold  is  lower.   To  our

knowledge, the exact value of plasma viscosity of a reactor plasma is not known, although the

viscosity is expected to be at the level of the anomalous perpendicular heat conductivity.  This

leads to somewhat uncertainty in predicting the precise locking threshold of a fusion reactor.  

In summary, the locking of neoclassical tearing modes by an error field is studied by

numerical modelling.  It is shown that for a low mode frequency and a large plasma viscosity,
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the mode locking threshold is proportional to the plasma viscosity and mode frequency but

inversely proportional to  the square of the Alfven velocity  and the island width.   Such a

scaling is the same as that of the classical tearing mode.  The low-m NTMs is expected to be

locked by a small amplitude error field in a reactor plasma.

The stabilization of NTMs by RF current in the presence of an applied static helical

field is therefore further investigated.  It is found that an actively applied field for controlling

the island phase  can enhance the  stabilizing effect  of the  RF current.   Such a method is

expected  to  be  useful  for  the  stabilization of  large  amplitude  NTMs,  especially  m/n=2/1

NTMs, in a fusion reactor.
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CAPTION

Figure 1 Normalized  island  width  w/a  versus  the  normalized  time  t/τR.   The  solid

(dashed) curve corresponds to an error field amplitude of ψa=5×10-8 (ψa=10-7).  

Figure 2 Corresponding to figure 1, time evolution of the mode frequency for ψa=5×10-8

(solid curve) and 10-7 (dashed).  For ψa=5×10-8 the mode frequency oscillates around a finite

value.  For ψa=10-7 the island is locked by the error field.

Figure 3 The radial profile of  ψ3/2 in steady state for ψa=10-7. The solid (dashed) curve

represents the real (imaginary) part.  The smaller imaginary part (compared to the real one)

indicates a small phase shift between the mode and the error field. 

Figure 4 Radial profiles of the m/n=0/0 component of the poloidal plasma velocity in

steady state  for  ψa=5×10-8 (solid) and 10-7 (dotted).  The dashed curve shows the original

equilibrium profile. For ψa=5×10-8 the local velocity around the rational surface oscillates as

shown by the two solid curves for t=0.09680 and 0.09681τR, respectively.  

Figure 5 The radial profile of the m/n=0/0 component electron temperature in steady

state for  ψa=10-7.  The dotted curve is the original equilibrium one.  The local temperature

gradient around the rational surface reduces to nearly zero.

Figure 6 (color online) The required ψa for mode locking versus the magnetic Reynolds

number S.  The solid circles (empty squares) show the ψa for which the mode is locked (not

locked).  The mode locking threshold is proportional to S-2.   

Figure 7 (color online) The required ψa for mode locking versus the normalized island

width w/a.  The solid circles (empty squares) show the ψa for which the mode is locked (not

locked).  The mode locking threshold is proportional to w-2. 

Figure 8 (color online) The required ψa for mode locking versus plasma viscosity µ (in

the unit a2/τR). The solid circles (empty squares) show the  ψa for which the mode is locked

(not locked).  The mode locking threshold is proportional to µ for large µ, but the dependence
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on µ is weak for small µ.  

Figure 9 (color online) The required ψa for mode locking versus the normalized island

angular rotation frequency ωτR for two cases, τµ=0.1τR and τµ=10-4τR.  The solid circles (empty

squares) show the ψa for which the mode is locked (not locked).  The mode locking threshold

is linearly proportional to ω for small τµ or ω.

 Figure 10 (color online) The required ψa for mode locking versus ωτR for the 2/1 mode

for three cases: fb=0 and 0.052 for  τµ=10-4τR, and fb=0.052 for  τµ=10-2τR.  The solid circles

(empty squares) show the  ψa for  which the mode is  locked (not locked).  The results  are

similar to that of the 3/2 mode. 

Figure 11 The time evolution of the m/n=3/2 NTM frequency for brn  = 0, 9×10-7 and 3×

10-6, with Ids/Ip=0.03, wds/a=0.1, χ⊥f=1.0a2/τR, ∆h=0.482, νf=4×103/τR, χ||f/χ⊥f=1010, rds=rs, and fb

=0.063.  The other parameters are the same as those for figure 1.  

Figure 12 Corresponding to figure 11, the time evolution of the normalized RF current,

Id/Ip, for brn  = 0, 9×10-7 and 3×10-6.  Id rises in a time scale of νf
-1 and oscillates later around

0.5Ids for brn=0 and 9×10-7.  For brn=3×10-6, the island's o-point is locked at h=0, so that Id=Ids.

Figure 13 Corresponding to figure 11, the time evolution of the normalized island width

w/a for  brn  = 0, 9×10-7 and 3×10-6.  For  brn=3×10-6, the island width is significantly smaller

than that obtained with  brn=0, showing an increased stabilizing effect of the RF current. 

Figure 14 The saturated island width versus log(brn).   The line with  squares (circles)

corresponds to fb=0.063, Ids=0.03 and wds=0.1a (fb=0.19, Ids=0.02 and wds=0.04a).  The straight

dotted and dashed lines show the corresponding island widths for brn=0.  The island width is

smaller than that obtained with brn=0 for a certain range of brn, up to brn<1.8×10-3  for fb=0.19.
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