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Abstract. The frequency behaviour and localization of the geodesic acoustic mode
(GAM), believed to be a coherent plasma turbulence-generated Er × BT zonal flow
oscillation, is studied in the ASDEX Upgrade tokamak using Doppler reflectometry. In
typical elongated (1.4 < κ < 1.75) plasmas with an X-point divertor configuration the
GAM is observed only in the edge density gradient region 0.95 < ρpol < 1.0 between the
density pedestal top and the flux surface boundary. The GAM frequency (5− 25 kHz)
is found to scale linearly as ω = Gcs/Ro (sound speed over major radius) but with an
inverse dependence on the plasma elongation κ and a weak direct dependence on the
safety factor q. The lower the GAM frequency the more important it is expected to
become in moderating the turbulence via shear decorrelation. A heuristic scaling law
for the frequency scale factor G ∼ O(1) involving κ and finite aspect ratio ε terms has
been obtained from dedicated parameter scans. For circular plasmas κ ∼ 1 touching
the limiter the density pedestal is weakened and the GAM is seen to reach in radially
as far as ρpol ∼ 0.75, depending on the q profile, with a frequency scale G →

√
2

consistent with theoretical predictions. Radially the GAM frequency is not a smooth
function but displays a series of plateaus a few cm wide coinciding with peaks in the
GAM amplitude, suggesting several zonal flow layers. At the plateau edges the GAM
spectral peak splits into two frequency branches.
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1. Introduction

The current interest in zonal flows (ZF) and associated geodesic acoustic modes (GAMs)

in magnetic confinement devices is motivated by their association with turbulence

and plasma confinement. Analytic theory and numerical turbulence simulations, e.g.

[1, 2], predicted the formation of static and oscillating Er × B poloidal plasma shear

flows driven, not directly by the temperature and density gradients, but by non-linear

interactions in gradient driven plasma turbulence (e.g. via Reynolds stress etc.) [3, 4].

These turbulence driven flows may in-turn moderate the turbulence, and hence affect the

plasma transport, via either shear de-correlation (radial shearing of turbulence eddies

which reduces the turbulence radial correlation length) or by acting as an energy sink

[5, 6]. Aside from sheared mean flows (non-oscillating, non-localized: ω = 0, kr = 0),

there are zonal flows (quasi-stationary but radially localized: ω ≈ 0, kr 6= 0) and

oscillating flows at the geodesic acoustic frequency (a few kHz) (ω 6= 0, kr 6= 0) [7]. Both

ZF and GAM flow perturbations have an axisymmetric (m = n = 0) mode structure

but a finite radial extent (kra� 1), are essentially electrostatic (i.e. no strong magnetic

component), and appear only on closed flux surfaces.

In the case of the GAM the flow perturbation couples via the geodesic curvature

of the magnetic field to an axisymmetric pressure sideband mode (m = ±1, n = 0),

the combination of which creates the eigenmode oscillation. Although the GAM is in

general forced by the turbulence over a broad range of frequencies [8], it has a natural

frequency, ωGAM. For a large aspect ratio, Ro � a, circular plasma Winsor [9] derived

the mode frequency:

ωGAM = 2π fGAM = (2 + q−2)1/2 cs/Ro, (1)

where cs =
√

(Te + γi Ti)/Mi is the ion sound speed and Ro is the plasma major

radius. However, for non-circular plasmas experimental measurements show substantial

deviations from this simple prediction. For example, initial measurement using Doppler

reflectometry on the ASDEX Upgrade tokamak (a/Ro = 0.5/1.65 m) show the GAM

frequency scaling inversely with the plasma boundary elongation κb and directly with

the tokamak edge safety factor q95 [11]. A similar decrease in ωGAM with increasing κ was

observed on the DIII-D tokamak (a/Ro = 0.6/1.7 m) using beam emission spectroscopy

with ωGAM ∼ cs/Ro, i.e. no
√

2 factor, but with an additional inverse dependence on

q [12]. Other shaped machines, such as the JFT-2M tokamak (a/Ro = 0.35/1.31 m)

report ωGAM ∼ cs/Ro using heavy ion beam probes (HIBP) [14], while for Langmuir

probes ωGAM ∼ 2cs/Ro for κ < 1.7 [15]. Conversely, for circular machines a scaling

closer to Winsor’s is seen: TEXT using HIBP [16], T-10 (a/Ro = 0.3/1.5 m) using

HIBP [17], TEXTOR (a/Ro = 0.47/1.75 m) using reflectometry [18], HT-7 (a/Ro =

0.27/1.22 m) using probes (although with large scatter) [19], and the HL-2A tokamak

(a/Ro = 0.4/1.65 m) in divertor configuration with close to circular shape using probes

[13]. Note for this comparison the same definition of cs has been employed, where

possible, with an ion specific heat ratio γi = 1.
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It is important to understand the behaviour of the GAM frequency since the GAM

may impact on the E × B shearing rate and hence turbulence reduction; providing

its frequency is lower than the inverse turbulence decorrelation time fGAM < 1/τd
[5, 20, 21, 22, 23]. If the GAM frequency is reduced by plasma shaping then it may

become more important to the effective shearing rate and thus in reducing the turbulence

radial correlation length [20].

Most analytic formulations and modelling of the GAM properties have addressed

large aspect ratio R� a perfectly circular plasmas: e.g. fluid models [9, 10, 24, 25, 26]

or drift kinetic equations [27]. The first detailed discussion of shaping effects appears

in the work of Watari [22] which expands the kinetic drift equation to generic helical

systems using a Fourier expansion of the magnetic field. With some simplifications

to the dispersion relation the GAM frequency for a tokamak with a single dominant

Fourier component can be shown to scale inversely with the κ. However, in general

several Fourier components are required necessitating a numerical solution. Hallatschek,

using a two-fluid approach, derives a frequency involving the ratio of two geometrical

coefficients for the kinetic and compressional energy [23, 28]. For an elliptic Miller-

equilibrium in the high aspect ratio limit the coefficients can be expressed analytically,

but, in general they must also be solved numerically. Nevertheless, indications of ωGAM

decreasing with increasing κ were found together with a sensitivity to the differential

Shafranov shift dR/dr [23].

GAM parameter dependence has also been investigated numerically using the gyro-

kinetic code orb5 [29]. Here the effect of elongation appeared weak but stronger

effects from triangularity δ and finite inverse aspect ratio ε = r/R were observed.

Kendl, however, using a gyro-fluid electromagnetic model with drift wave turbulence

and realistic (ie. experimental based) equilibria found a stronger κ dependence for the

frequency [30].

An experimental investigation of GAM frequency dependence is more complicated

since the shape parameters are generally interrelated; for example, the triangularity

tends to increase with elongation, along with the q profile and magnetic shear etc. -

unless the plasma current is adjusted to compensate. Here, results from systematic

parameter scans in the ASDEX Upgrade tokamak using Doppler reflectometry are

presented. Based on the scan results and theory input several heuristic scaling models

for the GAM frequency are formulated and tested against the full database of GAM

measurements. A clear separation in the GAM frequency behaviour is found depending

on the presence or absence of a strong density pedestal, e.g. large radial second

derivatives ∂2/∂r2 in the profiles. For a weak pedestal in a circular limiter plasma

the GAM extends towards the core with a frequency scaling approaching the theoretical

prediction, however, in the edge density gradient region the scaling becomes anomalous

with an apparent (1 + κ)−1 dependence. Note that the detailed study presented here

updates the preliminary experimental results on the GAM shape dependence reported

in references [31, 32]. Likewise, parameter effects on the GAM amplitude have also been

observed (cf. [32]) but will be reported in more detail in a subsequent paper.



GAM scaling and localization 4

−2 −1 0 1 2
Frequency (MHz)

−4

−2

0

Local
Oscillator

Mixer

Tx

Rx

Acosφ Asinφ

     IQ
detector

fo

f LO

f     = f  − fref o LO

f   + ∆fo

f  − f     + ∆fo LO

v*i
vi∇B

O.⊗
BtIp

X-mode
antennas

Er
~

O-mode
antennas

u~⊥

Microwave 
source

Refl.

Bragg

fD

Α

lo
g 

S
(f

)

(a) (b)

Figure 1. (a) Schematic of a Doppler reflectometer channel with tokamak poloidal
plane showing positions of O and X-mode antenna pairs, and (b) example complex
amplitude reflectometer spectrum from a typical ohmic discharge.

2. Measurement technique

The diagnostic approach is to measure the frequency and amplitude of coherent

oscillations in the E × B plasma flow velocity using microwave Doppler reflectometry.

Figure 1 shows a schematic of the diagnostic technique. A microwave beam is launched

into the plasma with a deliberate tilt angle θo to the flux surface. As the beam

propagates it is refracted and eventually reflected at the cutoff condition (when the

refractive index squared is a minimum: N2 ≈ sin2 θo for a flat cutoff layer). If there

is sufficient turbulence at the cutoff region with a wavenumber satisfying the Bragg

condition k⊥ = 2koN ≈ 2ko sin θ (where ko is the microwave wavenumber) then a signal

is back-scattered to the diagnostic receiver antenna. Further, any movement of the

turbulence will generate a Doppler frequency shift, fD = u⊥k⊥/2π, in the received signal

where u⊥ = vE×B + vphase is the perpendicular (to the static magnetic field) velocity

of the turbulence moving in the plasma [33]. Since the measured velocity contains the

E×B velocity, any fluctuations in Er will appear directly as fluctuations in the Doppler

shift frequency. In this technique the turbulence is essentially used as a tracer to access

the flow perturbations. Coherent density fluctuations (MHD) can also appear in fD,

but as they also modulate the backscattered signal amplitude A (a measure of ñe at the

selected k⊥) they can be discriminated.

The diagnostic used on ASDEX Upgrade (AUG) consists of two heterodyne

reflectometers with variable launch frequencies between 50− 75 GHz in O and X-mode

polarization [33]. The measurement location, which is obtained using a beam tracing

code and spline fitted density profiles incorporating DCN interferometry, Thomson

Scattering, Lithium-beam and FM profile reflectometry data, can be typically scanned

from the plasma edge to around mid-radius on the tokamak low field side [34]. The

antennas are fixed with typical tilt angles around θo ∼ O(18o) which translates to a
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Figure 2. Edge Doppler frequency fD and amplitude A spectra during (a) divertor
κb = 1.59 and (b) inner limiter κb = 1.42 phases of BT = 2 T / Ip = 0.8 MA ohmic
discharge #20737.

typical probed k⊥ ∼ 8 cm−1. In-phase (I = A cosφ) and Quadrature (Q = A sinφ)

signals (allowing phase and amplitude separation) are sampled at 20 MHz, from which

the complex amplitude spectrum S(f) is computed. Figure 1(b) shows a typical example

from an ohmic discharge. The Doppler shift is extracted from a weighted mean and the

signal amplitude from the spectral integral. By sliding an FFT window (256 points)

through the data stream a time sequence of fD and A fluctuations can be generated.

Full details of the analysis technique are given in [11].

3. GAM features

Nearly all ohmic and L-mode (neutral beam and electron cyclotron resonance) heated

AUG discharges display large coherent oscillations or modes in the fD spectra between

5− 25 kHz with an intensity of 1 to 2 orders of magnitude above the background. The

oscillations appear even in the absence of MHD activity and are generally seen in the

edge density gradient region of standard lower single-null diverted discharges - where

the turbulence vorticity and Er shear are largest [11]. No coherent activity is seen in the

open-field SOL region (f−1 spectra), nor deep in the plasma core region (flat spectra).

The mode has the features expected of a GAM, its frequency scales linearly with the

ion sound speed cs with no dependence on either the magnetic field B or the mean

plasma density ne, i.e. it has an acoustic nature. So far GAMs have not been observed

in H-modes, possibly due to the lower turbulence level or higher rotational velocity

shearing.

There is no measurable magnetic perturbation, and generally only a weak density

perturbation. Since both the O and X-mode Doppler reflectometer antenna pairs are
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Figure 3. (a) GAM frequency vs (Te +Ti)1/2 for increasing boundary elongation κb at
fixed q95 = 3.7 from edge region (ρpol > 0.95) of ohmic D2 plasmas. (b) Selected flux
surface boundaries showing extent of κb variation for limiter and diverted plasmas.

positioned either mid-way above or below the magnetic axis (c.f. figure 1) the diagnostic

is usually insensitive to the GAM’s m = ±1 pressure side-band mode structure for

standard high elongation (κb > 1.5) diverted plasmas. However, for low elongation

non-diverted configurations, particularly with high magnetic axis, the reflectometer X-

mode antenna line-of-sight is closer to the m = 1 mode maxima, shown in figure 2 by

arrows, and a corresponding amplitude A peak (ie. density fluctuation) is normally

seen, figure 2(b), often with harmonics of the mode frequency or other multiple peaks.

Such peaks are expected since, while toroidicity couples the m = 0 flow perturbation

with the m = ±1 side-band, ellipticity and triangularity etc. will couple the m = 0 to

m = ±2 and higher orders [23, 35]. Using poloidally distributed reflectometer antennas

the structure of the m = 1 mode was recently investigated in the circular TEXTOR

plasmas [18]. However, the precise mode structure of the GAM in complex shaped

plasmas is still to be confirmed. In addition, the role of the X-point in the diverted

shape is also uncertain, however, it may help to diminish the m = 1 mode amplitude in

the edge by spreading the energy to the higher orders via up-down symmetry breaking.

4. GAM shape dependence

Figure 3(a) shows the GAM frequency vs (Te + Ti)
1/2 for a series of BT = −2 T,

Ip ≈ 0.8 MA, ohmic Deuterium plasmas with increasing boundary elongation κb at fixed

q95 = 3.7. The data are from radial scans from the edge region, between the pedestal

top ρpol > 0.95 and the separatrix/boundary. (The radial coordinate ρpol is the square-

root of the normalized poloidal flux.) The electron temperature Te is measured with

electron cyclotron emission (ECE) and Thomson scattering, while the ion temperature

Ti is from Li-beam impact excitation spectroscopy. Note Li-beam measurements were

not available for all shots, thus Ti is scaled from similar discharges.
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Figure 4. Equilibrium reconstructions from cliste code using magnetic data alone
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triangularity δave and elongation κ with gradients ∇q/10 and ∇κ for (a) limiter shot
#20787 at 1.1 s and (b) diverted lower single-null shot #18783 at 0.9 s, Shaded box
indicates GAM extent.

For each shape the GAM frequency scales linearly with the square-root of

temperature, that is ωGAM = Gcs/Ro, where the scale factor G is of the order of unity.

The ion sound speed over the geometric major radius Ro scaling has been demonstrated

on several devices (c.f. [36]), including the appropriate ion mass variation between

hydrogen, deuterium and helium plasmas [18]. However, figure 3(a) also shows a clear

inverse dependence on the plasma elongation. (The dashed line is for G = 1.)

The range of shape variation (elongation κ and triangularity δ) in AUG is

determined by the the active external coils and control system and the internal passive

structures [37]. The highest elongation is obtained in a lower single-null divertor

configuration, typically between 1.4 < κb < 1.75, as shown in flux boundary poloidal

cross-sectional plots in figure 3(b). In non-diverted configurations the elongation can

be reduced down to an almost circular cross-section, 1.09 < κb < 1.48 with the plasma

touching the inner limiter.

The plasma shape varies with radius. Figure 4 shows magnetic flux surface

reconstructions from the cliste code [38] using magnetic coil data alone (contours in

ρpol) together with radial profiles of the safety factor q, the flux surface geometric centre

major radius Rc, average triangularity δave, elongation κ with gradients ∇q = dq/dρpol
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Figure 5. (a & b) Radial profiles of density ne, temperature Te and q, plus (c &
d) GAM frequency fGAM and (e & f) GAM amplitude for ohmic circular limiter shot
#20787 and elongated divertor shot #18813, with selected fD spectra for #20787.

and ∇κ = dκ/dρpol, for (a) the lowest and (b) highest elongated shapes. Note that

Rc = Rma the magnetic axis for ρpol = 0, and Rc = Ro the boundary geometric axis for

ρpol = 1. The radial gradient in both κ and q at the plasma edge are stronger the more

shaped the plasma.

The remarkable feature of the experimental data in figure 3 is that while the

scale factor G clearly varies with the (global) plasma boundary shape, it nevertheless

remains independent of the measurement location, despite the dramatic variation in

local parameters such as κ, q and gradients. This disparity between global and local

parameter dependence is a principle topic of this investigation and is addressed in the

following sections.
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5. GAM radial dependence

5.1. Radial zones

Experimentally the GAM frequency is generally not a smooth monotonic function of

radius, unlike temperature (ie. cs), or κ and q, but displays a staircase nature with a

series of plateaus a few cm wide followed by jumps. The plateaus become progressively

wider with decreasing radius. Two examples are shown in figure 5 where fGAM is plotted

vs the normalized radius ρpol for the circular (κb = 1.09) limiter ohmic shot #20787

and the elongated divertor (κb = 1.61) shot #18813, together with the corresponding

density, temperature and q profiles. Similar frequency plateaus have also been observed

in JFT-2M [14] and in numerical simulations [25].

The frequency plateaus generally coincide with regions of enhanced GAM amplitude

AGAM (peak-to-peak velocity perturbation), shown in figure 5(e & f), which suggests a

series of nested zonal flow layers where the mode phase locks across each zone. When

the GAM intensity is weak between zones the mode unlocks and its frequency increases

with cs. Also shown in figure 5 is the standard deviation in the Doppler frequency

fluctuations Aσ, i.e. the total amplitude of flow perturbations - GAM plus background.

Dominant AGAM peaks are reflected in the standard deviation, but in the core there is

a rapid rise in Aσ which might suggest enhanced random shearing activity [21]. It is

also noticeable that the background random fluctuations are also higher in the diverted

shaped plasmas.

5.2. GAM peak splitting

At the edge of each plateau the GAM intensity drops and the GAM frequency jumps,

usually with splitting in the GAM spectral peak. Figure 6 shows a sequence of fD spectra

for decreasing radii for the example shot #20787 in figure 5(c). As the peak splits

the lower frequency branch weakens while the higher frequency peak grows and moves

away. This peak splitting is very common. In the elongated discharge in figure 5(d) the

frequency separation is more substantial. The lower branch also notably moves down in

frequency as well as in amplitude.
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Figure 7. GAM spectral intensity vs radius ρpol for a range of ohmic and L-mode
shots with various elongation κb and q95.

5.3. Density pedestal effect

Figure 5 highlights two other points. In ASDEX Upgrade, the density profile always

has a pronounced pedestal around ρpol ≈ 0.95 and ne(ped) ∼ 2.0 − 2.5 × 1019 m−3 for

divertor configurations. In this configuration GAMs are observed only in the density

gradient region and not inside of the pedestal top. The total level of fD fluctuations

(Aσ) rises sharply, figure 5(f), but there is no coherent activity. Conversely, in the

limiter configuration, particularly at low elongation, the density pedestal is weakened

and the profile tends towards parabolic. GAMs are now observed well into the plasma,

into ρpol ∼ 0.75 - depending on the q profile, (eg. collisionless Landau-like damping).

It was previously suggested that the pedestal, or more specifically the second radial

derivatives in the profiles, ∂2/∂r2, may act as some form of barrier [11]. It is notable

that most shaped devices report GAMs only within a few cm of the edge, while both

the TEXT and TEXTOR circular devices have observed GAMs relatively deep in the

plasma [16, 39]. Unfortunately density profiles were not provided, but parabolic-like

profiles are suspected, c.f. [40].

Overlaying the fGAM profiles in figure 5(c & d) is the predicted GAM frequency

for a simple large aspect ratio circular plasma, fsc =
√

2 cs/(2πRo) (solid line) where

cs is defined as before with γi = 1, plus a best-fit scaling to the edge GAM database

(dashed line) - the edge and core frequency models are discussed in more detail later.

Here, the core is defined as the region inside the density pedestal top radius and the edge

outside. For the circular plasma the frequency plateaus and jumps are more pronounced

inside the pedestal top radius, nevertheless, the mean GAM frequency tends to follow

the predicted circular scaling quite closely. However, outside the pedestal top fGAM

diverges from the core scaling fsc, even for the circular plasma, and can be either higher

or lower than the simple predicted scaling depending on the plasma shape.
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5.4. GAM localization

Figure 7 shows a collection of profiles of the GAM spectral peak intensity vs normalized

radius ρpol for a range of ohmic and L-mode (ECRH and NBI) discharges with various

elongation 1.09 < κb < 1.74 and edge safety factors 3.0 < q95 < 4.2. Each profile

displays one or more radial peaks, the most intense being nearly always in the edge

density gradient region. Only for the ohmic low κb, high q95 case is the GAM stronger

in the core region. Indeed, the GAM intensity and radial extent increases with q95

consistent with Landau damping proportional to exp(−q2) [41, 22, 35]. For divertor X-

point discharges, i.e. high κb > 1.4, no GAM peaks are observed beyond approximately

ρpol < 0.94 - marked by the arrow in figure 7.

There is no clear preferred radial position for the GAM maxima, and there is no

alignment with any rational q surface. The radial peaks tend to become broader towards

the core. The effect of increased turbulence drive with additional heating is also evident

in the stronger L-mode peaks. The parameter dependence of the GAM amplitude is

discussed more fully in a separate paper.

6. Core GAM behaviour

For inner limiter configurations the edge density pedestal in AUG becomes weaker (to

almost non-existent) at ne(ped) ∼ 1×1019 compared to > 2.0×1019 m−3 for the divertor

configuration. The result is that GAMs are now observed further into the core, as far as

ρpol ∼ 0.75 at high q95, as shown in figure 8 where the scale factor G = ωGAMRo/cs (ie.

normalized GAM frequency) is plotted against ρpol for a series of low κb ∼ 1.1 ohmic

deuterium shots with q95 ranging between 3.0 and 5.7 (obtained by varying the plasma

current). In the edge there is some scatter in G due to the fGAM plateaus and jumps, and

q variation, but the profiles become smoother with decreasing radius and tend towards
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Figure 9. Core fGAM vs f =
√

2 cs/(2πRo).

a constant G value of around
√

2. Also shown are comparative profiles with κb = 1.63

and 1.74, where G starts at a lower value in the edge but are suggestive in appearing

to rise towards the same asymptotic G value around the top of the pedestal, and in one

rare case inside the pedestal. Unfortunately the current database of core measurements

is rather limited to a range of low κ cases, nevertheless, there does not appear, within

experimental uncertainty, to be a discernable variation in the core asymptotic G value

with either κ or q (c.f. also figure 11 below).

In figure 9 the GAM frequency is plotted against the simple circular scaling fsc for

the core GAM database with κb < 1.16 and all q95 values. The agreement for GAM

peaks inside ρpol ≈ 0.95 is rather good. At the lower temperatures, i.e. towards the

edge, the points tend to move away from the perfect scaling, and for GAM peaks outside

ρpol ≈ 0.95 (marked in open grey symbols) they do not fit the circular scaling at all but

follow a separate edge frequency scaling. This indicates that, even for κb → 1, the

physics is different in the density gradient region.

7. Edge GAM behaviour

7.1. Local parameter dependence

Plotting the edge GAM data of figure 3 in terms of the scale factor G against normalized

radius ρpol in figure 10 for various elongation at fixed q95 ≈ 3.7 shows more clearly the

constant nature of G (aside from the frequency plateaus) across the edge gradient region,

for all plasma elongation, except the circular shape κ ∼ 1.1 at the very edge. This is

intriguing since it implies that any local shape and q effects are either mostly balanced,

or they are irrelevant.

Theory and simulation studies suggest several geometric parameters of potential

relevance: ellipticity κ, the safety factor q, triangularity δ, the inverse aspect ratio
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Figure 11. GAM scale factor G = ω Ro/cs vs local q for (a) κb = 1.1 and (b) κb = 1.6.

ε = r/R, flux surface displacement (Shafranov) ∆ = Ro − Rc, and their gradients

dκ/dr, d∆/dr and via the turbulence possibly dq/dr etc.

In figure 11 the scale factor G is plotted against the local q value for two groups of

edge GAMs: (a) low κb = 1.1 and (b) high κb = 1.6 with various q95. At high shaping

there is only a very weak direct variation with q, but as κ is reduced the q variation

becomes stronger. At low q, ie. core, the sensitivity again disappears and G tends

to constant. The spread in the curves with q95 at low κ suggests that q alone is not

the relevant parameter. Replotting G against normalized q/q95 in figure 12(a) however,

reduces the low κ data to roughly a single curve. In fact there are a set of nested curves

with increasing κb. The q/q95 dependence might suggest that the q profile shape, i.e.

the magnetic shear s = dq/dr or dκ/dr maybe important. Or put in more general

terms there is a radial dependence in the curvature operator. However, testing for s

or normalized shear ŝ = (r/q) dq/dr did not reveal any clear dependence. Likewise no

systematic dependence on the triangularity or ∆ was found.

Figure 12(b) shows G vs local κ at fixed q95 = 3.7 for a range of ohmic shots
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with increasing boundary elongation 1.11 < κb < 1.74. As expected, G generally

decreases with increasing κb, but within a radial sweep the G variation changes from

vertical (sensitive) to horizontal (insensitive) with increasing κb - as might be expected

from the κ and q radial profiles in figure 4. At low κb, κ(r) is almost constant while

q(r) is changing, but at high κb, both κ(r) and q(r) vary. This transition from q

sensitive to insensitive with increasing κ might suggest a frequency scaling of the form:

G ∝ (1/κ− c/q) with appropriate constants c.

7.2. Global parameter dependence

The alternative interpretation of the data in figure 12 is that, for the restricted radial

zonal range in the edge, some mean or representative value of κ and q, together perhaps

with gradients maybe sufficient or more appropriate to parameterize the GAM frequency.
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In figure 13(a) the radially averaged 〈G〉 is plotted vs the boundary elongation κb

showing again a clear inverse dependence. Conversely, holding κb ≈ 1.6 constant

and varying the q profile reveals a weaker direct dependence on q95, as shown in

figure 13(b). Unfortunately the range of variation in q95 is rather limited so it is difficult

to discriminate between potential models. As shown in figure 12 the sensitivity to q

becomes stronger at lower elongation.

A variety of reciprocal and linear fits to the data are possible. Overlayed in figure 13

are three potential models. The (red) dash-dot line is for G = π (κ−1
b − q−1

95 ). This gives

a reasonable fit to the lower end of the elongation scan and the best fit to the q scan.

The other two models assume a (1 + κ)−1 variation. This might appear if the mode

wavelength were to scale with the poloidal circumference - although there is no strong

theoretical background for this. The (green) dotted line retains a q95 term, however, now

an additional κ−1
b term is necessary: G = 4π [(1 + κb)

−1 − q−1
95 ] κ−1

b . This gives the best

fit to the elongation scan, but a rather poor fit to the q scan. It should be noted that the

negative q−1 dependence, although not obvious in simple fluid theory, can arise from the

shear or other geometry factors, while the second κ−1 factor might contain a triangularity

dependence - since δ tends to increase with elongation. The most interesting fit is

the (blue) dashed line which is without a q95 term: G = 4π [(1 + κb)
−1 − εo]. Here

εo = 0.3 is a constant term which is very close to the average inverse aspect ratio

ε = r/Rc ∼ a/Ro ∼ O(0.3) over the edge region of AUG plasmas. It gives a reasonable

fit to the κ scan and is within the error bars of the q scan.
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Model RMSE

Edge

ρpol > 0.95

All κb

ω = 4π [(1 + κb)
−1 − εo] cs/Ro 1.715

ω = (4π/κb) [(1 + κb)
−1 − q−1

95 ] cs/Ro 2.393

ω = π (κ−1
b − q−1

95 ) cs/Ro 2.504

ω = π (κ−1 − q−1) cs/Ro 2.960

ω = (
√

2/κb) cs/Ro 4.504

ω =
√

2 cs/Ro 5.294

Core

ρpol < 0.95

κb < 1.16

ω =
√

2 cs/Ro 1.615

ω = (2 + q−2)
1/2

cs/Ro 1.702

ω = 4π
(

1
1+κb

− εo
)
cs/Ro 8.710

Table 1. Root mean square error RMSE between measured GAM frequency and
predicted frequency from various models for the edge ρpol > 0.95 and core ρpol < 0.95
GAM databases.

8. GAM frequency scaling

Various heuristic models for the GAM frequency, including those presented above, were

tested against the full database of ohmic and L-mode GAM frequencies. Figure 14 shows

the measured fGAM against the best model frequency f = (cs/2πRo) 4π [(1 +κb)
−1− εo]

for edge GAM peaks outside ρpol > 0.95. The agreement is quite good with a root mean

square error (RMSE = 〈(fGAM − f)2〉1/2) of 1.715, which is of the same order as the

typical error bar σ ≈ 1.5 in the model frequency. Here, the largest source of uncertainty

is in the measured temperatures Te and Ti used to compute the sound speed.

Table 1 summarizes the fit to a selection of the best models for both the edge and

core GAM databases. For the edge fits the sample population is N = 113 while for the

core fits N = 26. Extreme outliers were removed but otherwise the sample includes all

systematic tends due to frequency plateaus and steps. For the edge region the best fit

is to the simplest model with no explicit q term, but a fixed correction term. The fit

progressively degrades with the inclusion of more terms, and notably the fits worsen

with use of local rather than global parameters. The improvement of the fit without q

implies that, at best it plays only a weak role, or that it introduces other dependencies

which are not well described by the q−1 form. However, other formulations, including

q/q95, produced worse fits. The poor q sensitivity may seem contrary to the large G

variation in figure 12(a), however, since G is computed from a ratio with the main
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uncertainty in the denominator, this translates to larger variations in G as it increases

with decreasing κb, while the RMSE as an expression of the frequency difference is a

more direct indicator of the model agreement.

For the core database a series of variations on the basic model were tested. The best

fit with an RMSE of 1.615 was for the simplest circular model. Including the parallel q

term marginally degraded the RMSE to 1.702 (or 1.619 using q95). Replacing Ro with Rc

moves the data points in figure 9 slightly to the left, which improves the core agreement

by ∼ 0.1 kHz, but also degrades the fit towards the pedestal top. For the edge gradient

region it has a negligible effect. Overall, using Rc raises the core RMSE marginally to

1.623. For all the results presented cs was calculated with γi = 1. Setting γi = 7/4

raises the simple circular RMSE from 1.615 to 3.161 for the core points. However, if the

edge database is restricted to κb < 1.16 then the simple circular model gives an RMSE

of 3.641 (N = 40) for γi = 7/4 compared to 5.258 for γi = 1.

For both the core and edge databases no explicit dependence on either triangularity

or magnetic shear could be determined within the measurement error. Likewise no clear

density and/or temperature scale length dependence was found.

As a crosscheck the core and edge databases were tested against their corresponding

best counterpart model. The resulting RMSEs of 8.710 and 5.294 respectively confirm

that the simple models so far considered are not universal and are limited to their

respective regimes.

9. Summary and discussion

The observation of GAMs is ubiquitous in ohmic and L-mode AUG discharges.

Providing there is a sufficient level of turbulence (to both drive the GAM and to provide a

measurable backscatter signal for the Doppler reflectometer diagnostic), and the plasma

collisionality is not too high (i.e. ωGAM > νii), then a GAM will be found in some region

of the tokamak. It is nearly always strongest in the edge density gradient region towards

the top of the pedestal. In diverted AUG plasmas there is always a distinct density

pedestal, which appears to restrict the inner radial extent of the GAM. However, for

non-diverted plasmas of almost circular shape touching the inner limiter, the density

pedestal is strongly reduced and the GAM is seen to extend towards the plasma mid-

radius. Its extent now seemingly limited only by collisionless Landau damping prescribed

by the q profile.

Radially the GAM frequency ωGAM profile shows a series of steps or plateaus which

become wider with decreasing radius, or profile gradient. Around each plateau edge or

step the GAM frequency spectrum splits into two branches, with the higher frequency

peak growing while the lower one diminishes. The plateaus are also accompanied by

peaks in the GAM intensity, which together with the frequency plateaus suggest zonal

rings. Nevertheless, the mean or underlying GAM frequency scales with cs/Ro.

For circular plasmas the GAM frequency in the core region scales close to the

theoretical prediction of ω ≈
√

2 cs/Ro. Including the 1/q2 term due to parallel coupling
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marginally degrades the overall agreement (mostly for the higher temperature / deeper

core points), but since q > 1 this term only plays a marginal role. However, towards the

edge of the circular plasmas the GAM frequency radically diverges from the predicted

scaling with frequencies significantly higher than expected.

Towards the edge the plasma collisionality increases, and in gradient region of

diverted plasmas Ti > Te by 20% or more [42] while in the core Ti ≈ Te. Further,

the good fit for the circular core GAM frequencies was obtained with a specific heat

ratio of γi = 1 (isothermal) while a γi = 7/4 (dissipation free adiabatic) produced

a much worse fit. This implies that the ion temperature fluctuation contributions to

γ = 1 [ñi] + 1
2
[T̃i||] + 1

4
[T̃i⊥] (where the respective sources of the terms are indicated in

square brackets) are suppressed due to the parallel dissipation at the low q leading to

dominant collisionless Landau damping [41]. In the edge a γi = 7/4 improves the fit (in

particular the scale factor G variation with q is substantially flattened), however it is

still not sufficient to fully reconcile the core and edge GAM frequency behaviour under

one model.

Raising the elongation now decreases the edge GAM frequency as fGAM ∝ (1+κ)−1.

The previous variation with q all but disappears and the scale factor G is constant in

radius. Unfortunately, there are insufficient core measurements for elongated plasmas

so it is not possible to determine if the same κ dependence applies, but the indications

so far are that it does not. Nevertheless, a simple heuristic formula which acceptably

fits the edge GAM frequency behaviour has been deduced requiring only two global

parameters: the reciprocal (1 + κb) and a constant εo. Linear theory [22, 28] suggests a

κ−1 dependence rather than the experimentally observed (1+κb)
−1. This suggests either

the theory is deficient, or that the (1 + κb) term incorporates the effects of higher order

factors such as ∇κ. The constant εo is very close to the average inverse aspect ratio for

the GAM peak radius r/Rc ≈ 0.3. However, to test this hypothesis requires a wider

range of measurements from different aspect ratio machines. Additional experimental

input may also help to determine the most appropriate value for γi in the edge. From

numerical simulations there are indications that a κ > 1 and/or large r(dκ/dr) tend

to enhance the effects of parallel dynamics and magnetic shear [30], i.e. an increased

adiabatic coupling. The absence of a q dependence in the edge fit is also consistent with

a strong collisionless Landau damping [41]. Either way, adiabatic corrections may be

incorporated in the heuristic formula with cs → γcs via an effective γ =
√

1+γiτ
1+τ

where

τ = Ti/Te.

The elongation and triangular shaping of the plasma are also expected to lead

to coupling of the m = 0 flow to additional m = ±2,±3.. pressure modes, and indeed

spectral peaks and harmonics are observed in the density fluctuations in these situation.

Between the limiter and divertor shape the density pedestal top appears to act

as a boundary, yet no clear profile scale length (R/LT etc.) or ∇n dependence on

the frequency is currently evident in either experimental data or theory. Nevertheless,

the edge region appears to behave differently from the core - although connected with a
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smooth transition - and can only be related to local effects such as the higher turbulence

drive (perhaps pushing the GAM frequency), higher collisionality, larger q and magnetic

shear, larger vorticity and the stronger Er shear present, not to mention the coupling

effects to Alfvén and sound waves etc. [8, 28]. It should also be noted that the presence

of an X-point in the diverted shape will destroy the up-down symmetry leading to

stronger Stringer spin-up effects [43] which may affect the frequency.

Further theory and numerical simulation in realistic shaped equilibria are necessary

to clarify the GAM behaviour in the plasma edge. In particular, a tested (analytic)

expression for fGAM in shaped diverted plasmas using readily measurable parameters is

required if one wants, as recently proposed, to use GAM spectroscopy to determine the

ion mass [44] in real tokamak edges where the GAMs are actually observed.
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[39] Krämer-Flecken A, Soldatov S, Koslowski H R, Zimmermann O and TEXTOR Team 2006 Proc.

33rd EPS Conf. Plasma Phys. (Rome) ECA vol 30I (Mulhouse: EPS) P-2.152
[40] Yu C X, Brower D L, Zhao S J et al 1992 Phys. Fluids B 4 381
[41] Lebedev V B, Yushmanov P N, Diamond P H, Novakovskii S V and Smolyakov A I 1996 Phys.

Plasmas 3 3023
[42] Reich M, Wolfrum E, Schweinzer J, Ehmler H, Horton L D, Neuhauser J and ASDEX Upgrade

Team 2004 Plasma Phys. Control. Fusion 46 797
[43] Stringer T E 1970 Phys. Fluids 13 1586
[44] Itoh S-I, Itoh K, Sasaki M, Fujisawa A, Ido T and Nagashima Y 2007 Plasma Phys. Control.

Fusion 49 L7


