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Abstract

Error field (or externally applied helical field) penetration is studied numerically based on the two fluids equations. It
is shown that there is a minimum in the required field amplitude when the applied helical field frequency is the same
as the mode frequency being determined by both the background equilibrium plasma rotation and the diamagnetic
drift. The mode penetration threshold significantly increases as the field frequency deviates from the mode frequency
and can become asymmetric on the two sides of the minimum due to parallel heat transport. After mode penetration
the nonlinear saturated island width is found to be smaller for a larger electron diamagnetic drift frequency.

PACS numbers: 52.35.Py, 52.35.Vd, 52.55.Tn, 52.35.—y

1. Introduction

The effect of an externally applied resonant helical field or
an error field on the magnetic islands is of great interest for
magnetic fusion research. When the island is large enough, it
will be locked to the externally applied helical field [1,2]. Even
if without an external helical field, the helical current induced
in the vacuum vessel by an unstable mode will produce a helical
field to act back on the island and to lead to the mode locking
of a large island [1]. For the plasma being originally stable
to the tearing mode, an externally applied resonant field can
penetrate through the resonant surface, generating a magnetic
island there (mode penetration) [2-7]. Both experimental and
theoretical studies have been carried out for understanding
the mode penetration physics. The experimental results show
that the penetration threshold of an error field is very small,
typically b, (r = a)/Bo ~ 107*~1073 on existing tokamaks,
where b, (r = a) is the radial magnetic field perturbation at the
plasmaedge r = a and By, is the equilibrium toroidal magnetic
field [2-7]. The mode penetration threshold is expected to
be significantly lower for a fusion reactor, especially during
the plasma current rise phase with a low plasma density and
rotation velocity [2-6]. For a higher 8 plasma, the mode
penetration threshold is found to be lower on DIII-D possibly
due to the destabilizing role of the perturbed bootstrap current
[5,6]. Recently it was shown on TEXTOR that the relative
frequency between the mode and the applied helical field is
important in determining the threshold for the mode onset
[8,9]. When these two frequencies are the same, the mode
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penetration threshold reaches a minimum value. The required
helical field amplitude for mode penetration significantly
increases if these two frequencies are different [8,9].

Most theoretical results on mode penetration are based on
reduced MHD equations. In this limit it has been shown that
the penetration threshold of a static helical field is higher for
a larger equilibrium plasma rotation frequency w due to the
shielding current at the mode rational surface. In addition,
the penetration threshold also depends on the plasma resistive
and viscose diffusion time tz and 7, and the Alfven time
7a [10-13]. Based on the nonlinear modification of the
equilibrium plasma rotation velocity and the nonlinear island
growth equation (Rutherford equation), the required b, for
mode penetration is found to be proportinoal to w*? when
the plasma inertia effect is more important than the viscous
one and to w?? in the opposite limit [2, 10]. If the linear
response in the inner tearing region around the rational surface
instead of the Rutherford equation is utilized, various different
regimes are found [11, 12]. Among them the so-called visco-
resistive regimes are more relevant to tokamak plasmas. In
this regime the penetration threshold b, / By is proportional to
er(v:R/rﬂ)N12 (ta/tR)"/® [11,12]. For a fusion reactor the
mode penetration is predicted to occur when b, / By = 2x 1073
at the rational surface [12], being much lower than that of the
existing tokamaks. This implies that mode penetration is a very
important issue, and improved understanding of the relevant
physics is necessary. Recently, results from the four-field
model including the diamagnetic drift were obtained [14, 15].
In [14] an analytic theory is constructed in a similar way to
MHD theory [11, 12], and the diamagnetic drift is taken into
account in the inner tearing region. The mode penetration



threshold obtained from the two fluids equations is found to be
similar to that from the reduced MHD equations, if the mode
frequency due to the background plasma rotation is replaced
by that due to the diamagnetic drift [14]. This is as expected
since the nonlinear change in the diamagnetic drift frequency
due to the parallel heat conduction is neglected. In [15] linear
numerical results from the four-field model show that a sharp
resonance between the error field and the mode occurs when
the field frequency is the same as the mode frequency. Both
the background plasma rotation and the diamagnetic drift are
important in determining the mode penetration, since they
could either increase or decrease the total mode frequency,
depending on the plasma rotation direction [15]. Such a
numerical result agrees with analytical theory [10].

Motivated by recent TEXTOR experimental results [8,9],
in this paper the mode penetration is studied numerically
using the (reduced) nonlinear two fluids equations in the
periodical cylinder geometry. Both parallel and perpendicular
transports are self-consistently included, being necessary for
modelling the change in the diamagnetic drift frequency and
the associated ion polarization current during the island growth
driven by the error field. The nonlinear numerical results
provide a better understanding of the mode penetration physics,
showing the asymmetry of the penetration threshold on the
two sides of the minimum value as observed in TEXTOR
experiments [8,9]. In addition, the penetrated island width
is found to decrease for a larger electron diamagnetic drift
frequency, indicating a stabilizing role of the ion polarization
current.

2. Computational model

A large aspect-ratio tokamak approximation is utilized in
our model. The magnetic field is defined as B = Bye, —
(kr/m)Boeg + VY X e, where v is the helical flux function,
m/r and k = n/R are the wave vectors in ey (poloidal) and e,
(toroidal) directions, respectively, R is the major radius, m and
n are the poloidal and toroidal mode numbers of the mode and
the subscript 0 denotes an equilibrium quantity. The plasma
velocity is defined as v = v) ¢+ V¢ x e;, where ¢ is the stream
function.

The two fluids equations utilized here include the
generalized Ohm’s law, the equation of motion in the
perpendicular (after taking V x ) and parallel (to magnetic field)
directions and the energy and mass conservation equations.
Normalizing the length to the minor radius a, the time ¢ to the
resistive time g = a’uo/n, the helical flux ¥ to aBy, v to
a/tr and the electron temperature 7. and density n. to their
values at the magnetic axis, these equations become
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where d/dl = 8/8t +v, -V, V”f = (B/B) Vf ~
(B/Bo) - Vf,Vif=f+@f/30)/r,Vif=1[r(f)]/r—
(32 f/86%)/r? and the prime is for 9/dr. j = Viw —
2n By /(mR) being the toroidal plasma current density, 7
is the normalized plasma resistivity, E is the equilibrium
electric field for maintaining the equilibrium plasma current
density, 2 = Bd, determining the diamagnetic drift frequency,
B = 4n.T./B>, di = we/ve and w. and v, are the
electron cyclotron and collisional frequency, respectively. The
magnetic Reynolds number § = r/ta, Where 74 = a/Va
is the Alfven time. U = —V?¢ being the plasma vorticity,
u is the plasma viscosity, ¢, = (T./m;)'/? being the ion
sound velocity and p the plasma pressure. x; and x, are the
parallel and perpendicular heat transport coefficients, D is the
perpendicular particle transport coefficient, S, is the heating
power, Sy is the particle source and Sy, in equation (2) is the
poloidal momentum source given by

Sm = QE[l — (r/a)*), (6)

which leads to an equilibrium poloidal plasma rotation.

Equations (1)—(5) are the coupled two fluids equations
for modelling the nonlinear evolution of the drifting tearing
mode [16], which reduce to the MHD equations if 2 = 0 is
taken in Ohm’s law to neglect the parallel electron temperature
and the density gradient. The difference between the particle
and the heat transport is taken into account, which is necessary
for a small island for which the diamagnetic drift is important.
Compared with previous theories, in equations (1)—(5) the
two-dimensional electron heat transport is included self-
consistently. Cold ion assumption is made here, since the ion
temperature is significantly lower than that of the electron’s in
these relevant experiments on TEXTOR [8, 9].

3. Numerical results

Equations (1)—(5) are solved simultaneously using the initial
value code TM1, which has been used for modelling the linear
stability of the drifting tearing mode earlier [ 16]. The modified
version of this code has been used to study the nonlinear growth
and saturation of the neoclassical tearing mode (NTM) and
their stabilization by RF current [17, 18]. Improved numerical
methods are utilized in the code to reduce the numerical error
for high values of S and y;/x. [17,19,20].

The calculations are for a single helicity perturbation.
In addition to the fundamental harmonic, higher harmonic
perturbations as well as the change in the equilibrium quantities
(the m/n = 0/0 component) are self-consistently calculated.
The toroidal magnetic field is taken to be a constant, so that the
toroidal mode coupling is neglected. Fourier decomposition in
the poloidal and toroidal directions and finite differences along
the radial direction are utilized in the code. The calculation
region is from the magnetic axis at » = 0 to the plasma edge
at r = a. The boundary conditions are as the following.

(a) The radial gradients of all quantities are zero at r = 0.

(b) All the perturbations (m/n # 0/0) are zero at r = a
except for the m/n = 2/1 magnetic perturbation given by
the following equation (7) to take into account the error
field.



(c) All the equilibrium (m/m = 0/0) quantities take the same
value as the original equilibrium ones at r = a.

The effect of the error field is taken into account by the
boundary condition

l[fm/n (r = Ll) = Wa cos(a)ft +m0 + ’1¢)7 (7)

where 1/, describes the applied helical field amplitude atr = a
of the m /n component and wy is the field frequency. The radial
magnetic field is given by b, ./, = mr,,/, /7. Here the mode
penetration of the m/n = 2/1 mode is studied.

The input parameters are based on TEXTOR experimental
parameters. The toroidal magnetic field is Bo; = 2.5 T and the
plasma minor and majorradiiarea = 0.47mand R = 1.75m,
respectively. The equilibrium electron temperature and density
profiles are modelled by

T. = TeO[l - (r/a)Z] + Tea,
ne = ne()[1 - (r/a)2] t Nea,

where Txg = 1800 eV, Tey = 300eV, neg = 3.2%x 10" m~3 and
Nea = 3.0 x 10183 m—3 [8,13,15]. These lead to the normalized
parameters S = 1.97 x 108, Q@ = 6.3 x 10*, ¢; = 1.2 x 107,
dy =2.5x107and x| = 1.1 x 10° (a?/tr). Here x|| = vre/ k|,
is used for calculating x), and vr. = (T¢/m.) 172 is the electron
thermal velocity [21]. It should be noted that the precise
form of x| for a high temperature plasma is more complex
as shown in [21].

Assuming the perpendicular heat diffusivity and the
plasma viscosity to be at the anomalous transport level of
0.5m?s~!, in the normalized units they are y, = u =
21(a*/tr). The perpendicular particle diffusivity is taken
to be D; = x./5. These parameters are the input for our
calculations except mentioned elsewhere.

A monotonic profile of the safety factor ¢ is used, and
the ¢ = 2 rational surface locates at r¢ = 0.628a [8, 13, 15].
The m/n = 2/1 mode is stable without an externally applied
helical field.

3.1. Results from reduced MHD equations

Before presenting the results obtained from the two fluids
equations, it is useful to first have a look at the results obtained
from the reduced MHD equations, which are obtained by
taking 2 = 0 in equation (1), so that the temperature and
density perturbations have no effect on the tearing mode. In
this case, equations (1) and (2) are decoupled from (3)—(5).
In figure 1 the nonlinear growth of a m/n = 2/1
magnetic island driven by the externally applied helical field
is plotted for Qg = 1.0 x 10° (solid curve) and 3.0 x 10°
(dotted), where the normalized island width w/a is shown
as a function of the normalized (to tR) time r. Qg = 0
corresponds to zero equilibrium plasma rotation velocity, and
Qg = 1.0 x 10° corresponds to a poloidal plasma rotation
velocity v, = —8.4 x 10* (a/tR) at rs. The island width is
calculated from the conventional formula w = 4(Yro/1 /)
at the rational surface [1]. The applied helical field has a
frequency w; = 0 and an amplitude of ¥, = 10™aBy. It
is seen that the island grows to a larger amplitude w = 0.04a

0.04

0.03

0.01

Figure 1. The normalized island width w/a versus the normalized
(to tr) time ¢ for Qg = 1.0 x 10° ( yand 3.0 x 10° (------ ).
Qg = 0and 1.0 x 10° correspond to a poloidal plasma rotation
velocity v, = 0 and —8.4 x 10* (a/tx) at the rational surface. The
applied helical field has a frequency w¢ = 0 and an amplitude

Yo = 107%aBy,.
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Figure 2. Corresponding to figure 1, the time evolution of the mode
frequency (in units of 7 ') is given for Q¢ = 1.0 x 10° and
3.0 x 108.

for a smaller rotation speed but remains at a low value for a
faster rotation.

The corresponding time evolution of the normalized mode
frequency is shown in figure 2 for Qg = 1.0x 10 and 3.0x 10°.
At the beginning (r = 0) the mode frequency is determined by
the equilibrium poloidal plasma rotation, @ = —muv,/r. In
the steady state the mode is locked to the helical field for both
cases, so that the mode frequency becomes zero being the same
as that of the static helical field.

In figure 3 the radial profiles of the m /n = 2/1 component
of ¥, Y1, in steady state are shown for Qg = 1.0 x 10°
and 3.0 x 10°, where the solid (dotted) curve represents the
real (imaginary) part. For a smaller rotation speed the v,/
profile looks like that of a usual tearing mode, while for a
large rotation speed vr,,; decreases to a very small value at the
rational surface. The much smaller imaginary part compared
with the real one of vr,,; for the penetrated case indicates a
small phase shift between the mode and the external field. The
corresponding m/n = 2/1 component of the current density
perturbation, j,/1, is shown in figure 4, where the solid (dotted)
curve represents the real (imaginary) part. For a large rotation
speed the current density perturbation has a negative peak at the
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Figure 3. Corresponding to figure 1, the radial profiles of
Vr2/1(aBy) in steady state for ¢ = 1.0 x 10° and 3.0 x 10° are
given. The solid (dotted) curve is the real (imaginary) part.
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Figure 4. Corresponding to figure 3, the m/n = 2/1 component of
the current density perturbation in units of By /a. The solid (dotted)
curve represents the real (imaginary) part.
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Figure 5. Corresponding to figure 3, radial profiles of the poloidal
rotation velocity v, (a/tr) for Qg = 1.0 x 10° and 3.0 x 10°. The
solid (dotted) curves show the steady state results (the original
equilibrium ones).

rational surface, which produces an opposite field to cancel the
externally applied field from the magnetic axis to the rational
surface as seen in figure 3.

In figure 5 the radial profiles of the poloidal plasma
rotation velocity vy, are shown for Q¢ = 1.0x 10° and 3.0x 10°.
The solid curves show the results in steady state, whereas the
dotted curves show the original equilibrium poloidal plasma

rotation velocity profiles. For a smaller Qg, the field is
penetrated, and v}, is brought to zero at the rational surface.
For a larger rotation speed, however, v, only slightly decreases
due to the smaller magnetic island as seen in figures 1 and 3.

In figure 6(a) the island width in the steady state is shown
as a function of Qg with wy = 0 and v/, = 10™2a By;. Only for
a sufficiently small Qg with Qg < 1.53 x 10°, the helical field
is penetrated, as indicated by the significantly larger saturated
island width. The island width is at a very low level for a larger
Qg, i.e. a larger plasma rotation speed.

Compared with analytical theories, the mode penetration
results shown above are found to correspond to the visco-
resistive regime [11, 12]. Equation (42) of [12] leads to a
mode penetration threshold at ¥,/ (r = a) = 0.75 x 107°
with Qg = 1.53 x 10° and the same input data, being close to
the numerical results.

Corresponding to figure 6(a), in 6(b) the ratio between
the new poloidal velocity in the steady state with the error
field and the original equilibrium poloidal velocity without
the error field, v,/vp, at the rational surface is shown.
The parameter v,/vy sharply decreases to zero after mode
penetration. Just before penetration v,/v,y = 0.465, being
close to the analytical prediction of v, /v, = 0.5 [12].

The corresponding relative phase between the magnetic
perturbation at the rational surface and the error field, Ag,
is shown in figure 6(c). Ag decreases to nearly zero after
mode penetration. Just before penetration Ap = 89.7°,
being approximately the same as the analytical prediction of
Agp = 90° [11,12]. It is seen that the analytical theories of
the visco-resistive regime [11, 12] essentially agree with the
numerical results.

3.2. Results from two fluids equations

In two fluids theory the equilibrium temperature and the
density gradient lead to an additional mode frequency due
to the diamagnetic drift (see equation (1)), such that the
mode frequency is determined by w = —muv,/r + w,+, where
wes = Qm(1/Ly +1/L,)/r is the electron diamagnetic drift
frequency in normalized units and L7 and L, are the local
gradient length of the electron temperature and density at
the rational surface. In figure 7 the island width is shown
as a function of Qg by the solid curve for wf = 0 and
Y. = 107aBy. The dotted curve is the same as that of
figure 6 obtained for 2 = 0. Compared with the dotted curve,
the mode penetration region shown by the solid one is shifted
from the region around Qg = O to a region around finite Q,
because the mode frequency w = —muv,/r + wer = wr = 0
at the location shown by the vertical arrow. The dashed curve
is obtained by neglecting the temperature gradient in Ohm’s
law. Due to the absence of the diamagnetic drift contributed
from the temperature gradient, the shift of the resonance region
from Qg = 0 is smaller compared with the solid curve. It
is also obvious that the island width obtained from the two
fluids equations is smaller than that obtained with the reduced
MHD approximation after mode penetration. This is due to
the stabilizing role of the ion polarization current associated
with the diamagnetic drift [22-25].

Using arotating helical field with wy = —2.2 % 10° /7 and
Y. = 1073a By, the island width is shown as a function of Qg
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Figure 6. (a) The island width in steady state versus Qg, with o = 0 and ¥, = 10~aBy;. The helical field is penetrated for

Qg < 1.53 x 10°. (b) Corresponding to (a), the poloidal velocity in the steady state over the original equilibrium velocity, v,/vy, at the
rational surface. Just before penetration v, /vy, = 0.465. (c) Corresponding to (a), the relative phase between the magnetic perturbation at
the rational surface and the error field, Ag. Just before penetration Ap = 89.7°.
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Figure 7. The island width in the steady state versus Qg obtained
from the two fluids equations for wr = 0 and ¥, = 10™>a By, (
The dotted curve is the same as that of figure 6 obtained for
Q = wr = 0. For the dashed curve the temperature gradient in
Ohm’s law is neglected. The vertical arrows show the Qg where the
mode frequency w = 0.
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Figure 8. The island width versus Qg for w; = —2.2 x 103 ( )
andwp =0(----- ), with ¥, = 1073 aBy,. The two vertical arrows
show the Qg value at which w = wy.

0.04

0.03

<

S 002

0.01

5e+06 le+07

Qg

Figure 9. The island width versus Q for ¥, =2 x 10° (—) and
1 %103 (- --- ), with w¢ = 0. The vertical arrow shows the Qg
value at which w = wy.

in figure 8 by the solid curve. The dotted curve is obtained for
a static helical field wf = 0. The mode penetration is shifted
to a smaller Qg region for a finite frequency of the helical field
as expected, since @ = wy there. The two arrows show the
Qg value for which w = oy is fulfilled. A corresponding shift
of the mode penetration region using a rotating helical field is
observed in TEXTOR experiments [8].

Increasing the amplitude of the helical field, the mode
penetration region becomes wider as seen from figure 9, where
the island width is shown as a function of Qg for ¥, = 2x 107>
(solid) and 1 x 1073 a By, (dotted) with w; = 0. The vertical
arrow again shows the Qg value at which v = wy. A larger
amplitude of the helical field is obviously required for mode
penetration if the difference between mode frequency and that
of the helical field becomes larger.

The island width is shown as a function of v, in figure 10
for Qp = 3 x 10® with w; = 0 by the solid curve. With the
increase in v, there is a sudden jump in the island width at
Y, = 1.1 x 107aBy, indicating the required v, for mode
penetration. It should be mentioned that such a threshold
does not exist if the mode frequency equals the helical field
frequency. The dotted curve in figure 10 is obtained for
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Figure 10. The island width versus v, for Q¢ = 3 x 10° and

w; = 0 (—). The dotted curve is obtained for Qp = 5 x 10° and
® = —mv, /1 + e = wy = 0. The dashed curve is obtained from
the reduced MHD equations with w = wy = 0.
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Figure 11. The island width versus € with ¥, = 102a By, ( ).
The equilibrium plasma rotation is selected such that ® = w; = 0.
The dotted curve is obtained by neglecting the electron temperature
gradient in Ohm’s law.

Q = 5x 10° and 0 = —mvy/r + wer = wp = 0. The
dashed curve is the island width obtained from the reduced
MHD equations with no plasma rotation and wy = 0. In these
two cases, the island width gradually increases with increasing
Y. Figure 10 also indicates that for the same 1,, the island
width obtained from the two fluids equations is significantly
smaller than that obtained from the reduced MHD equations.

In figure 11 the island width is shown as a function of
with wf = 0 and ¥, = 107aBy (solid). The equilibrium
plasma rotation is selected such that the mode frequency is
zero. The dotted curve is obtained by neglecting the electron
temperature gradient in Ohm’s law. The island width decreases
for a larger Q2 (or w,), showing the increasing stabilizing role
for a larger diamagnetic drift frequency.

The required field amplitude for mode penetration is
shown as a function of wp/we+ in figure 12 for a constant €2,
Q = 6.3 x 10* where w, = mu,/r is the (negative)
frequency due to the poloidal plasma rotation. There is a
minimum required field amplitude for mode penetration at
wp/wer = 1 where @ = w; = 0 due to the cancelling
between the equilibrium plasma rotation frequency and the
diamagnetic drift frequency. The required field amplitude for
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Figure 12. The required field amplitude for mode penetration
versus @, /we= for Q@ = 6.3 x 10* and wy = 0, where w, = mv,/r is
the (negative) frequency due to poloidal plasma rotation. There is a
minimum required field amplitude for mode penetration at

wp/wex = 1, where @ = w; = 0 due to the cancelling between the
plasma rotation frequency and the diamagnetic drift frequency.

mode penetration increases as the mode frequency deviates
from the frequency of the externally applied field.

It should be mentioned that the mode penetration is defined
here according to the radial profile of v,/ in the steady state
and the sudden increase in the island width with increasing v,
as seen from figures 3 and 10. The penetrated island width is
in fact very small for a small amplitude of i, around @ = wy.

In TEXTOR experiments the equilibrium plasma rotation
is in the toroidal direction rather than in the poloidal one
[8,9]. To calculate the mode penetration in the plasma with
a toroidal rotation, an additional equation would be required
to calculate the nonlinear evolution of the toroidal rotation
velocity. Since in our model, equations (1)—(5), only the
poloidal rotation is included, a much larger (x10?) plasma
viscosity, u = 2.1 x 103(a®/1R), is used in the following
numerical calculations to simulate the toroidal rotation effect.
Such an approximated approach is based on the following two
reasons [1, 2]: (a) the electromagnetic force to slow down
the plasma rotation in the toroidal direction is smaller by a
factor of (n/m) (rs/R) than that in the poloidal direction.
(b) To have the same mode frequency due to plasma rotation,
the toroidal rotation requires a speed which is (m/n)(R/rs)
times larger than the poloidal one [1,2]. These two effects
lead to a relative larger viscous force compared with the
electromagnetic force for the toroidal rotation case by a factor
of [(m/n)(R/rs)]?, which is of the order of 102. Therefore,
with only the equilibrium poloidal rotation in our model,
a larger plasma viscosity gives a more reasonable balance
between the electromagnetic and the viscous forces.

The numerical results obtained with i = 2.1x10%(a? /1)
are shown in figure 13, in which the required field amplitude
for mode penetration is shown as a function of wy,/we+, with
the other parameters being the same as those for figure 12.
Similarly to figure 12, there is a minimum in the required field
amplitude for mode penetration at w,/we+ = 1. The required
field amplitude, however, shows asymmetry on the two sides
of the minimum, being larger for w,/we+ > 1 than that for
wp/we < 1. For a large plasma viscosity, the nonlinear
change in the plasma rotation due to the electromagnetic
force is less significant, while the diamagnetic drift frequency
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Figure 13. The required field amplitude for mode penetration versus
wp/wer, with = 2.1 x 10%(a?/1x) and other parameters being the
same as those for figure 12. The required amplitude is asymmetric
on the two sides of wy,/we+ = 1, being larger for w,/wer > 1.
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Figure 14. The nonlinear saturated island width versus | (a*/tr)
for (wp/wes — 1) =2/5 ( yand —2/5(-+---- ), with

Y. = 3 x 107a By, and the other parameters being the same as
those for figure 13. With increasing |, the island width decreases
for wp/we+ > 1 but increases for w, /we+ < 1. The field is penetrated
when x; > 1.4 x 10942 /1y for (wp/wex — 1) = —=2/5.

decreases due to the parallel heat transport with increasing
applied field amplitude. Therefore, the difference between the
mode frequency and the applied field frequency increases for
wp/we+ > 1 but decreases for wp/we« < 1. This causes the
asymmetry in the required field amplitude for mode penetration
as observed in TEXTOR experiments [8, 9]. While for a
small plasma viscosity, the mode penetration occurs before
the field amplitude is large enough to significantly change
the diamagnetic drift frequency, leading to the required field
amplitude being approximately symmetrical on the two sides
of wp/we+ = 1as shownin figure 12. Comparing figure 12 with
figure 13 it is also clear that the mode penetration threshold is
significantly higher with a larger plasma viscosity (or toroidal
rotation) as expected [1,2].

The above explanation for the asymmetry in the mode
penetration threshold can be seen from the effect of the parallel
heat diffusivity x. In figure 14 the nonlinear saturated island
width is shown as a function of x;; (in units of a’/tR) for
(wp/wex—1) = 2/5 (solid curve) and —2/5 (dotted), with , =
3 x 1073a By, and the other parameters being the same as those
for figure 13. For lower x;, x| ~ 10°, the island widths are

about the same for (wp/we- — 1) = 2/5 and —2/5, indicating
the symmetry on the two sides of (wp/wex — 1) = 0 as seen
from figure 12. With increasing x| the island width decreases
for w,/we+ > 1 but increases for wp/we+ < 1. The field is
penetrated at x; = 1.4 x 10192 /1y for (wp/wex — 1) = =2/5
as indicated by a much larger island width. The increase in
leads to a stronger flattening of the local electron temperature
profile around the rational surface due to the faster parallel heat
transport and a corresponding larger change in the diamagnetic
drift frequency, so that the frequency difference between the
mode and the applied field becomes larger for w,/we+ > 1 but
smaller for the opposite case. The results of figures 13 and 14
indicate that the asymmetry in the required field amplitude for
mode penetration depends on the parallel heat transport, which
is in turn affected by the helical field amplitude and the balance
between the electromagnetic and the viscous force.

Comparing with analytical theory it is seen that for the
case with low plasma viscosity (figures 7 and 12), the mode
penetration threshold is similar to that from the MHD results
[11,12]. In this case only a frequency shift in the penetration
region is observed due to the contribution of the diamagnetic
frequency to the mode frequency, and the penetration threshold
is approximately symmetric on the two sides of the minimum,
as predicted by analytical theory that the mode penetration
threshold obtained from the two fluids equations is similar to
that from the reduced MHD equations, if the mode frequency
due to background plasma rotation is replaced by that due to
the diamagnetic drift [14]. The heat diffusive layer width at the
rational surface, We = a(x./x)"*[8L,/(can)]'/? [26,27],
is found to be W, = 0.039a in this case, where L, = ¢q/¢’ and
& = a/R. While the island width w before mode penetration
is smaller than 0.01a, leading to w < 1/4W.. Therefore,
the assumption that the diamagnetic frequency is not changed
before mode penetration is essentially valid [14].

The difference between the present results and that of
[14] is seen from figures 13 and 14. With a larger plasma
viscosity to model the toroidal rotation, the island width before
mode penetration is about w = 0.02-0.03a (depending on the
plasma rotation frequency), being closer to W.. In this case the
parallel heat transport affects the mode penetration threshold
as seen from figure 14. For (wp/we- — 1) = —2/5 the mode
penetration occurs at x| = 1.35 x 10'%(a?/1R), corresponding
to W, = 0.021a, being only 1.5 times larger than the island
width w = 0.014a just before mode penetration. This
indicates that when the unpenetrated island width is close
to W, w/ W, is also an important parameter in determining
the penetration threshold, leading to the asymmetry in the
required field amplitude on the two sides of w,/we- = 1 as
shown in figure 13. In [15] the temperature change and the
nonlinear effect are not considered, and in [14] the parallel
heat conduction is neglected.

4. Discussion and summary

Numerical modelling of the error field penetration has been
carried out based on the two fluids equations in a periodical
cylindrical geometry. The electron temperature and density
perturbations are self-consistently calculated. This extends the
previous results from reduced MHD equations and the four-
field model [10-15].



Comparing the results obtained from the two fluids
equations with those from the reduced MHD equations, there
are three major differences: the first difference is in the mode
frequency. The mode differs from the fluid velocity by the
electron diamagnetic drift in two fluids theory. The second
difference is in the nonlinear penetrated island width, which
decreases with increasing diamagnetic drift frequency. The
third difference is the asymmetry of the mode penetration
threshold on the two sides of w,/we: = 1, when using a
large plasma viscosity to model the toroidal rotation effect.
The required field amplitude for mode penetration is large for
wp/wer > 1. The first and the third features of the two fluids
results have been observed on TEXTOR [8, 9], and the first
feature is also seen from the previous results [14, 15].

For a fusion reactor the plasma rotation velocity is
expected to be low, since neutral beam injection (NBI)
heating is not needed for a burning plasma. In this case,
the diamagnetic drift frequency is expected to be important
in determining the mode penetration threshold as it may
be comparable to or even larger than the plasma rotation
frequency. Since the electron temperature of a fusion reactor is
higher than that of the existing tokamaks, the nonlinear change
in the diamagnetic drift frequency would be more significant
due to the faster parallel heat transport.

It should be noticed that the toroidal rotation effect is
simulated here only by a large plasma viscosity. A consistent
approach including the nonlinear evolution of the toroidal
plasma rotation would be very helpful for comparison with the
present results. The cold ion assumption used in this present
paper is not generally satisfied for tokamak plasmas. When
the bootstrap current perturbation is further included, leading
to the NTM, the mode penetration threshold and the penetrated
island width would be different. The NTM usually grows
to a large amplitude once it is excited [17]. Further studies
are required to include these effects. Nevertheless, the basic
features observed in TEXTOR experiments, such as the shift of
the mode penetration region from balanced NBI to unbalanced
NBI due to the electron diamagnetic drift, the larger required
field amplitude for mode penetration for w,/we- > 1 than
that for wp/we+ < 1 and the significant increase in the mode
penetration threshold when w is different from wy [8], are found
from the present results.

In summary, numerical modelling of the error field
penetration has been carried out based on the two fluids

equations. It is found that there is a minimum required field
amplitude for mode penetration when the mode frequency is
the same as the externally applied helical field frequency. The
mode penetration threshold increases as the mode frequency
deviates from the field frequency and is asymmetric on the
two sides of the minimum value. For the plasma rotation
velocity being faster than the electron diamagnetic drift, the
required field amplitude is larger. Such an asymmetry is
evident for the plasma with a large plasma viscosity (to model
the toroidal ration effect) and becomes more significant
with increasing parallel heat conductivity. The penetrated
island width decreases for a larger electron diamagnetic drift
frequency.
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