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Abstract 
Heat diffusion coefficients in a stochastic magnetic field are determined in the case of frequently 

interrupted regime of neoclassical tearing modes and of incomplete sawtooth reconnection in ASDEX 

Upgrade tokamak. Here the experimentally measured perturbations and profiles are used and the mapping 

technique is applied. With the derived diffusion coefficients the nonstationary diffusion equation is solved, 

making it possible to study time evolution of fast MHD phenomena in ASDEX Upgrade. The proposed 

phenomenological approach relies heavily on experimental information and requires very moderate 

computing resources.  

 

1. Introduction 
Fast stochastic events in ASDEX Upgrade are relatively unexplored [1]. 

Stochasticity of magnetic field lines, introduced by helical perturbations due to MHD 

instabilities, is believed to play a role in fast reconnection phenomena in magnetized 

plasmas. These fast reconnection phenomena are often accompanied by sharp drops in 

the temperature, also referred to as 'crash'. The chaotic field lines in the stochastic region 

contribute to the radial energy and particle transport. Such a transport can be 

characterized by diffusion coefficients. In [2,3] it was found that fast reconnection 

observed during amplitude drops of the neoclassical tearing mode instability in the 

frequently interrupted regime can be related to stochastization. Recently [4] it was also 

demonstrated that amplitudes of the perturbations are sufficient to create a large 

stochastic region during sawtooth reconnection. In these papers stationary situations were 

considered with stochastization caused by perturbations which were deduced from the 
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experiment. In the present paper we focus our attention on the time evolution of the 

system, in particular on the heat diffusivity.  

It is clear that the full dynamics of instabilities cannot be described within the 

framework of the field line tracing approach. Here full 3D non-linear MHD calculations 

with parallel and perpendicular transport are needed. Unfortunately, such 3D non-linear 

MHD calculations are not possible with experimentally relevant plasma parameters. With 

present day computers only moderate magnetic Reynolds numbers (106) can be processed 

which are some orders of magnitude smaller than experimental values (109-1010). 

Moreover the spatial and mode resolutions are restricted. At the same time, the field line 

mapping technique provides correct representation of the field line stochasticity (all 

toroidal effects are taken into account) and it can be carried out on a personal computer. 

In this manner diffusion coefficients which correspond to experimental plasma 

perturbations can be obtained under the assumption that the electrons experience many 

turns around the torus on the time scale on which the MHD mode varies. This allows us 

to investigate dynamic behaviour of the temperature profile and to understand the limits 

and driving forces of stochastic processes in tokamaks where of course the temporal 

evolution of the MHD instability is not modelled self-consistently, but taken from 

experimental data.  

Before going into details, it is important to emphasize that in our approach only 

the transport parallel to the magnetic field is taken into account. This assumption is valid 

only for fast evolution of the system which is much faster than usual radial transport time 

scales in plasma. It is a satisfactory model already for slightly stochastic cases and is a 

good model for all cases considered below.  

The paper is organised as follows. In section 2, we discuss the derivation of 

diffusion coefficients by means of the mapping technique. In section 3, we solve 

numerically the nonstationary diffusion equation. In section 4 we summarize the main 

results.   

 

2. Diffusion coefficients  
In typical Hamiltonian systems like magnetic field lines in fusion plasmas the 

zone of chaotic motion is not uniform, especially the stochastic layer near the separatrix. 
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It consists of KAM-stability islands embedded in a so-called stochastic sea. The structure 

of the stochastic layer is determined by mutual positions and sizes of KAM-islands. 

Existence of these islands leads to the deviation of chaotic motion from the normal 

diffusion process described by the Gaussian random walk approximation. Departure of 

the statistics of chaotic motion from the Gaussian one is called anomalous diffusion.a The 

anomalous diffusion along the radial coordinate r is characterized by a nonlinear 

dependence of the second moment displacement ( )l2σ on the distance l along the field 

line 
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Here N is the number of initial conditions at 0=l  taken on a certain magnetic 

surface ar / , where a is the minor radius of the tokamak, and D  determines a diffusion 

coefficient. For a normal Gaussian process the exponent 1=γ . The case 1>γ  is known 

as enhanced (superdiffusive) transport, while the case 1<γ  describes a reduced 

(subdiffusive) transport. It should be emphasized that equation (1) defines the diffusion 

coefficient in an infinite domain. Because the mapping models produce stochastic zones 

of a finite size, one can not use equation. (1). However, one can introduce [5,6] the so-

called local diffusion coefficient 

( )
l
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at the length l, where the growth of ( )l2σ  is linear.  It gives a quantitative measure of 

field line diffusion near the given magnetic surface of radius ar / .  The distance l along a 

field line may be related to the number of steps k in the mapping:  2/Rkl π=  where R  is 

the major radius of the tokamak.  

 

2.1. Frequently interrupted regime of the neoclassical tearing modes 

 

                                                 

a We note that here the term „anomalous diffusion“ does not refer to the turbulent transport in the plasma. 
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 Using the mapping technique which is described in detail in [3] we first 

recalculated the Poincare section of the field lines corresponding to the interaction of the 

(3,2) and (4,3) modes for an ASDEX Upgrade experimental situation described in [3].  

This plot is shown in figure 1 (compare with figure 4 in [3], note that 2/2r=ψ ). The plot 

was obtained with 165 initial values of the radial coordinate evenly distributed in the 

interval 0.10 ≤≤
a
r . Here 00 =θ in all cases and 1000 iterations were used which 

corresponds to 1000 toroidal circuits because the largest mapping step π2  was used. The 

radial dependence of the local diffusion coefficient corresponding to this Poincare plot is 

shown in figure 2. Here averaging over a set of  360=N  initial values of poloidal angle 

was performed: πθ 20 0 <≤ .  

 

 
Figure 1.  Poincare plot corresponding to interaction of the (3,2) and (4,3) modes during the FIR-NTM 

regime.  

 



5 

 
Figure 2. Local diffusion coefficient corresponding to Poincare plot shown in figure 1. 

 

It is evident that the local diffusion coefficient grows with r/a until approximately middle 

of the stochastic zone, then monotonically decreases over the (3,2) islands located at 

592.0/ =ar   to the laminar zone. It is interesting to note that the maximal value of the 

coefficient is of the order of 10-5 [m2/m] which is of the same order of magnitude as 

found in the studies of ergodic divertor magnetic fields in toroidal systems [5]. 

 
2.2 Sawtooth crash 

 

In figures 3 and 4 we show Poincare plots corresponding to the (1,1), (2,2) and 

(3,3) mode interaction during the sawtooth crash (compare with figure 10 in [4]).  
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Figure 3. Poincare plot corresponding to perturbations (1,1)+(2,2)+(3,3). Here the (1,1) amplitude is 6 cm. 

 

       

                  
Figure 4. Poincare plot corresponding to perturbations (1,1)+(2,2)+(3,3). Here the (1,1) amplitude is 3 cm. 
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The radial dependence of the local diffusion coefficient corresponding to these 

Poincare plots is shown in figures 5 and 6. 

 
Figure 5. Local diffusion coefficient corresponding to Poincare plot shown in figure 3. 

 

 
Figure 6. Local diffusion coefficient corresponding to Poincare plot shown in figure 4. 
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 It is evident that both the Poincare plots and the local diffusion coefficient radial 

dependencies in the case of FIR-NTM are quite different compared to a sawtooth crash. 

In the former case stochastization is caused by a simple overlapping of the (3,2) and (4,3) 

modes, while in the later case stochastization strongly depends on a subtle interplay of 

the low-order rational surfaces [4] resulting in tooth-like structures in Poincare plots  

(figures 3 and 4)  and corresponding spikes in diffusion coefficient plots (figures 5 and 

6).   

  The derived diffusion coefficients can be transformed into the electron thermal 

diffusivity eχ by means of the expression [7]: 

FLee Dv
π

χ 3
=     (3) 

Assuming that the electron temperature keVTe 3= , we find that the electron thermal 

velocity smTv ee /103.21033.1 72/17 ⋅=⋅= . This gives the relation FLe D7109.3 ⋅=χ  

[m2/s], leading to eχ  of the order of 102-103 m2/s, which is much bigger than the usual 

turbulent perpendicular transport, but agrees well with the electron heat transport 

measured in a stochastic magnetic field in the Madison Symmetric Torus [8].b  

 

3.  Numerical solution of the nonstationary diffusion equation. 
 

 In order to study different time scales, we solve numerically the nonstationary 

diffusion equation: 
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Equation (4) has to be supplemented by the initial condition 
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bIn principle the electron thermal diffusivity is somewhat smaller due to the temperature change which 

accompanies diffusion. However estimates show [9] that the correction is smaller than 10%.  
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The experimental temperature profile at ASDEX Upgrade before the FIR event (#11681, 

t=2.98s) can be parametrized as follows: 
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and before the sawtooth crash (#20975, t=4.13s) as follows: 
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3.1 Frequently interrupted regime of the neoclassical tearing modes 

 

In the case of FIR we impose the Dirichlet boundary conditions at both sides 

 

( ) ( )0,0 ftT = ,  ( ) ( )1,1 ftT =    (8) 

 

The results of the calculations with local diffusion coefficients shown in figure 2 are 

presented in figure 7. 

 
Figure 7. Temporal temperature profile evolution in the case of interaction of (3,2) and (4,3) modes during 

the FIR-NTM regime. 
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The structure of the curves seen in figure 7 can be explained by the fact that the 

diffusion coefficient used in the calculations (figure 2) corresponds to the parallel 

diffusion which is negligible outside the stochastic region (figure 1). The perpendicular 

component governing diffusion in laminar regions is not taken into account in our model. 

As a result for 3.0/ ≤ar  and 95.0/ ≥ar the temperature profile does not depend on 

time.c    

Experimental measurements show that the FIR drop appears on the time scale of a 

few hundreds of sμ  [10]. During this time the temperature flattening region of about 8-

10 cm is observed. This region includes (3,2) and (4,3) modes and corresponds to the 

time moment when these modes are coupled via the (1,1) mode. The stochastization 

appears only during this very short time period when all the modes are coupled. Without 

coupling the modes have different frequencies, the corresponding perturbations are 

screened and no stochasticity is observed even if the amplitudes of the modes are 

sufficiently high.  One can see in figure 7 that already after 10 sμ  the flattening region 

extends to the experimentally measured values 8-10 cm (from 0.4 to about 0.6 in r/a). For 

subsequent time moments the flattening is much larger and it reaches saturation after 

about 30-50 sμ . Later changes are very small (figure 7, t=400 sμ ). Thus, the resulting 

time needed for the temperature flattening is much smaller than the experimentally 

observed (hundreds of sμ ). This means that the diffusion is not the limiting factor which 

determines the time scale of the temperature drop. Instead the main constraint may be 

imposed by the growth rate of the (1,1) mode which couples the (3,2) and (4,3) modes. 

The temperature can be redistributed during the very short time when the coupling is 

complete.  

 

 

 

                                                 

c The diffusion coefficient is not zero between 85.0/ ≥ar and 95.0/ ≤ar . This cannot be seen in figure 2 

due to the scale. 
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3.2 Sawtooth crash 

 

The sawtooth crash is a very fast and complex event. This is the reason why most 

of the papers focus on the pre-crash and/or post-crash phases of the event. The crash itself 

is local not only in the poloidal direction but also in the toroidal direction as 

demonstrated in recent 2D temperature measurements [11]. This poses great difficulties 

for reconstruction of the crash, because the detection is possible typically in one poloidal 

position and the rotation symmetry can not be applied since the time of the crash is a few 

times shorter than the rotation period of the mode.  

We try to reconstruct the amplitude drop during the crash phase. For this purpose 

we process all the experimental information about the crash using the heat diffusion 

equation. The assumed dynamics of the crash event is shown in figure 8. In the first 

phase, the (1,1) mode grows alone. Higher harmonics appear close to the crash phase and 

destroy the symmetrical 1=m  structure of the mode without causing stochastization for 

which reconnection is needed to destroy the 1=q  surface. This occurs at the top of the 

mode amplitude leading to stochastization of the internal region and to decrease of the 

central temperature. As the starting time of the crash event we assume the time moment 

at which heat begins to flow intensively through the X-point of the (1,1) island outside 

the 1=q  resonant surface which corresponds to the drop of the plasma temperature and 

can be deduced from SXR measurements. The crash is regarded to be fait accompli at the 

time moment when the temperature becomes almost flat in the centre. Here the size of the 

(1,1) reduces to a stationary post-crash value and the heat channel at the X-point closes 

again which is shown as the final phase in figure 8. The 2D ECE measurements [11] 

show deformation of the internal region inside the 1=q  surface just before the crash 

which can be interpreted as an influence of the higher harmonics on the (1,1) mode. 
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Subsequently the deformed mode several times tries to break the 1=q surface until a fast 

crash occurs. d  

 

 
Figure 8. Artist’s view of the temporal evolution of a sawtooth crash. Close to the crash phase higher 

harmonics grow and deform the surface, but only after reconnection stochastization becomes possible 

which leads to the crash. 

 

It should be emphasized that in what follows only the region inside the 1=q  

surface has been considered, because just this region is stochastic due to perturbations 

(figures 3, 4 and 8) and here a strong perpendicular heat flow takes place. After the crash 

heat is redistributed poloidaly around the 1=q  resonant surface, as observed also in [11]. 

Beyond this surface the magnetic field remains laminar all the time. 

We impose the Neumann boundary condition at the plasma interior: 

0
0

=
∂
∂

=rr
T      (9) 

and the Dirichlet boundary condition  

( ) ( )30.0,30.0 ftT =     (10) 

                                                 

d Possibly the described phenomenon can be interpreted as a manifestation of a hysteresis. This will be a 

subject of further studies. 
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at the position of the 1=q surface ⎟
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The corresponding averaged electron thermal diffusivity FLaver D7109.3 ⋅=χ  as a function 

of the displacement of the (1,1) mode is shown in figure 9.  

 
Figure 9. Dots are averaged values of the electron thermal diffusivity calculated for the displacement ξ of 

the (1,1) mode equal to 0.5, 1, 2, 3, 4, 5, and 6cm. The curve corresponds to the fit (12). 

 

The dots shown in figure 9 can be parametrized by the polynomial 

77.1286.3569.12553.10 23 +−+−= ξξξχaver   (12) 

The (2,2) and (3,3) harmonics are also present [4] and we scale them with the same law 

as the primary (1,1) mode. According to experiments we assume that during the sawtooth 

crash ( )scrash μτ 40≈  the displacement of the (1,1) mode decays as follows:  

                                                 

e It should be noted that because of the radial symmetry we could use also the Dirichlet boundary condition 

( ) ( )tTtT ,30.0,30.0 +=−  which mathematically is equivalent to condition (9). 
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where cm6max =ξ  and α characterizes the slope of the decay. Here it is assumed that the 

displacement of the (1,1) mode during the Sawtooth crash decreases from  6 cm to 1 cm 

which is typical for the incomplete reconnection in ASDEX Upgrade  tokamak. This 

parametrization can be compared with the parametrization representing the ideal MHD 

time scale: 
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where AlfvenAlfven vR /2πτ =  is the Alfven time and 
s

m
n

B
vAlfven μ

φ 5.61018.2 16 ≈⋅=  is the 

Alfven velocity, or with the Kadomtsev model: 
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where AlfvenresKadomtsev τττ ⋅=  is the Kadomtsev time and ημτ /2
10 == qres r is the resistive 

diffusion time. In ASDEX Upgrade mrq 15.01 == and the resistivity mohm ⋅⋅= −9102η . 



15 

   
Figure 10. Temporal dependence of the displacement of the (1,1) mode for different values of the 

parameter α in equation (13). 

 

 Now using equations (12), (13), (14) and (15), we obtain a time-dependent 

parameterization for the averaged electron thermal diffusivity. The resulting curves are 

shown in figure 11. 

 
Figure 11. Temporal dependence of the averaged value of the electron thermal diffusivity for different 

values of the parameter α in equation (13). 
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Solving equation (4) with averχ  shown in figure 11, we obtain temporal dependence of 

the temperature. In figure 12 we show the evolution of the temperature at the plasma 

center and in figure 13 the temperature profile after sμ40 . 

 

  
Figure 12. Temporal temperature evolution at the plasma center during the sawtooth crash. 

 

Figure 13. Temperature profile after sμ40 . 
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Comparing theoretical predictions shown in figures 10, 12 and 13 with 

experimental data it is possible to determine the range for the parameter α  which 

corresponds to the measured temperature flattening at the plasma core. Calculations with 

“slower” mode decay ( 31−=α ) predict decrease of the central temperature of the order 

of 0.3 keV during the crash time and flattening of the temperature profile at the plasma 

core which is in a very good agreement with ECE measurements. At the same time, 

significantly faster time scales like inverse Alfven time (ideal instability timescale) can 

not lower temperature in the plasma core. One can see in figure 13 that such a fast decay 

of instability is not sufficient to flatten the temperature profile inside the q=1 resonant 

surface during the crash time. Here the central decrease of the temperature is only 0.08 

keV which is in clear contradiction with experimental values. Thus, we can conclude that 

the real damping is much slower than the inverse Alfven time, but of course it is much 

faster than the growth of the resistive (1,1) mode before the sawtooth crash. This result 

suggests that evolution of the (1,1) mode is strongly nonlinear not only before the crash, 

as shown in [4], but also during the crash time. It is important to emphasize that it is also 

difficult to determine the crash time because of the local nature of the sawtooth crash. 

The SXR signal modelling suggests that in the case considered the crash time is longer 

than 20 sμ  but shorter than 40 sμ . We have found that the obtained results hold also for 

the crash time 20 sμ .  

In our analysis we have used time-dependent and space-averaged diffusion 

coefficients. It is clear that in this way we can arrive at only general conclusions but not 

obtain detailed answers. From the mathematical point of view it is not a problem to solve 

the heat flow equation in the full 2D domain with local diffusion coefficients deduced by 

the mapping technique. The difficulty is related to the unknown boundary conditions 

which should be taken from experiment. This requires not only fast measurements, but 

also 2D measurements which have to be done in the sawtooth frame (co-rotation with the 

mode!). This, of course, is not feasible in real experiments. As a possible alternative to 

such measurements, one could think about reconstruction of a sawtooth crash based on at 

least a combination of 2D ECE and SXR measurements in reconstructing the temperature 

evolution.  Solution of the 2D heat flow equation alone without such precise 

measurements and proper experimental boundary conditions can not improve the 
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obtained results. This is the main reason why we operate with much more robust average 

values of the diffusion coefficient.  

 

 

4. Conclusions 
 

In this paper we have investigated two fast stochastic phenomena in fusion plasma 

in the ASDEX Upgrade tokamak: i) frequently interrupted regime (FIR-NTM) and ii) 

incomplete sawtooth reconnection. Using the experimentally measured perturbations and 

profiles we have deduced the heat diffusion coefficient by means of the mapping 

technique. It is found that the maximum values of the local field line diffusion coefficient 

are of the order 10-5 to 10-4 m2/m which corresponds to the electron thermal diffusivity of 

the order of 102 to 103 m2/s. These diffusion coefficients were used as input into 

nonstationary diffusion equation allowing us to study time evolution of the two 

phenomena.  

Calculations show that in the case of FIR-NTM the modelled time (tens of sμ ) 

needed for the temperature flattening is significantly shorter than the experimentally 

observed (hundreds of sμ ). This means that diffusion is not the limiting factor which 

determines the time scale of the temperature drop. The main constraint is related to the 

growth rate of the (1,1) mode which couples the (3,2) and (4,3) modes. The temperature 

is redistributed during the very short time when the coupling is complete.  

In the case of incomplete sawtooth reconnection, we observe that only a relatively 

small decay of the mode amplitude could explain the temperature flattening observed in 

the experiment. Fast time scales, for instance the inverse Alfven time, can not explain this 

phenomenon. This is a clear indication of nonlinear evolution of the (1,1) mode not only 

before, but also during the crash itself.  

The proposed method makes it possible by solving diffusion equation to connect 

diffusion coefficients with measured plasma perturbations.  This approach allows us to 

obtain general information about fast stochastic phenomena in tokamaks. It requires very 

moderate computational efforts. It can be regarded as a phenomenological method of 
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studying fast phenomena in fusion plasma which can be compared with purely theoretical 

extensive full nonlinear MHD calculations. Such nonlinear calculations were recently 

performed for the FIR-NTM phenomenon [12]. It is very encouraging and interesting that 

the results of these calculations reproduce the structure of this phenomenon almost 

identically as compared with the mapping technique used by us. However the resulting 

crash time is significantly larger than in our simulations, where it is of course taken from 

the experimental data. 

Finally it should be mentioned that there are other methods used for the 

evaluation of magnetic field lines diffusion, in particular the so-called decorrelation 

trajectory method. In [13] this method was applied to calculate the diffusion coefficients 

in the slab geometry. It is interesting that for a relatively small magnetic turbulence 

(Kubo number = 0.1) and a shearless situation, the results obtained by the authors of [13] 

are similar with those obtained by us. The influence of the magnetic shear on the thermal 

diffusivity should be explored.   
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