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Abstract. The effect of resonant magnetic perturbations on heat transport in DIII-D 

H-mode plasmas has been calculated by combining the TRIP3D field-line tracing code 

with the E3D two-fluid transport code. Simulations show that the divertor heat flux 

distribution becomes non-axisymmetric because heat flux is efficiently guided to the 
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divertor along the three-dimensional invariant manifolds of the magnetic field. 

Calculations demonstrate that heat flux is spread over a wider area of the divertor target, 

thereby reducing the peak heat flux delivered during steady-state operation. Filtered 

optical cameras have observed non-axisymmetric particle fluxes at the strike-point and 

Langmuir probes have observed non-axisymmetric floating potentials. On the other hand, 

the predicted magnitude of stochastic thermal transport is too large to match the pedestal 

plasma profiles measured by Thomson scattering and charge exchange recombination 

spectroscopy. The Braginskii thermal conductivity overestimates the experimental heat 

transport in the pedestal because the mean free paths of both species are longer than 

estimates of the parallel thermal correlation lengths, and collisionless transport models 

are probably required for accurate description. However, even the collisionless estimates 

for electron thermal transport are too large by one to two orders of magnitude. Thus, it is 

likely that another mechanism such as rotational screening of resonant perturbations 

limits the stochastic region and reduces transport inside of the pedestal.  

PACS: 05.45.Gg, 52.55.Fa, 52.55.Rk, 52.65.-y 
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1. Introduction 

The strike point structure of a poloidally-diverted tokamak has been predicted to 

become manifestly non-axisymmetric and develop helically striped patterns [1-6] when 

perturbed by magnetic fields due to external coils, field errors, and internal modes. There 

is potential to optimize this �strike-point splitting� in order to spread heat flux during 

steady-state operation in next-generation diverted reactors. Such patterns have been 

observed experimentally on DIII-D [7-9] during the application of three-dimensional 

magnetic perturbations and during locked modes. Non-axisymmetric heat flux deposition 

patterns during edge localized modes (ELMs) have also been observed on ASDEX-

Upgrade [10-11] and during locked modes leading to disruption on MAST [12]. In 

addition, resonant magnetic perturbations (RMPs) have been shown to suppress ELMs in 

H-mode plasma discharges in both DIII-D [13-16] and JET [17]. With edge-resonant 

n = 3 perturbations, a low-density regime of steady-state ELM-free operation can be 

achieved in DIII-D [15-16], so that ELM-quiescent divertor operation is actually realized. 

This is important because at ITER values of pedestal collisionality, ELMs are predicted 

to release up to 20% of the pedestal stored energy on timescales fast enough to 

significantly erode the divertor target plates [18-19] and, thus, divertor lifetime. 

Simulation of heat transport for DIII-D H-mode plasma discharge 122342 during the 

RMP ELM-suppressed phase is performed using the E3D Braginskii fluid transport code 

[20-21]. The E3D code, described in Section 2.2, performed the first calculations of non-

axisymmetric heat flux deposition [20] for the circular limited TEXTOR tokamak�s 

Dynamic Ergodic Divertor [22]. In this work, we use the E3D code to examine the heat 

flux patterns achieved in a poloidally diverted system and to address the question of 
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whether stochastic transport can be responsible for the reduction in pedestal pressure 

gradient that led to the stabilization of Type-I peeling-ballooning modes as proposed in 

Ref. [16]. 

DIII-D�s strongly shaped magnetic fields are reconstructed using the TRIP3D code 

[23] which superimposes the fields from a given set of external coils upon the 

axisymmetric Grad-Shafranov EFIT [24] equilibrium reconstructed from experimental 

magnetic probes, flux loops, and motional Stark effect measurements. In order to 

reconstruct plasma profiles, kinetic EFIT [25] profile reconstructions utilize information 

from Thomson scattering and charge exchange recombination spectroscopy, as well as 

calculations of the fast-ion pressure and bootstrap current. In addition to external 

perturbations from the internal MHD control coil (I-coil) and the field-error correction 

coil (C-coil), TRIP3D can also use a detailed model of intrinsic field errors constructed 

by the DIII-D field-error analysis team [26]. The I-coil consists of 6 upper and 6 lower 

sets of coils and is shown in Refs. [13-16]. All discharges in this study correspond to the 

up-down symmetric     n = 3 �even-parity� configuration described in Refs. [15] and [16] 

that has six times larger resonant perturbation, "Bmn B , than that of the up-down 

asymmetric �odd-parity� configuration described in Refs. [8] and [13].  

A Poincaré plot of the " = 0  surface of section relative to the normalized poloidal 

magnetic flux surfaces, ", produced by TRIP3D for shot 123301 at 2170 ms is shown in 

figure. 1(a). Field lines that escape to the divertor target have been traced for a maximum 

of 200 toroidal transits and are colored from yellow to black (color online) by the number 

of toroidal transits before escape in the forward direction (from 200 to 1). The Poincaré 

plot implies that many of the field lines in the outer 25% of the plasma (in ") can escape 
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within ~1-2 km. Remarkably, the measured plasma temperatures remain high enough 

~1-2 keV, that these connection lengths are of the same order of magnitude as the 

electron mean free path in this region [27]. In addition, we will find that the mean free 

paths of both species are longer than the thermal correlation lengths that are expected in 

the stochastic field. This implies that collisionless processes are important for 

determining parallel transport along field lines. 

Previous E3D simulations [9] have demonstrated greatly enhanced stochastic 

transport when all RMP sources are used. Because the C-coil and field errors introduce 

significant n =1 perturbation components that penetrate deeply into the plasma, the 

stochastic region is relatively broad and a significant fraction of field lines can escape 

from the location of the unperturbed q = 2 flux surface [27]. However, an important 

caveat in the TRIP3D analysis is that the simple superposition of the equilibrium and 

external fields allows complete reconnection of magnetic flux. Unless the perturbation 

induces large enough Lorentz braking forces at the resonant surfaces to overcome the 

force of viscous friction in the bulk plasma, plasma rotation will tend to shield the 

resonant magnetic perturbations [28-32]. This screening well known to occur in the core, 

where the rotation is large and the resistivity is small. Additionally, Heyn, et al., [32] 

found that the electron diamagnetic flow at the edge of the H-mode plasma is large 

enough to limit the penetration of the resonant fields at the edge. For simplicity, in this 

work we will not attempt to provide an accurate description of the plasma response fields. 

Instead, we will present results that assume that the TRIP3D analysis provides a first 

approximation of the magnetic field sufficiently close to the separatrix. In order to limit 

the perturbation to the edge, in the following we study the effect of the I-coil perturbation 
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alone. Although the fields in this case are relatively weakly stochastic, they have 

significant impact on the energetic balance in the simulation and the pattern of heat flux 

delivered to the divertor target. 

In Section 2 we explore estimates for the stochastic enhancement of thermal diffusion 

and describe the computational technique required to accurately compute the parallel 

thermal transport in the fluid regime. We then describe the experimentally obtained 

transport results and compare them to results of E3D simulation. In Section 3 we describe 

the way in which heat flux is guided to the divertor target within the simulation and 

compare the TRIP3D and E3D calculations of strike point splitting to experimental 

measurements. Finally, we conclude with a discussion of the relevance of our results to 

experimentally determined transport and summarize our conclusions. 



 7 

2.  Stochastic Heat Transport  

2.1  Quasi-linear estimates 

The dynamics of magnetic field lines can be estimated from the spectrum of the 

resonant magnetic field normal to a magnetic surface.  The axisymmetric equilibrium 

field has good flux surfaces, and thus, has the action-angle form 

B0 ="#P $"(q%& ') /2( , where "  is the usual cylindrical toroidal angle and 

"P = B #daP$  is the magnetic flux (in V s) contained by a surface of constant poloidal 

angle. The poloidal angle is chosen to be a straight field line coordinate so that 

" = (# $ #0 ) /q  and the safety factor q  is a function of "P  alone. If we define the toroidal 

flux contained by a surface of constant toroidal angle "T = B #daT$ , then the rotational 

transform " =1/q = d# /d$ = d%T /d%P  measures the change in poloidal angle for each 

toroidal revolution. In the following, we normalize the poloidal flux " = (#P $#axis ) /#0  

to the total poloidal flux contained within the plasma "0 = "sep #"axis . The Fourier 

series coefficients of the surface averaged magnetic field perturbation normal to the 

unperturbed flux surfaces are defined via 

 "BmnA = 2 sin(m#$ n%+ &mn )"B 'd2a(    ,  (1) 

where A  is the area of each flux surface and the phases of the coefficients are "mn . With 

this surface averaged definition, the perturbation to the normal field can be produced 

either by the perturbed poloidal flux function  

� " P =
#BmnA

2$m
cos(m%& n'+ (mn )

mn
)  (2) 

for m " 0, or by the perturbed toroidal flux function 
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� " T =
#BmnA

2$n
cos(m%& n'+ (mn )

mn
)   (3) 

for n " 0. The exact geometric dependence of the majority of the formulae below can be 

captured by normalizing the magnetic perturbation to the total poloidal flux, 

bmn = "BmnA / 2#$0 . Figure 1(b) displays the spectrum of the n = 3 component of the I-

coil perturbation at 3 kA-t as modeled by TRIP3D for plasma discharge 122342 at 

4650 ms. Note that the spectrum has a ridge that follows the resonant value     m = "3q . 

Near the separatrix, the peak values are on the order of 1.8"10#3.  

The spectrum determines the island width, "# = 4 bmn / $ q n , where " q = dq /d#, and 

since resonances are separated as "# =1/ $ q n , one can also estimate the Chirikov island 

overlap parameter [33], " = #$ /%$ = 4 & q nbmn . As the separatrix is approached, the 

reconstructed profile is expected [3-4] to display logarithmic behavior of the form 

  
q" q*ln (h* /h), where we define h =1"#, and q*, h*  are constants to be determined. 

The large shear " q # q* /h forces island sizes to decrease as h1/2  as the separatrix is 

approached, but since the width between resonances decreases in proportion to the shear, 

the island overlap still increases as h"1/2 . Thus, transition to stochasticity generically 

occurs sufficiently close to the separatrix at hst =16q
*
nbmn. A fit to the reconstructed q -

profile produces q* = 0.56, h* = 24 , and therefore hst ~ 5%. Figure 2(a) shows that, for 

the I-coil perturbation alone, the overlap parameter does in fact exceed unity very close to 

this location. Since the island half-width at this location is 3%, this additional width must 

be included within the overlap region as shown in the figure. Note however, that due to 

the effect of 2nd order islands, overlap generically occurs sooner than this; Chirikov [33] 
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found the more stringent criterion " > 2 / 3. This estimate would yield an outer stochastic 

layer of roughly 15% width in poloidal flux. 

Knowledge of the perturbation spectrum allows one to estimate the rate at which 

magnetic field lines wander across flux surfaces. For sufficiently ergodic motion, the 

field lines move across the unperturbed flux surfaces in a diffusive fashion so that 

  
"#x2 $ ~ 2dfl l  along the length of a field line. The quasi-linear estimate [34] for the 

diffusion of poloidal flux in poloidal angle defined via "#$2 % = 2D$ #&,  

D" =
#

2
bmn
2

n
$ %m&qn    , (4) 

grows quadratically with RMP amplitude. Here, "m#qn  is shorthand for the Kronecker 

delta function "m#qn,0 . This, in turn, allows one to estimate the diffusion of field lines in 

real space 

dfl =
BT
qRB

D"

#"
2
$
%qR

2

&Bmn
BT

' 

( 
) 

* 

+ 
, 

2

&m-qn
n
.    , (5) 

where BT  is the toroidal field, B  is the total field strength and R  is the major radius at 

the magnetic axis. Figure 2(b) shows that the characteristic diffusion coefficient is on the 

order of 1 mm2 /m. In the collisionless regime, heat will diffuse at the thermal speed of 

the carrier particles [35-36], so that one can estimate the thermal diffusion coefficient to 

be Dst = dfl VT  where the thermal velocity VT = T /M  is defined in terms of the 

temperature T  and mass   M  of the particle species under consideration.  
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In the collisional regime where the mean free path is shorter than the parallel thermal 

correlation length scale, 
    
" « LT , Rechester and Rosenbluth [35] estimated that the thermal 

transport coefficient would be reduced by a factor of     " / LT , so that 

    
DRR = Dst" / LT = D|| df l / LT . In equilibrium, the ratio of perpendicular (

  
"

T
) to parallel 

(
  
LT ) correlation length scales must satisfy 

    
"T / LT = D# / D||  in order to balance the 

diffusive time scales along and across magnetic field lines. At the same time, motion in 

the stochastic field causes these small perpendicular scales to expand (along the unstable 

invariant manifolds described below) until they extend over a poloidal island length 

r /m ="T exp (LT /LK ) . Thus, the parallel thermal correlation length scale should be 

determined by the largest Liapunov exponent, or Kolmogorov length, up to a correction 

factor that only depends logarithmically on the diffusivity ratio, 

  

LRR = LKln
r /m

LRR

D||
D"

# 

$ 
% 

& 

' 
(    .  (6) 

The Kolmogorov length can be estimated via [37-38]  

LK
"qR

=
2# 1

3( )
"# 2

3( )
3DK( )

$1/3
% 1.10 DK / 2( )

$1/3   , (7) 

where DK  represents the diffusion of neighboring trajectories. The quasi-linear estimate 

for   DK  is given by a higher spectral weight of the perturbation spectrum,  

DK =
"

2
# q nbmn( )

2
$m%qn

n
&    . (8) 
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Since the Kolmogorov length is expected to scale inversely with perturbation strength, 

    LK ~ b
"2 / 3, the collisional diffusivity scaling, 

    
DRR ~ dfl / LK ~ b8 / 3 , is even more rapid 

than the quadratic scaling in the collisionless case.  

These estimates are clearly only relevant if a field line is long enough to sample the 

stochastic region, so that     "«LK «Lc . If the connection length to the wall,   Lc , becomes 

shorter than the Kolmogorov length, then the field lines exit the plasma ballistically, not 

diffusively, and this leads to greatly enhanced parallel transport [38]. Far enough from 

the separatrix, the poloidal connection length, 
    Lc ~ "qR , yields a reasonable estimate; 

however, in the stochastic case the connection length develops fractal structure [3-4,20]. 

Thus, we define the parallel collisionality by the ratio of the parallel thermal correlation 

length to the mean free path: 

  l* = LT /" ~ min(LRR,Lc ) /"    , (9) 

where the asymptotic scalings hold in the appropriate regime. This definition is clearly 

different from the definition of perpendicular collisionality [39] that compares the 

collision frequency to an effective neoclassical bounce frequency. 

2.2  Computational method 

The E3D code [19-20] uses Monte-Carlo fluid elements to efficiently integrate the 

highly anisotropic advection-diffusion Braginskii fluid equations. Because the code has 

not yet implemented a model for neutral refueling, a key component of H-mode pedestal 

density physics, we focus on thermal transport alone, and keep the density fixed 

throughout the simulation. In this case, the solutions to the energy conservation equations 

"t
3
2
ne Te = #$ne %||e

� b � b $ #Te +#& $ne%&e#&Te +Qei    , (10a) 
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"t
3
2
niTi = #$ni%||i

� b � b $ #Ti +#& $ni%&i#&Ti 'Qei   , (10b) 

are essentially entirely determined by the boundary conditions and the geometry of the 

magnetic field. The parallel diffusivities are defined by their Braginskii values [40]  

"||e = 3.2 #ei VTe
2 "||i = 3.9 #ii VTi

2    , (11) 

where "ei  ( "ii ) represent the Coulomb collision time between ions and electrons (ions).  

The collisional heating of electrons by ions is simply given by 

Qei = 3n(Ti "Te )me /mi# ei (12) 

since relative flows are neglected. The nonlinear boundary conditions applied at the walls 

are the so-called Bohm sheath boundary conditions, 

q" = #"T" $" $" = n"Cs cos%w    , (13) 

for each species " , that require outflow of particles and energy at the ion sound speed, 

  Cs . The boundary conditions depend on the angle between the field line and the wall "w , 

and the flux coefficients   "e and   "i  are determined from kinetic modeling studies in [41]. 

The plasma is assumed to be quasi-neutral so that 
  ne = Z ni with constant charge state 

Z =1. The perpendicular diffusivities are assumed to be anomalous in origin and can be 

chosen to match experimental conditions. Experimentally inferred values for DIII-D H-

mode plasma profiles typically range from 0.1-10.0 m2 /s and vary significantly over the 

spatial extent of the edge plasma. 

The Monte-Carlo elements are not particles, but heat packets which satisfy the 

equations of motion 

  
"

v 
x = 2" t

t 
D #

r 
$ +

r 
V "t    , (14) 



 13 

where   
r 
"  is a vector of random numbers with unit standard deviation. In the limit of small 

time steps, the distribution function f (x) = "i wi #(x $ xi )  for the packets of heat, 

particles, etc. satisfies the ensemble-averaged   " f #  equation of motion 

      

d f

dt
+

r 
" # (

r 
V $

r 
" #

t 
D ) f = S $% f    . (15) 

The fluid equations of motion are reproduced with the choice 
    

r 
V packet =

v 
V fluid +

r 
" #

t 
D  and 

sources represent the probability to inject or remove heat packets.  

Because the thermal diffusivity is so anisotropic, 
  
"|| / "# ~ 108 $1011, tracking large 

parallel jumps of heat packets represents one of the major computational costs of the 

algorithm. E3D efficiently handles this cost by pre-computing field line following grids 

that trivialize the integration of the equations of motion. E3D uses the technique of 

�multiple local magnetic coordinate systems� to generate a series of field line following 

meshes that cover the entire domain. The RMP fields of interest are much smaller than 

the main toroidal field; by cutting the domain into enough toroidal sections, one can find 

a locally straight magnetic field line coordinate system in each subdomain. To make the 

method global, E3D generates a 3rd order spline mapping that interpolates between the 

faces of the subdomains. Thus, the large number of parallel numerical integration steps 

can be exchanged for a greatly reduced number of map evaluations. We find that six 

toroidal subdomains reproduce the field motion to sufficiently high accuracy. The 

mapping between subdomains typically has 80 radial x 360 poloidal grid points, while the 

plasma parameters within each subdomain are stored on a 32 or 64 point radial mesh x 

360 poloidal x 16 toroidal mesh. A flexible definition of poloidal angle is used to focus 
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enough resolution over the divertor region and on the divertor target to resolve the 

magnetic footprint.  

2.3  Experiment 

During DIII-D discharge 122342, the I-coils are energized to 3 kA-t in the n = 3 even 

parity configuration at 2000 ms, just after H-mode transition. The standard field-error 

correction algorithm was applied to the C-coil (maximum current of 12 kA-t) throughout 

the discharge. When the edge-safety factor reaches q95  ~ 3.7, particle transport is 

strongly affected, and the line-averaged density begins to decrease. Just after the coils are 

energized, the ELM frequency increases while the ELM size decreases until the density 

drops low enough to reach the point of marginal ELM stability.  The ELM frequency then 

decreases until ELMs are completely suppressed at 2900 ms, when the target edge safety 

factor, q95  = 3.5, is achieved and the pedestal density is reduced to 

    
ne,ped = 2"10

13 cm"3. Time-traces of similarly shaped discharges can be found in Refs. 

[15,16]. 

Figure 3(a) displays a set of fits to electron density, temperature, and ion density 

derived from Thomson scattering and charge exchange recombination data for discharge 

122342 averaged over the ELM suppressed interval 4400-4900 ms. At 4650 ms, the total 

input power is     PNBI + POh = 5.1 MW and the stored energy is essentially constant. The 

core-radiated power is 
    
Prad,core = 0.5 MW, while the divertor radiates 

  
Prad,div = 0.9 MW. 

On axis,     ne(0) = 4"1013 cm"3, and the low-density operation appears to increase the 

deposition of neutral beam energy into the ion channel: the ions reach 9 keV on axis 

while the electrons reach 3.5 keV. At the inside of the pedestal, " = 0.85, the ion 
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temperature is 2.5 keV, while the electron temperature is 1.3 keV. Transport modeling 

using the comprehensive CORSICA code suite [42] determined that pedestal ions 

received close to twice as much power as pedestal electrons.  

Figure 3(b-d) represent estimates of the parallel thermal diffusivity, mean free path, 

and correlation lengths based on these experimental profiles, using the expressions 

developed in Section 2.1. They will be discussed in detail in Section 2.5. 

2.4 Simulation 

We perform two numerical experiments that are intended to roughly match 

experimental conditions during the axisymmetric and RMP ELM-suppressed state. The 

protocol is to initialize E3D with axisymmetric profiles that are close to satisfying the 

correct boundary conditions and evolve until steady state. The density is not evolved, 

instead it is chosen to be a flux function that fits experimental Thomson scattering data, 

but becomes constant beyond the separatrix [figure 4(a,b)]. Because E3D requires a good 

flux surface as an inner boundary condition, the inner surface is placed at " = 0.86 in the 

unperturbed case and " = 0.82 in the perturbed case. The simulation domain extends 

outward to include a realistic vacuum vessel where the sheath boundary conditions 

[equation (13)] must be satisfied. At the point of closest approach on the outer midplane, 

the vaccum vessel wall lies at a normalized flux of " =1.20. Since the stochastic field 

penetrates deeply into the plasma, a simple 1 or 2 level diffusivity model is not accurate 

enough to reproduce the experimental temperature profiles across the entire plasma 

domain. According to the CORSICA analysis, the diffusivity of total pressure from the 

observed profiles, D" ~ 1 m2 /s at the top of the pedestal and D" ~ 0.2 m2 /s in the 

region of steep gradients. However, the steep gradient region is too narrow to accurately 
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resolve in the simulation and qualitative results for the footprint structure are expected to 

be somewhat insensitive to the diffusivity profile; thus, we choose D" = 1 m2 /s to be 

constant throughout the domain. In the simulation, a constant heat flux of 5 MW is 

applied to the inner boundary, and consistent with the power fraction determined by 

CORSICA, 3.3 MW of the power is injected into the ions, while 1.7 MW is injected into 

the electrons.  

Simulation results are shown in figures 4 and 5. The unperturbed cases are close to 

axisymmetric, while the perturbed cases display three-dimensional structure (figure 5) 

that is especially obvious near the X-point where there is large flux expansion. In the next 

section it will be shown that this structure is primarily determined by the three-

dimensional magnetic field line topology induced by the RMP. Figure 4(b) displays the 

simulation density and temperature profiles across the outer midplane. In the unperturbed 

case (0 kA-t), the profiles are roughly linear due to the choice of constant diffusivity and 

the temperatures achieved on the inner boundary are 1.7 keV for ions and 1 keV for 

electrons. The profiles in the perturbed case (3 kA-t) are linear as well, but have suffered 

a large drop in thermal confinement: the temperatures achieved on the inner boundary are 

0.9 keV for ions and 0.4 keV for electrons. 

2.5 Thermal Transport Comparison 

Considering the discussion of stochastic transport in the previous sections, it is 

surprising that the experimental thermal confinement remains high while particle 

confinement is reduced. In Refs [15] and [16] it was demonstrated that the temperatures 

of both species in the steep gradient region are actually higher than the pre-RMP ELMing 

phase. In these experiments, the RMP reduces particle confinement at roughly constant 
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stored energy. This implies a trade-off between higher density during the pre-RMP phase 

for higher temperature during the RMP phase. However, there appears to be a large 

discrepancy between experiment and simulation in the RMP-induced change to the stored 

energy. The simulation results clearly show an enhancement to thermal conductivity in 

agreement with stochastic transport expectations. 

To understand the source of the discrepancy qualitatively, let us examine the 

consequences of the quasi-linear transport estimates described in Section 2.1. Due to the 

relatively light mass of electrons, we expect electron thermal conduction to be 60 times 

larger than that of deuterium ions at fixed temperature. The Braginskii parallel thermal 

diffusivities in figure 3(b), defined via 
    
D|| = 2"|| / 3, range from 1011 m2 /s for electrons to 

109 m2 /s for ions over much of the observed plasma pedestal. The mean free paths for 

thermal conduction, defined via 
    
" = 2#|| / 3VT , for the experimental plasma are on the 

order of 1-4 km at the top of the pedestal as shown in figure 3(c). Due to the logarithmic 

correction factor, the thermal correlation lengths are close to 200-400 m, about 2-4 times 

larger than the Kolmogorov length [figure 3(d)]. Thus, even if we neglect the transition to 

short connection length at the plasma edge and use the approximation   l* = LRR /" , 

figure 6(a) shows that the H-mode plasma is quite collisionless since   l*e ~ 0.2  and 

  l*i ~ 0.03. In fact, the ions are less collisional than the electrons due to their higher 

temperature. 

Quasi-linear estimates for diffusive transport over the entire pedestal are shown in 

figure 6(b,c). Note that, since the collisional result   DRR = Dst /l* should only be used 

when   l* >1, the appropriate estimate is always the minimum of the two possible values.  

In figure 6(b,c), the physically correct estimate is indicated by open symbols. For the 
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experimental H-mode profiles, the estimated collisionless electron thermal diffusivity 

reaches a maximum of ~ 20 m2 /s in the steep gradient region near " = 0.97. Recall that 

the experimental result is closer to 0.2 m2 /s, two orders of magnitude smaller, and both 

the observed electron and ion temperatures actually increase during the RMP [15-16]. 

The collisionless ion thermal diffusivity, Dst = 0.3" 0.4  m2/s over the range 

" = 0.95 #1.00 , does have the correct order of magnitude to explain the increase in 

effective particle transport. However, such a change in thermal conductivity is large 

enough to compete with neoclassical transport and should have observable consequences 

in the steep gradient region.  

In contrast, for the simulated profile set, the temperatures of both species reach much 

lower values, and for the perturbed cases, this reduces the parallel diffusivities 

[figure 3(b)] and mean free paths [figure 3(c)] by one to two orders of magnitude. In the 

simulation, the electrons are cold enough to actually become collisional at these low 

densities and the ions are close to marginal,   l*i ~1, in the outer 5% of the plasma 

[figure 6(a)]. Thus, we can conclude that, under the simulated conditions, the fluid 

plasma model is valid for electrons and marginal for ions. Figure 6(b,c) show that the 

simulated stochastic enhancement in thermal diffusivity is roughly DRRe ~  2 m2 /s for 

electrons and     DRRi ~  0.5 m2 /s for ions over much of the simulated pedestal. These 

order of magnitude Rechester-Rosenbluth estimates agree with the enhancement of 

diffusivity implied from the drop in the temperatures between simulations: 
    "De ~  

1.5 m2 /s for electrons and 
    "Di ~  0.7 m2 /s for ions.  
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3.  Strike Point Splitting 

3.1  The homoclinic tangle 

In order to understand the way in which heat is transported across the separatrix, it is 

imperative to study the behavior of field lines in the vicinity of the separatrix and the 

X-point in particular. The X-point is constructed from four families of field lines:  as we 

trace field lines in the forward toroidal direction, there are two entering families and two 

exiting families. In the axisymmetric case shown in figure 7(a), the entering and exiting 

field lines coincide and form the separatrix from a single self-intersecting, or homoclinic, 

orbit. Under perturbation, the X-point trajectory will deform, but it will survive. 

However, self-intersecting orbits are structurally unstable [43-45], and this topology will 

be destroyed by an arbitrarily small perturbation, as in figure 7(b). The four branches of 

the X-point can still be determined by locating the eigenvectors of the toroidal mapping 

of field lines near the fixed point and tracing the motion of field lines that enter/exit the 

X-point along those eigenvectors. However, �time reversal� symmetry in toroidal angle is 

fundamentally broken along the separatrix. Field lines that enter the X-point in the 

forward direction define the so-called forward stable (backward unstable) invariant 

manifold, while the field lines that enter the X-point in the reverse direction define the 

forward unstable (backward stable) invariant manifold, and these two manifolds no 

longer coincide [43-45]. 

No field line can ever cross an invariant manifold, because the manifold is explicitly 

constructed from field lines, and thus, must be invariant under parallel translations, 

      

r 
B "

r 
# $ = 0 . However, in a chaotic field, these surfaces represent �non-isolating� 
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constants of the motion, and they do not restrict field lines from wandering ergodically 

throughout the stochastic area of phase space. If we initialize points inside of the original 

separatrix and follow the field lines as they travel in the forward toroidal direction until 

they first strike the divertor target, figure 7(c) shows that they fill a large stochastic 

region, but the motion is clearly still bounded by a well-defined outer surface. Similarly, 

figure 7(d) shows that when traced in the opposite direction, a different outer bounding 

surface is developed. Neither manifold can intersect itself, but they generically intersect 

one another. If they intersect once, they must intersect an infinite number of times in 

either direction because the point of intersection can be mapped forward/backward along 

the stable/unstable manifold an infinite number of times, cf. figure 7(b). The lobes that lie 

between the stable and unstable manifolds transport flux along the boundary, and because 

the mapping is area preserving, both the forward and backward mapping of each lobe 

contains an equivalent amount of flux. The points of intersection of the manifolds must 

accumulate near the X-point, where the poloidal field vanishes, and, in order to preserve 

area, the lobes must then lengthen in order to counteract the decrease in width. As the 

lobes lengthen, their tips wander along an ever-increasingly complex self-avoiding path, 

eventually mixing with other lobes. This mixing is ballistic at first since the lobes are 

simply transported along the direction of the local pitch of the field lines on the 

separatrix, but after a close-encounter with the X-point, a field line will be scattered in an 

effectively random fashion [46-47].  

Although the separatrix topology is �broken� by the perturbation, the invariant 

manifolds in the vicinity of the original separatrix still completely determine the fate of 

field lines. Melnikov [43] proved that small deformations of such manifolds can be 
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treated linearly. To find the distance between the stable "#  or unstable "+  manifold and 

the original separatrix "0, simply integrate along a field line from a point infinitesimally 

close to the X-point,  

  

"± (#,q$) = "0 +

r 
B %

r 
& "

r 
B %

r 
& $

d
m'

$
( $   . (16) 

The difference in flux between the two manifolds, the Melnikov function, 
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depends upon the constant of motion "0 = " # q$  alone. Note that although "  becomes 

singular as the separatrix is approached, the product q"  is simply the toroidal angle 

traversed, and thus, remains well behaved. The zero crossings give the primary points of 

intersection between the manifolds, while the integral of this function can be used to 

measure the area between the lobes. The distance in the direction normal to the original 

separatrix, increases as the X-point is approached 
  
� n " #

r 
x = #h / $%0 , but in order to 

preserve the area between the lobes, the distance between crossings decreases 

proportionately. Note that the radial excursions are linear in the perturbation field. 

The accessible stochastic region is asymmetric with respect to the unperturbed 

separatrix: it is thicker on the interior than the exterior. The half width of the layer 

described by the Melnikov funciton, "h ~ 2#bm=qn ~1%, is only 4 mm on the outer 

midplane, but due to the expansion of the unperturbed flux near the X-point, it creates a 

2 cm footprint on the divertor floor. It is much thinner than the stochastic layer predicted 

by island overlap hst ~ 5%, and the ratio is  
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"h hst = # 8q*n    ,   (18) 

close to 1/5. Thus, as particles move along field lines, they leave the relatively wide 

stochastic layer, mix into the relatively thin homoclinic tangle, and eventually strike the 

divertor target. Upon reflection/re-injection through recycling processes they travel in the 

opposite direction, sampling the entire region between the two upper invariant manifolds. 

Just outside of the homoclinic tangle, particles cannot mix with the interior, except 

through perpendicular transport mechanisms such as collisions, cross-field convection, or 

neutral transport. Thus, the outer envelope of the tangle provides a precise definition of 

the inner boundary of the laminar scrape off layer (SOL). In the SOL, field lines do not 

close on themselves, and thus, due to the rectification theorem [44-45], a straight field 

line coordinate system can be always be found locally. One expects exponential decay in 

this region; e.g. for the collisional fluid regime, the SOL decay length should satisfy 

"SOL /Lc ~ D# D|| . By similar reasoning, the original private flux region below the X-

point is still magnetically well isolated, and will still have a rapid decay length due to the 

small connection length in this region. To verify this picture of field-aligned thermal 

transport, in figure 8 we compare the electron temperature calculated by E3D with the 

invariant manifolds that enter/exit the X-point for the mapping that defines the E3D 

coordinate system. Strong correlation is found between the invariant manifold structure 

and the contours of constant temperature. 

Note that if there is not enough input power into the stochastic layer, it could reach 

temperatures below ionization threshold, and retain only an exponentially small fraction 

of plasma. In this case, the plasma edge will be defined by the last dominant tangle of 

island chains above ionization threshold. Such behavior is commonly predicted and 
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observed in limiter configurations such as TEXTOR [22,46]; however, in the diverted 

system, the homoclinic tangle still defines an outer boundary that geometrically confines 

the invariant manifolds of the island chain within. In this case, the heteroclinic 

intersection [44-45] of the invariant manifolds of the island chain and the remnant of the 

poloidal separatrix defines the chaotic web in which trajectories wander out to the 

divertor. 

3.2  Magnetic footprints 

During n = 3 even parity I-coil operation, both the inner and outer strike point 

(ISP/OSP) particle flux has been observed to split into multiple striations. For example, 

images of D"-filtered recycling emission shown in figure 9(a) for shot 123301 clearly 

display three striations along the inner strike point, and this is also commonly observed in 

both CII and CIII filtered light. The detailed structure of the OSP has also been measured 

by slowly sweeping the OSP over a newly upgraded high-resolution Langmuir probe 

array (LPA) at the " =  180 deg toroidal location. Multiple peaks have been observed in 

the radial profiles of floating potential [47]. The distribution of field lines that are 

initialized on unperturbed flux surfaces inside the unperturbed separatrix as they first 

strike the divertor target is shown in figure 9(b) as calculated for shot 123301 including 

all RMP sources: I-coil, C-coil, and field-errors. In good agreement with observations, 

TRIP3D predicts that there should be three striations along the inner strike point within 

the view of the tangential X-point TV, 120-240 deg. The IR camera view at 60 deg only 

observed a single striation which might be explained by the fact that the n =1 C-coil and 

field error perturbations introduce significant squeezing of the magnetic footprint at this 

location [figure 9(b)]. However, further measurements at other toroidal locations have yet 
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to observe significant striations in heat flux, and this would mean that the observed 

striations in particle flux are thermally isolated from the interior. More data analysis is 

needed to clarify the present experimental situation, but this conclusion would be 

consistent with the hypotheses of significant screening of resonant perturbations and/or 

parallel thermal transport inside the separatrix. 

The simulated thermal footprints for shot 122342 with 5 MW of input power and 

3 kA-t of I-coil perturbation current (no C-coil or field errors) are shown in 

figure 10(a,b). The n = 3 symmetry of the I-coil perturbations is apparent in the magnetic 

footprint structure. Because of the neglect of particle conservation, neutrals, and 

radiation, the computed heat fluxes are higher than expected for realistic conditions; the 

scales must be interpreted in light of the somewhat unphysical conditions of this 

numerical experiment. Although there was twice as much power injected into the ions 

3.3 MW vs 1.7 MW, in both axisymmetric and perturbed cases, the heat flux to the 

divertor is more equally balanced between ions, 3 MW, and electrons, 2 MW, due to the 

collisional exchange of thermal energy. Since field lines that strike the inner divertor 

target are compressed to a smaller area, the heat flux is asymmetrically high even though 

only about 35% of the flux is channeled through the ISP both with and without RMP. 

Producing the correct inner/outer strike point asymmetry will eventually require drift 

physics and, perhaps, poloidal variation in the perpendicular transport coefficients. In 

fact, the ISP in DIII-D is typically detached, but during low-collisionality I-coil 

operation, the inner leg typically reattaches and delivers similar order of magnitude peak 

heat fluxes to the outer leg [48] as measured by infrared cameras. 
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In the simulation, the peak heat flux of the toroidally averaged profiles is reduced by 

17% for the ISP and 25% for the OSP. The toroidally averaged profiles of heat flux were 

fitted to the approximate exponential form, Q ~Q0 exp("#R /$) , where 
  
"R  is the radial 

distance from the separatrix. While the decay lengths are unchanged within the private 

flux region, "ISP ~  0.35 cm and "OSP ~  0.57 cm, on the scrape-off layer side, the decay 

length increases by 50% from 1.0 to 1.5 cm for the ISP and by 57% from 2.8 cm to 

4.4 cm for the OSP. In fact, the toroidal average of the perturbed OSP profile appears to 

display an essentially linear, slower than exponential, decay. 

Finally, a potential mechanism for enhanced convective transport is suggested by 

examining the heat flux sent directly to the entrance of the lower divertor cryopump. 

Simulated heat fluxes are delivered directly to the pump entrance at local levels of up to 

10% of the peak value on the divertor. In addition, the mean position of the heat flux 

distribution, R = R" q #da /P  with heat flux q and power P , over the OSP is moved 

0.4 cm toward the pump entrance relative to the axisymmetric case. This average 

movement of plasma toward the pump may increase the probability that a neutral will 

reach the opening. This could increase pumping efficiency and, thus, decrease the 

effective recycling of particles back into the bulk plasma. 
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4. Conclusions  

In summary, we have calculated the non-axisymmetric distribution of heat flux to the 

DIII-D divertor under perturbation by the I-coil. The pattern is largely determined by the 

structure of the homoclinic tangle of invariant manifolds that guides field lines to the 

divertor target. The width of the magnetic footprint, the distribution of field lines 

escaping from the plasma region, can be thought of as the width of the effective 

separatrix. As the effective area for heat transport increases, the magnitude of the peak 

heat flux is reduced. The toroidal average of the perturbed profile decays slower than 

exponentially on the divertor target and indicates the increased efficiency with which heat 

flux is spread over the target. This also suggests that a linear decay of a �toroidally 

symmetric� strike point profile can potentially indicate toroidally rotating internal modes 

that produce an edge layer of stochastic field lines. The experimental observation of 

strike point splitting in particle flux appears to imply that the magnetic field in the SOL 

has developed significant non-axisymmetric structure. In addition, these observations 

coincide with changes to the pressure profile that are only observed during the 

application of edge-resonant perturbations. 

Paradoxically, the observed change in the electron temperature profile does not agree 

with the weakly stochastic fluid simulations presented here. Theoretical analysis [35-38] 

and experimental results in L-mode and Ohmic plasmas [46,49-50] have consistently 

identified electron thermal conduction as the dominant transport mechanism. We have 

shown that H-mode plasma parameters are collisionless even in the presence of weak 

stochasticity, and transport simulations at these densities will typically require kinetic 

treatment for accuracy when extended into regions with ~ keV temperatures. However, 
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the collisionless quasi-linear estimates for parallel electron transport are too large by an 

order of magnitude at the top of the pedestal, and two orders of magnitude too large in the 

steep gradient region [16]. Thus, the non-axisymmetric structure developed by the 

magnetic field cannot thermally connect far into the pedestal. Current estimates of 

shielding by rotational effects [32] only allow penetration by a few % in poloidal flux. 

In previous DIII-D RMP experiments, the largest factor in the reduction in pedestal 

pressure gradient was a drop in density due to increased particle transport [15-16]. Direct 

evidence for a factor of two reduction in the effective particle confinement time has been 

obtained by comparing pellet injection experiments in discharges with and without the 

RMP [51]. Ambipolar outflow aligned with the stochastic magnetic field should slow the 

net particle loss rate to that of the more massive ions [36,52-53]. The collisionless quasi-

linear estimate for the experimental ion diffusivity in Section 2.5, Dst = 0.3" 0.4  m2 /s 

over the range " = 0.95 #1.00 , does have the correct order of magnitude to explain the 

observed reduction in particle confinement in the ion transport barrier region. However, 

this explanation requires a mechanism to reduce the conductive thermal transport of both 

species.  Parallel electron conduction must be reduced by factor of 10 at the top of the 

pedestal and by a factor of 100 in the electron transport barrier region. The 1D transport 

model of Ref. [53] also found that agreement with experiment required an extreme factor 

of 10-30 reduction in the conductive thermal transport allowed in the collisionless kinetic 

regime. Many other explanations of particle transport have been proposed including: 

enhanced pumping efficiency (Section 3.2), enhanced neoclassical ion losses (Ref. [32]), 

static cross-field   
r 
E "

v 
B  convection cells (cf. the single fluid MHD model in Refs [54-

55]), and broadband dynamic turbulence (observed experimentally in Ref. [56]). 
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Thus, it appears that the experimental results are inconsistent with a computational 

model of stochastic transport as well as quasi-linear estimates of thermal transport. It 

seems inevitable that another mechanism such as kinetic flux limits (cf. Ref. [53]) or the 

shielding of resonant perturbations by plasma rotation (cf. Ref. [32]) must play an 

important role in limiting stochastic transport. Because of the extreme sensitivity of the 

transport to the resonant perturbation strength, it is critical to understand the response of 

the plasma to the applied perturbations in order to predict the location and width of the 

resonant layer.  
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Figure Captions 

Figure 1.  (a) Poincaré plot of the " = 0  surface of section modeled for shot 123301 at 

2170 ms for I-coil (3 kA-t), C-coil (12 kA-t) and intrinsic field errors. Field lines have 

been traced for a maximum of 200 toroidal transits and are colored from yellow to black 

by the number of toroidal turns before escape (200 to 1). Here, "  is not a straight-field 

line angle, but the standard poloidal angle defined from the magnetic axis. (b)     n = 3 

Magnetic perturbation spectrum in straight field line coordinates for shot 122342 at 

4650 ms for I-coil (3 kA-t), but without C-coil and field errors. Black and white line 

indicates resonant left-handed modes     m = "3q ; white line indicates non-resonant right-

handed     m = +3q  modes.  

Figure 2.  (a) For the I-coil spectrum alone [figure 1(b)], the Chirikov island overlap 

parameter rises above 1 near " = 0.95. If we include the island widths, shown as 

horizontal bars, the transition to stochasticity takes place at " = 0.92. (b) The quasi-linear 

field line diffusivity (d fl ) and Kolmogorov length ( LK ) for the spectrum in figure 1(b) 

computed via equations (2) and (3). 

Figure 3.  Plasma parameters over the pedestal: (a) density and temperature, (b) parallel 

thermal diffusivity, (c) mean free path, (d) quasi-linear estimates of Kolmogorov length 

and thermal correlation lengths; exp = estimates based on measured H-mode profiles, 

sim = estimates based on simulation results for the I-coil (3 kA-t) perturbation. 
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Figure 4.  Simulation input: (a) density contours, (b) density versus poloidal flux on the 

outer midplane. Simulation results: (b) temperature profiles for unperturbed (0 kA-t) and 

perturbed (3 kA-t) cases. 

Figure 5. Simulated temperatures at " =180  deg. toroidal location: (a) unperturbed   Te , 

(b) unperturbed   Ti , (c) perturbed   Te , and (d) perturbed   Ti .  

Figure 6.  Quasi-linear estimates for the effective (a) parallel collisionality [equation (9)] 

and (b) electron and (c) ion thermal diffusivity for the plasma profiles in figure 3. The 

best analytic estimates for the diffusivities, the minimum of the collisionless ( st ) and 

collisional (RR) values, are marked by open symbols. 

Figure 7.  (a) The axisymmetric separatrix is formed from a one-parameter family of 

homoclinic orbits that both exit (red) and enter (blue) the X-point in the forward 

direction. (b) Under perturbation, the family of exiting field lines (red) no longer 

coincides with the family of entering field lines (blue). Escaping field lines are still 

confined by these invariant manifolds as they exit in the (c) forward and (d) backward 

toroidal directions. The Poincaré plots in (c) and (d) use all TRIP3D magnetic field 

sources [as in figure 1(a)] and are colored from red to blue by the number of toroidal 

transits until escape (200 to 1).  

Figure 8.  The simulated electron temperature on the 0° toroidal plane demonstrates that 

heat flux is efficiently guided along the invariant manifolds of the magnetic field lines 

that connect to the X-point: (a) forward stable manifold, (b) forward unstable manifold, 

(c) the homoclinic tangle.  
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Figure 9.  (a) Tangential X-point TV image of filtered   D"  light displays three striations 

along the inner strike point on the right-hand side of the figure during I-coil operation 

(3 kA-t) in plasma discharge 123301. Part of the outer strike point can also be seen on the 

upper left-hand side. (b) The calculated first passage distribution of magnetic field lines 

as they strike the inner divertor target including C-coil, I-coil, and field errors contains 

significant n =1 and n = 3 components. Shaded regions cover the field of view of the 

infrared camera centered on 60 (red) and the field of view of the tangential X-point 

camera centered on 180 deg. (blue) shown in (a). The direction of increasing major radius 

points from left to right in (a) and from bottom to top in (b).   

Figure 10.  Simulated heat flux deposition through the (a) inner and (b) outer strike points 

(ISP/OSP) due to the I-coil alone (3 kA-t). The peak of the heat flux near 180 deg. (red 

solid) for both (c) ISP and (d) OSP is reduced as compared to the axisymmetric case 

(blue dash). The toroidal average of the perturbed profiles (black dot-dash) are wider than 

the axisymmetric cases indicating increased effective strike-point area. 
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