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Abstract

Diagnostics at ASDEX Upgrade have available a very large number of highly developed measuring 

channels. The prospect of making this wealth of information usable for plasma optimization led to the 

implementation of a number of diagnostics running data acquisition in real-time (RT). Ultimately, this 

development aims to achieve a network of intelligent diagnostics delivering analysed data for high-level 

plasma performance control such as profile shaping and NTM stabilization.

The new RT diagnostics consist of standard industrial 19" servers organized in clusters and running a 

standard UNIX multiprocessor RT-capable operating system (RT OS). Built-to-purpose computer interface 

cards deliver data (e.g. via serial links) from the data acquisition (DAQ) front-ends directly into the main 

memory of the DAQ servers. An RT data analysis task immediately following the running direct memory 

access (DMA) data transfers processes the data and delivers the results to follow-up systems in the control 

chain.

Whereas the first systems were implemented in a simple JBOC (just a bunch of computers) configuration 

being operated as a number of single diagnostics, newer systems are integrated into diagnostic clusters 

using parallel computing techniques such as message passing interface (MPI).

The paper describes the hardware (ADC front-ends, serial I/O, selection criteria and performance of the 

involved computer busses and systems) and software (DAQ, DA, RT OS, MPI) architecture of the 

assembled systems. Benchmark results for DAQ and MPI bandwidth and latencies as well as for the 

behaviour of the RT OS will be given.
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Introduction

Diagnostics at ASDEX Upgrade (AUG) are implemented using a distributed architecture of autonomous data 
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acquisition systems [1]. The modular concept of using autonomous stations for each diagnostic was meant to 

address modular set-up and configuration, independent but coordinated operation, and distributed data acquisition 

and analysis, avoiding bottlenecks in single central systems. This underlying philosophy along with the 

fundamental software concepts remained essentially unchanged over 17 years, in spite of the fact that nearly all of 

the implementing components (front-end hardware, computer systems, networking components) have been 

changed. Due to common configuration and access methods [2], diagnostics control schemes, and data archive 

structures [3], which were persistently maintained throughout all changes, it was never a problem to operate old 

and new diagnostics side by side or to access data of all diagnostics in the same way.

The RT methods were initially introduced as the best solution for acquiring large amounts of data from the Mirnov 

Probe and Soft-X-Ray diagnostics [4]. The possibility of including RT data analysis for purposes such as  MHD 

mode activity recognition, temperature and density profile evaluation, etc. was envisioned as a long-term prospect, 

but initially seemed too difficult to accomplish. With a plasma discharge time of only 10 seconds we were 

concentrating on providing access “in time” between shots instead of “real-time” during a shot.

The overhaul of the AUG Control System completed in 2006 [5], opened the possibility of feeding externally 

acquired and preprocessed data as RT inputs to performance optimization processes [6]. This led to a demand for 

delivery of results from RT DAQ and RT Analysis as input into Control. As prerequisites for this coupling of DAQ 

and Control the following topics have been addressed: 1st the need to develop an RT compatible communication 

method between DAQ and Control, 2nd the necessity to fully promote the RT qualities of the RT DAQ systems and 

to develop them to a standard conforming to a reasonable responsiveness and reliability as required for by Control, 

and 3rd the specification of a high performance parallel computing method to achieve a single result stream pace-

keeping with real time from the distributed computer nodes of a multi-node RT diagnostic.

Real-Time DAQ and Analysis Architecture at AUG

The term RT-DAQ is used at AUG when the DAQ system is able to transfer the samples from a number of 

analogue input channels directly into the main memory of a computer in a “pace-keeping” way, and to allow 

accessing this just measured data shortly afterwards in real time (i.e. with a defined short latency) by some analysis 

processes. “Pace-keeping” means that the propagation of data through the computers I/O-devices and -busses into 

the main memory keeps pace with the creation of samples in the front-end input channels1 so that no samples are 

1 An additional requirement would be to keep pace also transferring data further to long term storage. This would 

enable long pulse or steady state RT DAQ. However, this is not crucial for ASDEX Upgrade since with short 

(10 s) pulses one can keep all data in memory and has time to cleanup buffers and write shot files to the archive 

after the RT phase is over and the experiment is finished.
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lost. The term “latency” is defined as the maximum time delay between sampling an input signal and its value 

appearing at a certain main memory location ready for processing2.

An ASDEX Upgrade diagnostic implementing this kind of pace-keeping high-speed DAQ was first implemented in 

1999 [4]. Further similar systems were developed in the following years. These systems were based on the 

following major RT-capable building blocks: the analogue front-end devices, the computer interface devices, the 

computer platform (OS and hardware), and the RT software layers for data transportation and data analysis. Figure 

1 gives an overview of the principal hardware elements of AUG RT diagnostic systems. It is structured in three 

layers: 1st the analogue front-end layer with one or more crates, 2nd the computer I/O layer represented by the cPCI 

or cPCIe (cPCI(e)) interface cards, and 3rd the computer system. The layers are interconnected by standardized 

links. The connection between analogue front-end and the I/O devices is based on the HOTLink II architecture by 

Cypress [7]. Here bidirectional fibre optic links connect the “yellow card” in the front-end crates to serial I/O-

cards (SIO-cards, see below) in a cPCI or cPCIexpress (cPCI(e)) crate representing the computer I/O layer. The 

connection between the external cPCI(e) crate and the computer host is a bus extension based on commercial 

PCI(e) to cPCI(e) bridge design, e.g. [8].

This architecture in layers introduces a modularity and makes the whole set-up of diagnostics - being very specific 

in the input channels - completely independent from the fast developing commercial computer world. The 2nd 

cPCI(e) layer mainly utilizes commercial components. With the cPCI form factor it implements a robust 

mechanical and electrical platform and an expected long-term standard. As extender of the internal computer bus it 

allows the physical separation of the I/O-cards and offers an augmented number of slots. A configuration with a 

one unit high 19” powerful server, as for instance shown in Figure 1, would allow up to 4 SIO-cards in the cPCI(e) 

crate, thus enabling the connection of up to 16 front-end crates with up to 64 channels adding up to a theoretical 

limit of 1024 input channels per 19” computer. Having RT requirements in mind and this flexible cPCI(e) 

architecture at hand, a family of cPCI(e) I/O interfaces was built [9]. The SIO-card is its newest member.

Analogue Front-End Configuration

The requirements for analogue input channels in fusion research are often highly specialized and require an 

individual design of front-ends. To address this need a solution providing high flexibility and simplicity for custom 

built input devices was developed. This consists of an active backplane for analogue or digital input cards and a 

2 Since latency is mostly determined by the (dis-)continuity of data transport caused by hardware arbitration, 

packet size, depth of intercostal buffers, and system reaction (PCI-bus, DMA logic, OS response), a short 

latency requires immediate start transfers (DMA, no buffering) and short interruptions (< 100 μs, IRQ response 

times) of data transport on the way from the input socket to main memory.
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generic 16 bit parallel interface. The backplane serves as a mechanical and electrical support for the modules; 

additionally it is an easy to configure fast data multiplexer for a flexible number of input modules and channels. 

The backplane is built as a macroscopic 16 bit parallel shift register or “pipeline” with 20 insert positions. Each 

insert point (socket) on the pipeline features a tri-state 16 bit buffer, which can be switched to take its input either 

from the input card in the socket or from its next neighbour left on the backplane. The two phases “load” and 

“shift” of the backplane are illustrated in Figure 2. The logic to switch the tri-state inputs and to clock the 16 bit 

sample propagation from buffer to buffer (i.e. the pipeline control) is situated at the end of the backplane in a so 

called “yellow card”.

As already mentioned the communication between the “yellow card” and the SIO is bidirectional. Using the 

downlink the “yellow card”, the pipeline, and eventual internal functions of the analogue input cards are 

controllable via the SIO and all the clocks and timing in the front-end can synchronously be derived from the 

centrally synchronized experiment clock3 available on the SIO because of its on-board TDC (time to digital 

converter). The “yellow card” with its FPGA decodes commands and data from the SIO, synchronously triggers 

the sampling of the input cards upon sample requests recieved from the SIO, and hosts the serializer and the fast 

up-link logic to send the acquired samples from the pipeline to the SIO. Also the timing for the various clock lines 

on the backplane is generated by this FPGA. Having the backplanes timing completely derived from the SIOs TDC 

clock provides additional RT-relevant features: deterministic control and exact measurment of the sampling time 

and rate by the computers timing hardware (UTDC or TDC, see below), and synchronized sampling of signals 

throughout distributed computers and diagnostics (all UTDCs behaving synchronously).

Figure 3 shows how the backplane can be populated with input and “yellow” cards. Additional up-link bandwidth 

for sampling rates from 500 kHz up to 2 MHz can be achieved by configuring additional yellow cards.

This overall data flow from analogue input to the computer satisfies strictest real-time requirements: no 

accumulation of samples in the front-ends, no unavoidable delays by buffering and multiplexing, and an easy to 

guarantee deterministic behaviour.

The SIO-card – a generalized serial I/O-interface with TDC

The central link in the RT chain from the measuring sources to the computer memory is a serial HOTLink II 

3 The central experiment clock is a 50 MHz timing signal distributed from a central timer via a star-topology 

fibre optics network to each system that has a UTDC or TDC timing module. The central experiment time is a 

64-bit count (counting nanoseconds since start) which is distributed over the experiment clock and available as 

a synchronized internal multipurpose time base in the UTDC or TDC timing modules.

4



interface which makes the connection between the ADC front-ends and the computer's I/O-bus logic.4

The most recent FPGA/PCI design combines the development lines of the UTDC timing board and the HOTLink 

interface, into the so called SIO-board, which allows a centrally synchronized timing of serially attached analogue 

front-end devices.

Functional blocks on a SIO-board are: 1. the central FPGA, 2. four bidirectional 500 Mb optical links together with 

a quad HOTLink II serializer / deserializer, 4. the fibre optics timing clock receiver, and 5. a pluggable cPCI- or 

cPCIe-controller. All the logic blocks of the SIO-board are implemented in the FPGA and can cooperate in a 

configurable but deterministic way. The TDC block acts as synchronized time counter, derives the sampling clock 

from the central experiment time, and acquires time stamps for each sampling event. Figure 4 schematically shows 

how the data management logic merges the data streams from the serial inputs with a stream of time stamps 

generated by the TDC block to produce a combined stream of “data frames”. Each “data frame” consists of a 64bit 

time stamp from the TDC together with the 16bit samples of all channels belonging to this particular point in time. 

The maximum configurable number of 16bit samples in a time slice is 4x16 or 4x64 if additional multiplexing in 

the analogue front-end cards is enabled. The various interface cards exist in different layouts to match the popular 

PCI-bus formats.

Hardware Platform and OS

The standard platform for AUG DAQ systems5is Solaris on SPARC workstations, ranging from cheap 

uniprocessor desktop machines to 19” standard industrial server configurations. The latter systems have a number 

of high performance features such as two or four processors, multiple high-speed PCI-busses (PCI-X, PCIe), an 

optimised memory configuration providing high bandwidth, and a powerful interconnect between the system 

components avoiding bottlenecks in intra-machine data traffic [13].

There exist only a small number of specialized real-time operating systems (RTOS) (such as VxWorks), which 

satisfy the RT requirements posed by control systems. For RT DAQ, on the other hand, the requirement is not to 

4 The present development emerged from the first HOTLink serial I/O-cards developed in 1999 [10] for the 

Mirnov and Soft-Xray diagnostics in combination with the ideas developed for the Universal Time-to-Digital 

Converter (UTDC) [11]. The UTDC was built for the renewal of the ASDEX Upgrade control system and to 

satisfy the need for a new central experiment timing system. Follow-up developments featuring an FPGA based 

PCI-card as a flexible digital I/O solution led to the creation of the DIO-board [9], and the Transputer-Link to 

PCI-bus interface [12].

5 Solaris had been our standard OS environment for over a decade and so there was no tendency to diversify in 

any of the LINUX, Windows, or VxWorks directions without necessity.
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react rapidly to new situations but to keep pace with the incoming data streams and if possible to perform a 

subsequent pace-keeping analysis with low latency. Sun Microsystems has claimed for many years that its Solaris 

operating system exhibits reasonable RT behaviour. With this prospect and after other explorations of Solaris for 

RT DAQ [10][9], we decided to keep with Solaris also for the current RT DAQ and Analysis project.

Software Architecture for RT Analysis

The implementation of diagnostic data acquisition and analysis software at ASDEX Upgrade follows the 

standardized specification for ASDEX Upgrade diagnostics as established in the original design [1]. This scheme 

specifies the description of hardware devices, data objects, and relations between them. It also provides for placing 

the previously defined object in lists which serve as directives to conduct the operation of a diagnostic through the 

three DAQ phases of a plasma discharge described below. New objects and features have been defined extending 

the AUG description standard to implement elements needed for RT DAQ. Providing the appropriate software 

drivers, RT devices can be members of the object lists in the shot file header (SFH) like other DAQ devices and 

data objects. RT device capabilities and relations to other shot file objects are configured as usual, and other SFH 

objects such as signals, mapping functions, and parameter sets can be used for the corresponding RT purposes as 

well.

The Real-Time DAQ phase

The operation of diagnostics throughout a plasma discharge mainly takes place in three phases: 1. a “prepare” step 

which is initiated by distribution of the next shot number, 2. an “acquire” step following the prepare just before the 

plasma discharge, and 3. a final “archive & restart” step, which collects the acquired data buffers and writes them 

transformed into a shot file into the archive. Finally the diagnostic restarts itself and waits for the next experiment 

cycle to be started by distribution of the next shot number.

During the “prepare” step a diagnostic typically initiates the devices. RT diagnostics additionally negotiate with 

plasma control about the configuration parameters for the next shot, set the operation modes of the DAQ devices 

and the RT Analysis tasks, allocate and lock buffers for the subsequent DMA transfers, prepare timing devices 

(UTDCs) to generate clock impulses upon trigger events, and last but not least, start the RT DAQ and Analysis 

threads with RT priority.

During the “acquire” phase a legacy diagnostic simply waits for the acquisition in the external devices (CAMAC 

modules, data recorders, etc.) to finish. A RT diagnostic in contrast starts its core activity which typically is driven 

by the incoming data and the interrupts from finishing DMA transfers. Thus a RT thread stays active during the 

acquire phase and follows DMA activity. Depending on the particular implementation it may be necessary 
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regularly to restart DMA transfers upon interrupt. For continuously running sampling streams this is usually done 

in the interrupt handler without returning control to the user level. In burst mode cases it may be desirable to return 

control to the user's program between DMA transfers to potentially modify parameters before the next burst (e.g. 

Thomson scattering being clocked by the laser shots has reasonable time gaps between DMA transfers). Other 

supervising tasks might include watching the DMA activity filling memory and keeping track of parallel analysis 

tasks running immediately behind the leading edge of incoming data which is indicated by the increasing DMA 

pointer.

The RT criteria for DAQ will not be discussed in depth since they are obvious: No samples may be lost at the given 

highest sampling rate.

RT Analysis attached to RT DAQ

Once started, the DMA data transfer activity is controlled by the DMA logic of the peripheral device and places 

little demand on the CPU resources of the host computer. Therefore, a second thread or process - depending on the 

details of the implementation - can make use of free computing capacity for RT data analysis. Using advanced OS 

features to share the DMA buffer for reading by other programs it is possible to give the analysis process access to 

the incoming data stream while the DMA is still active. Figure 5 illustrates this kind of RT shared memory usage.

Positioning of the read pointer to address the most recent transferred section of samples in real time can be done in 

at least two ways:

1. Reading the DMA pointer from the external device and synchronizing the CPU with the running DMA 

one can expect to find the data transferred at the moment of synchronization.

2. Assuming the start time and time scale of DAQ are exactly known6 and the DMA transfer proceeds in real 

time with low latency, one can calculate the buffer position where at a certain time the awaited data frame 

will appear in memory. Having the buffer initialized with zeros at the beginning one can poll this buffer 

position until the expected time value appears. This then is an indicator for both that the DMA has passed 

this memory location and the time one has waited for is over.

After both methods the analysis process will positively know that the next calculation step is pending and the 

required data is ready to be accessed. Thus the RT algorithm can proceed step-wise along the acquired data.

6 Both presumptions can be stated as satisfied, since the SIO-card containing a TDC logic allows exact 

determination of time on an absolute experiment-wide synchronized scale. Each sample clock pulse leading to 

the creation of a SIO data frame automatically stores the correct time into this frame.
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RT algorithm considerations

Despite all the measures described above, the algorithm will always be only close to real time and the RT Analysis 

will always have a preliminary character with respect to what a diagnostic may deliver in a fully fledged after-shot 

Analysis. The numerical approach has to be pragmatic and effective, and the algorithm has to find an optimum 

between near real time performance, accuracy, completeness, and robustness of operation. In order to determine 

which RT criteria apply for Analysis following considerations should be made:

- Do the time scales of the physics subject and the analysis algorithm match?

- What is the maximum latency for results to stay relevant for subsequent algorithms?

- Is a reduced sampling rate and number of channels sufficient for meaningful results?

- How much load on the computing platform is tolerable?

- How often is a violation of the RT criteria allowed?

The answers to these questions have major impact on how much effort is required and what can be achieved.

Fast calculation methods for raw data

As shown in Figure 5 the shared read from the DMA buffer is the first Analysis activity. It accesses raw data in the 

format created by the hardware front-end. This means no mapping of samples to signals is done, no time base is 

extracted, no offset correction or calibration nor characteristic curve is applied. Often the 12 or 14 bit ADC 

samples are padded to 16 bits and sometimes these padding bits contain additional status information thus making 

a direct interpretation of the samples as numerical values impossible. These circumstances require an appropriate 

transformation of the raw data streams - potentially in multiple steps – before numerical calculations can begin.

To make transformations and subsequent calculations as fast as possible we decided to explore methods for 

processing of audio and multimedia data which could be appropriate for acquired plasma signals as well. For this 

kind of task, modern processors are equipped with special instructions allowing SIMD (single instruction multiple 

data) operations on packed integer arrays. With respect to our chosen SPARC processor platform this is the VIS 

instruction set [14]. On the Intel processor line the MMX instruction set provides similar features. However, using 

an assembler instruction set for probably often changing algorithms which have to be written and managed by 

“normal” computer users seemed not to be a good choice. Fortunately, with the mediaLib [15], a powerful and easy 

to use C library implementation of VIS / MMX based subroutines is available and offers an extensive collection of 

vector and array operations and functions directly applicable to sampled data streams.

As a first example for the usage of mediaLib an algorithm originating from MHD mode detection exploiting 

Mirnov probe measurements as proposed by Zohm [16] and Maraschek [17] has been implemented by Janzer et 
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al.7. This algorithm contains as numerical kernel a scalar product to project the signals from the various probe 

positions onto the eigenvector of a particular MHD mode. Instead of doing this time point by time point a few 

mediaLib calls can handle whole time intervals in a single call, thus achieving a reasonable speed-up. Another 

mediaLib advantage is the direct treatment of the input data streams as Q15 fractional integers (i.e. raw ADC 

samples, no conversion into floating point), leading to an even higher processing performance. Running this 

algorithm over 26 signal buffers of length 512, reducing the amount of raw data by a factor of 26 into a final result 

signal, takes 40 µs execution time. Here 512 samples correspond to a time interval of 256 µs in real time. To keep 

pace with the data acquisition the rest of the calculation has to be at least fast enough to allow further subsequent 

characterization of the mode signal and forwarding of the condensed results to plasma control, for example as input 

for MHD stabilization purposes (c.f. [6]).

Parallelizing Analysis with MPI

The above Mirnov diagnostic example raises a further problem not yet mentioned: This is the number of channels 

(currently 112) and the production of data at a sampling rate of 2 MHz (4 MB/s/channel). When Mirnov was set up 

using the old HOTLink DAQ interfaces in 2001 [10] this huge data flow was addressed by dividing it into 

subsystems implementing only two HOTLink cards per system, restricting the number of channels to only sixteen 

and the data flow to 64 MB/s on each subsystem. Today seven of these Mirnov diagnostics are distributed on seven 

SunFire V240 computers. It is not easy to build a scalar product over data from all these seven machines as 

illustrated above: the application of distributed parallel computing methods is required.

An MPI [18] implementation which is well integrated with Solaris and its development tools was chosen [19] to 

transform the Mirnov cluster into a parallel computer. Although still in the development stage, first tests of a 

distributed scalar product algorithm have been made with the Soft X-Ray diagnostic cluster. The MPI algorithm to 

synchronize the calculation and to reduce the partial results of all ranks into one final result is a simple 

MPI_BCAST followed by an MPI_REDUCE. This means the cluster master broadcasts a start signal (e.g. the TDC 

start time) to the other nodes thus synchronizing the activity. The REDUCE subroutine implements a distributed 

algorithm to most efficiently communicate and condense the partial results to a final result on the master node. 

Figure 6 shows that the reduction of eight distributed result vectors into a single vector on the master node with 

MPI can be achieved in a reasonable time of 750 µs to 1750 µs depending on the vector length. This benchmark 

was conducted using a private TCP/IP network with a low-end 1 Gb Ethernet switch.

7 M. A. Janzer, K. Behler, A. Buhler, M. Maraschek: work in progress. C-code example illustrating mediaLib 

calls for raw data analysis may be obtained on E-mail request from the corresponding author of this paper.
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The RT Behaviour of Solaris

The MPI benchmarks displayed in Figure 6 were achieved under RT priority; i.e. the involved computation 

processes were placed into the “real time” scheduling class, reducing the danger of these RT processes being 

interrupted by low priority “time sharing” activities. In fact, the test systems were not cleared of other users before 

the benchmark test; nonetheless, the timing results did not scatter more than 10% from the average, demonstrating 

how precisely the Solaris scheduler performs for RT requirements.

However, this is only a weak evidence if stronger RT conditions must be handled by Solaris as well. An important 

RT criterium in DAQ is, for instance, that a system always reacts on an interrupt from an I/O interface fast enough 

to prevent an overflow of the FIFO buffers. With the new SIO-cards this was a mandatory test upon delivery of the 

prototype. Since the SIO-cards only have small 32 KB buffers implemented in the FPGA and are intended to 

operate at a data rate of up to 64 MB/s in the cPCI version and up to 200 MB/s in the cPCIe version, only 500 µs 

and 160 µs respectively remain to handle device interrupts without losing data. Exploiting the interrupt generation 

feature of the built-in TDC the Solaris interrupt response time was measured 10 million times overnight under RT 

priority. Figure 7 displays the result as a histogram of the incidence of all particular interrupt response times with a 

resolution of 1 µs. The narrow distribution of 97.5% of all response times in the range 18-25 µs gives proof of the 

nearly deterministic behaviour of Solaris under RT priority. With respect to our stated requirements, Solaris seems 

still to be an appropriate choice.

Summary of RT DAQ and Analysis

Summing up the plans and findings from above one can arrive at the following conclusions about the feasibility of 

RT Analysis along the described concept:

● The analogue front-ends and computer interfaces (ADCs, buffers, transmission lines) work with a 

minimum latency of only a few sample clock intervals (Hot-Link II with SIO-board) up to a maximum 

latency of 256 µs (old Hot-Link interface board).

● The DMA transfer into memory is able to keep pace with DAQ. If the analysis process (running on a 

second CPU) is polling for valid data appearing in the DMA buffers, a small additional latency has to be 

taken into account for emptying the buffers along the computer's internal I/O path and to synchronize the 

CPU's caches with the main memory. Only a short latency is required to reschedule processes in reaction 

to data availability interrupts (see measurements of the Solaris IRQ response times below).

● A considerable time has to be taken into account for the numerical calculations. Here, dedicated 

algorithms using the DSP features of modern processors achieve a reasonable speed-up. In the given 

example, a group of transient signals (512 samples) could be multiplied by weight coefficients and 
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reduced to one signal in 40 µs.

● If data from distributed diagnostics have to be combined to a common result, the subsystems involved can 

be integrated into an MPI cluster environment so that high performance communication and calculation 

methods can be used. The combination of signal vectors of length 8192 from eight contributing systems 

took on average less than 2 ms.

Considering that 8192 samples at a rate of 2 MHz represent 4 ms in real time and at the end of all these RT 

pipelines the production of a condensed result seems to be possible in roughly half of this time, it looks promising 

to follow this direction to finally deliver analysed data from diagnostics to Control.

Summary and Outlook

A flexible and extendible hardware architecture which assembles and transports time stamped data frames into 

computer memory with low latency has been developed. Synchronous time stamped DAQ and appropriate Solaris 

features allow for pace-keeping RT Analysis algorithms. High performance signal processing & parallel computing 

concepts are in place to build fast algorithms on diagnostic clusters. With these concepts and building blocks it 

seems feasible to do pace-keeping RT Analysis in time steps of 5-10 ms. This is fast enough to stay relevant for 

Control.

The described components of the new RT diagnostic system for ASDEX Upgrade have been set up and tested 

separately. The next step will bring them together with Control to achieve a plasma performance controller, e.g. for 

MHD stabilization, which will base its controlling algorithms on the condensed results of a huge amount of data 

from one or more combined diagnostics.
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Figure captions

Figure 1: The overall hardware architecture of a modern RT diagnostic. The fusion specific frontends, the interface 

I/O cards and the commercial computer platform are physically separated in three layers. This modular 

concept provides high flexibility, extandability and maintainability.

Figure 2: Schematic of the backplane showing the pipeline in its two main operation modes:

1. loading the tri-state buffers from the corresponding input cards, and after changing the state of the 

buffers on the pipeline

2.-n. stepping the 16bit samples through all n-1 shift buffers of the pipeline until the last one has arrived 

in the “yellow card”. The coordinated switching and clocking of the input and shift buffers is centrally 

handled through a few dedicated lines by this “yellow card” in the last slot of the backplane which also 

contains the HOTLink II serializer and sender.

Figure 3: Analogue front-end crate with ADC channels inserted “yellow cards” and SIO-card as computer 

interface. The SIO-card featuring an internal TDC thus allows centrally synchronized timing and time 

stamped data acquisition.

Figure 4: Functional blocks in a SIO-card illustrating the aggregation of data frames from time stamps and input 

streams

Figure 5: RT interaction between DAQ and Analysis using shared memory data exchange

Figure 6: Calculation times of the partial algorithms running on the nodes of an MPI cluster of eight computers 

(SunFire V240). MPI operation was a short BCAST and a REDUCE ADD operation on a short integer 
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array of a length from 128 to 8192 samples. Given is the averaged elapsed time measured in five 

successive runs under RT priority. The average deviation of the measurements is about 10%. While for 

the shorter arrays the scattering of the time measurements mostly is determined by the scattering of the 

“background” time consumption. The higher vector lengths show a clear tendency: four nodes are fast 

just doing the basic algorithm and sending the result vector to their next neighbours, the remaining four 

nodes take a little longer to do a first ADD of result vectors, the next two nodes take even longer doing a 

second ADD, and the master node (0) finally does the last ADD.

Figure 7: Histogram of Solaris IRQ response times accumulating 10 million measurements. The average IRQ 

response is faster than 20 µs. The distribution has a very thin tail with less than 1 in 1000 events above 

50 µs, less than 1 in a million above 150 µs, and no event above 300 µs. It is expected that the very rare 

outlying response times do not sum up to a final violation of the overall real-time criterion for the DAQ 

and RT Analysis process. So this behaviour turns out as sufficient, if only enough “headroom” for the 

resulting response time fluctuations is foreseen in DAQ hardware buffers and time allocation to RT 

algorithms.
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Figure 1: The overall hardware architecture of a modern RT diagnostic. The fusion specific frontends, the interface I/O cards and the 
commercial computer platform are physically separated in three layers. This modular concept provides high flexibility,  
extandability and maintainability.
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Figure 2: Schematic of the backplane showing the pipeline in its two main operation modes:
1. loading the tri-state buffers from the corresponding input cards, and after changing the state of the buffers on the 
pipeline
2.-n. stepping the 16bit samples through all n-1 shift buffers of the pipeline until the last one has arrived in the 
“yellow card”. The coordinated switching and clocking of the input and shift buffers is centrally handled through a 
few dedicated lines by this “yellow card” in the last slot of the backplane which also contains the HOTLink II  
serializer and sender.
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Figure 3: Analogue front-end crate with ADC channels inserted “yellow cards” and SIO-card as computer interface. The SIO-card 
featuring an internal TDC thus allows centrally synchronized timing and time stamped data acquisition.
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Figure 4: Functional blocks in a SIO-card illustrating the aggregation of data frames from time stamps and input  
streams
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Figure 5: RT interaction between DAQ and Analysis using shared memory data exchange
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Figure 6: Calculation times of the partial algorithms running on the eight nodes of an MPI cluster (8x SunFire V240). MPI  
operation was a short BCAST and a REDUCE ADD operation on a short integer array of a length from 128 to 
8192 samples. Given is the averaged elapsed time measured in five successive runs under RT priority. The 
average deviation of the measurements is about 10%. While for the shorter arrays the scattering of the time 
measurements mostly is determined by the scattering of the “background” time consumption. The higher vector 
lengths show a clear tendency: four nodes are fast just doing the basic algorithm and sending the result vector to 
their next neighbours, the remaining four nodes take a little longer to do a first ADD of result vectors, the next  
two nodes take even longer doing a second ADD, and the master node (0) finally does the last ADD.
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Figure 7: Histogram of Solaris IRQ response times accumulating 10 million measurements. The average IRQ 
response is faster than 20 µs. The distribution has a very thin tail with less than 1 in 1000 events above  
50 µs, less than 1 in a million above 150 µs, and no event above 300 µs. It is expected that the very  
rare outlying response times do not sum up to a final violation of the overall real-time criterion for the 
DAQ and RT Analysis process. So this behaviour turns out as sufficient, if only enough “headroom” for  
the resulting response time fluctuations is foreseen in DAQ hardware buffers and time allocation to RT 
algorithms.


