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Abstract  12 

Climate change has already affected the phenology of several species. To be able to assess the 13 

impacts of climate change under various climate scenarios, we need superior models of the 14 

phenology of different species. Linear regression methods alone are of limited value for the 15 

analyses of natural indicators or phenological data because most time series of naturally-16 

occurring events in ecosystems do change. In this paper, we applied a Bayesian probability 17 

approach to investigate time series of the phenological phase of bud burst in Norway spruce 18 

(Picea abies (L.) Karst.) and mean monthly/weekly temperatures of corresponding climate 19 

stations in Germany. Our aim was to detect, in these temperature and Norway spruce bud 20 

burst time series, years with the highest probability for discontinuities. We analysed rates of 21 

change and the relationship between temperature changes and bud burst of Norway spruce in 22 

the 51 year period 1953-2003. 23 

We used a Bayesian method for a coherence analysis between phenological onset dates and an 24 

effective temperature generated as a weighted average of monthly and weekly means from 25 

January to May. Weight coefficients were obtained from an optimization of the coherence 26 

factor by simulated annealing.  27 

In all investigated cases we found coherence factors that suggested a relationship between 28 

temperature and phenological time series. Norway spruce bud burst and mean temperature 29 

times series of April and May exhibited abrupt changes, particularly at the beginning of the 30 

1980s. April and May temperature time series revealed an increased warming until 2003, and 31 

bud burst events advanced. Norway spruce bud burst, in particular, exhibited responses to 32 

temperatures of the previous (April) and current month (May). We suggest that forcing 33 

temperatures in phenology models should include beside commonly used sums of daily mean 34 

temperatures also solutions where weighted effective temperatures in a sensitive time span are 35 

considered.  36 
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1 Introduction 37 

In the Northern Hemisphere, spring events now occur earlier in the year than in previous 38 

decades (Menzel and Fabian 1999). For Norway spruce (Picea abies (L.) Karst.), and other 39 

evergreen and deciduous trees in mid and higher latitudes, an optimal temperature response of 40 

bud burst is one of the most essential factors in natural selection. The ability to avoid spring 41 

frost damage and, at the same time, the effective exploitation of the growing season by an 42 

early initiation of growth, will greatly improve the tree’s fitness and ability to compete. In this 43 

study we concentrate on Norway spruce (Picea abies (L.) Karst.) which is an economically 44 

important timber species. Several studies have used linear regression methods to investigate 45 

the relationship between spring phenology and air temperatures (e.g. Sparks and Carey 1995, 46 

Beaubien and Freeland 2000, Sparks et al. 2000, Menzel 2003, Menzel et al. 2006). Menzel 47 

(2003) used a subset regression technique to describe the correlation of phenological 48 

anomalies with air temperature. Although linear regression models have been widely used 49 

they are of limited value for the analysis of natural indicators or phenological data. Most time 50 

series in ecosystems exhibit various kinds of trends, cycles and seasonal patterns. 51 

Phenological records frequently reveal a heterogeneous pattern of temporal variability with 52 

sometimes alternating periods of advanced and delayed onset (e.g. Sparks and Carey 1995; 53 

Ahas 1999; Schleip et al. 2006). The functional behaviour of phenological time series often 54 

exhibits a discontinuity in the late 1980s (Chmielewski and Rötzer, 2002; Scheifinger et al., 55 

2002, Dose and Menzel 2004; Schleip et al. 2006).  56 

Pearson correlations show the strength of a linear relationship between two variables. 57 

However, if an obvious nonlinear relationship between two variables can be observed, the 58 

Pearson correlation coefficient is suboptimal (Anscombe, 1973). 59 

Recently, new approaches on a physiological basis use promoting and inhibiting variables 60 

which are related to temperature (Schaber and Badeck 2003). Mostly models of bud-burst 61 
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timing were based on the concepts of stage of bud dormancy and stage of bud ontogenesis 62 

(Hari, 1972; Sarvas, 1974; Häkkinen et al., 1998). The simplest phenological model considers 63 

that only forcing temperatures cumulated from a fixed date to a given sum explain the dates of 64 

bud burst [‘Thermal Time model’] (Cannell and Smith 1983). Rates of forcing are either 65 

growing degree-days (Murray et al., 1989) or a sigmoid function of the temperature (Kramer, 66 

1994a, Hänninen, 1990a). Häkkinen (1999) also refers to the theory that bud burst takes place 67 

when the stage of ontogenesis exceeds a defined threshold value. Phenological models are 68 

often driven by three main assumptions: the type of response of bud growth to temperature, 69 

the dependency of chilling and forcing temperature effects, and the time windows when buds 70 

are assumed to be receptive to chilling and forcing temperatures (Chuine, 2000). 71 

The present paper looks for supporting results particularly for the first assumption: the type of 72 

the response of bud burst to temperature. We are looking especially for alternative 73 

explanation of the rates of forcing. For an improved understanding of ecological responses to 74 

climate change we seek methods which are equally applicable with nonlinear changes in time 75 

series and with linear and nonlinear dependences.  76 

Our study addresses three main questions: 77 

1) Do phenological time series of Norway spruce bud burst and temperature time series 78 

contain discontinuities and if so, when do these changes occur? 79 

2) Do temperature and bud burst time series behave independently or do they exhibit 80 

coherence? Which monthly and weekly mean temperatures time series exhibit the 81 

highest coherence with Norway spruce bud burst times series at different stations in 82 

Germany?  83 

3) How do the rates of change of those months with the highest coherence develop 84 

between 1951-2003?  85 

To answer the first question we tested the functional behaviour of phenological and 86 

temperature time series for changes. With a Bayesian approach developed by Dose and 87 
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Menzel (2004) we analysed three different models/functions; a constant model, a linear model 88 

and a change-point model.  89 

To answer the second question we used the conceptually new Bayesian correlation approach, 90 

recently proposed by Dose and Menzel (2006), and advanced it methodologically. Dose and 91 

Menzel (2006) introduced the concept of a coherence factor as the odds ratio of the 92 

probability that the trajectory of temperature and phenological events occurs coherently or 93 

independently. Dose and Menzel (2006) applied their approach to blossom onset of three 94 

different species at Geisenheim in Germany using average temperatures over a three month 95 

period. We expanded the Bayesian correlation approach to eighteen meteorological stations 96 

throughout Germany using a higher resolution of monthly and even weekly mean 97 

temperatures. In contrast to the approach of Dose and Menzel (2006), we implemented a 98 

simulated annealing optimization algorithm to generate the coherence factor and temperature 99 

weights. The method of simulated annealing is a technique that has attracted substantial 100 

attention as being suitable for optimization problems at large scales, especially for those 101 

where a global maximum may be present among many, poorer, local maxima. High 102 

temperature weights signify a high coherence of the monthly temperature change-point curves 103 

with the phenological change-point curve.  104 

Finally, to answer the third question, the rates of change were obtained by a overlay of a 105 

constant, linear and a change-point rate of change weighted by their respective model 106 

probabilities.  107 
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2 Material and methods 108 

Climatic data 109 

Daily temperature data from 18 meteorological stations in Germany (Fig. 1), collected by the 110 

German Meteorological Service (DWD) within the period 1951-2003 were used in our 111 

analysis. We concentrated on those met stations which had at least eight phenological stations 112 

within 25 km. The altitude of the met stations ranged from 5 m to 516 m above sea level. The 113 

temperature observations were condensed into monthly and weekly average temperatures. 114 

Weekly averages were calculated with the help of a SAS WEEK function. The WEEK 115 

function returns the week-number value of the current date as a decimal number in the range 116 

0-53. Monday was considered the first day of the week. 117 

 118 

 119 

Phenological data 120 

The phenological data of bud burst of Norway spruce were also provided by the DWD. In the 121 

DWD phenological network, volunteers at around 1,600 stations observe defined plant 122 

development stages (DWD 1991). The phenological data were obtained by averaging time 123 

series from at least eight phenological stations within 25 km of the met station (Fig. 1), which 124 

did not differ by more than 50 m in elevation from that of the met station. The combination of 125 

several phenological stations within an area reduces any influence of local microclimate. In 126 

this study, we focused on the phenophases of bud burst of Norway spruce (Picea abies (L.) 127 

Karst.) between 1951 and 2003. Overall the mean bud burst date was May 8; the earliest bud 128 

burst was April 16 1961 at Trier, and the latest was May 30 1984 at Hof (Fig. 2). The DWD 129 

observer manual (DWD 1991) defines a bud as opened when the fresh green needles are 130 

clearly visible and separated.  131 
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Methods of Analysis 132 

We used a new Bayesian approach for the description of climatic and phenological time series 133 

that was introduced by Dose and Menzel (2004). That paper details the computational and 134 

mathematical formulae we use. Here we briefly summarize the main features of the Bayesian 135 

approach. An important feature of Bayesian probability theory is that it allows calculation of 136 

the probability of different competing models. It often happens that no single model is clearly 137 

superior. In such cases, a marginalization of all three models weighted by their respective 138 

model probability is used to achieve the most probable functional description and annual rate 139 

of change.  140 

We selected three models to describe the temperature and phenological data: constant, linear 141 

and change-point models. The constant model assumes a functional behaviour constant in 142 

time with an associated zero rate of change. The linear model assumes a linear change in time 143 

of the observed phenomenon, i.e. with an associated constant rate of change. The change-144 

point model offers a time varying change. The change-point model is a triangular function 145 

which is supported at the beginning of the time series in year x1 and assumes there a function 146 

value f1, and the endpoint of the time series in year xN and assumes there the functional value 147 

fN. Although the endpoints of the time series remain fixed in the subsequent calculations, the 148 

intermediate point xE with associated functional value fE can be any year such that x2< xE < 149 

xN-1. The functional values, as well as the matching point (change point) of the two linear 150 

sections making up the triangular function, are variables of the calculation. The change point 151 

model is not simply another arbitrary functional form which is likely to provide a better fit to 152 

the data due to its extra parameter. The assessment of the quality of a model is determined by 153 

the so-called odds ratio which is described in detail in Dose and Menzel (2006). The odds 154 

ratio assumes same prior probabilities for competing models and is equal to the so called 155 

“Bayes Factor”. The Bayesian approach provides a powerful way of assessing competing 156 

models at the forefront of science by automatically quantifying Occam`s razor (Garret 1991; 157 
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Gregory 2005). Occam`s razor is a principle attributed to the medieval philosopher William of 158 

Occam (or Ockham). The principle states that one should not make more assumptions than 159 

necessary. It chooses the simplest from a set of otherwise equivalent models of a given 160 

phenomenon. In any given model, Occam`s razor helps us to “shave off” those variables that 161 

are not really needed to explain the phenomenon (Garret 1991; Gregory 2005). In Fig. 3 an 162 

example of the three model fits are given for the phenological phase bud burst of Norway 163 

spruce in Hof. At this station the Bayesian model comparison reveals a change-point model 164 

probability of 100% and underlines the presence of one major change-point within the period 165 

1951-2003. The one change-point model is sufficient enough to represent the major change in 166 

a 50 year long phenological and temperature time series. Especially when investigating long-167 

term (>100 years) temperature or phenology changes (see Schleip et al. in review) a multiple 168 

change-point model will be of course capable of modelling a more detailed structure in a time 169 

series and therefore would mirror more adequately several temporal changes within long-term 170 

time series. But each added change-point adds two more variables to the likelihood that may 171 

be punished by the Ockham`s razor because of overestimation.  172 

If N is the number of entries on the time scale, there are N-2 possibilities (excluding the 173 

endpoints) for the change-point position. The Bayesian marginalization rule is employed to 174 

remove the change-point variable by marginalization. This extremely important rule removes 175 

‘nuisance’ parameter from a Bayesian calculation (Dose and Menzel 2004). The change-point 176 

variable is such a ‘nuisance’ parameter because we do not consider the best solution to be that 177 

which minimises the root mean square error (RMSE), or the two or three best triangular 178 

functions, but all of them. The advantage is that the marginalisation rule overlays all possible 179 

triangular functions and then weights them with their respective change-point probability. By 180 

using the Bayesian marginalization rule the support functional values can be eliminated 181 

resulting in a probability, p(E), for a particular change-point choice. If the data exhibited an 182 

abrupt change, then this change-point probability would be zero except for that particular E. 183 
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In cases of more gradual change, appreciable change-point probabilities are also observed for 184 

E+/-1, E+/-2. The associated probability of a change-point position can be rigorously 185 

calculated. An example is shown in Fig. 4a and 4b. It exhibits the change-point probabilities 186 

as a function of time for a temperature (thick dashed line) and a phenological time series 187 

(continuous line) as well as their overlap renormalized to unit area (thin dashed line). The 188 

upper panel shows a case of small overlap, characteristic of a small coherence factor and the 189 

lower panel a case of large overlap characteristic of a high coherence factor. The calculation 190 

of the coherence factor relates to the change-point distributions in the following way:  191 

The variable “change-point position” (E) is eliminated using the Bayesian marginalisation 192 

rule. With a flat prior distribution for the change-point position this amounts to averaging 193 

over all N-2 change-point positions per series. N does not need to be identical to the number 194 

of observations, because the algorithm tolerates missing data. The calculation of the 195 

probability p(x) that temperature and phenology observations evolve either independently or 196 

coherently (= synchronously) reduces to performing this average independently for the 197 

change-point positions in the temperature (ET) and in the phenology series (EP) or for ET = 198 

EP only. The ratio of probabilities p(coherent)/p(independent) is equivalent to a Bayes Factor. 199 

In the absence of qualified prior information the Bayes Factor equals the posterior odds (Dose 200 

and Menzel, 2006). The Bayes Factor will be called coherence factor henceforth. A coherence 201 

factor above one signifies that the two time series are more probably synchronous than 202 

independent.  203 

In the recent work of Dose and Menzel (2006) the phenology time series of snowdrops, cherry 204 

and lime tree at Geisenheim were related to the three-month mean temperatures January – 205 

March, February – April and March –May. In the current paper we generalize the temperature 206 

averaging and choose as the average effective temperature T(yi) in year yi  207 

T(y i) = wk

k=1

kmax

∑ ⋅ Tk (y i), wk∑ =1, wk > 0 ,
    (1) 208 
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where Tk(yi) are the average temperatures in month or week k of year yi, wk are positive weight 209 

coefficients that add up to unity and k=1 is either associated with January or with the first 210 

week of the year, while kmax is the last month or week in which the phenological event occurs. 211 

The unknown weight coefficients are determined by maximizing the coherence between 212 

temperature and phenology time series. In the first cycle of the calculation (n=1, where n is 213 

the index of the current cycle of the calculation) we start with an assumption of equal weights 214 

wk=1/kmax for all k. These weights are then used to calculate the coherence factor C using the 215 

procedure of Dose and Menzel (2006).  216 

For cycle n=2, a random new set of unnormalized weights is generated according to  217 















+
+=

nN
N

rww oldnew 22

2

4
*1        (2) 218 

where  r is a uniform random number  -0.25 < r <0.25, n is the index of the current cycle of 219 

the calculation and N the predetermined number of cycles chosen to find an optimum set of 220 

weights. wnew, wold are components of vectors with the dimension= kmax. The factor 221 

multiplying the random number r is near unity at the beginning of the calculation, it drops to 222 

one half at n= N/2, and converges to 0.2 for n=N. wnew must, of course, finally be 223 

renormalized to sum to unity. 224 

In the present analysis, two routes were found to improve the initial choice of weights once 225 

the new coherence factor Cnew was known. The simple uphill search algorithm accepts the 226 

new set of weights only if they lead to an improved coherence factor. If not, a new proposal 227 

set is generated with the previous set of wold. On the other hand, if a higher coherence factor 228 

results from the calculation, the associated weights become wold for the next calculation cycle.  229 

The relationship between weights and coherence factor is nonlinear and complex. In fact there 230 

is no guarantee that the function “coherence factor” exhibits a unique maximum as a function 231 

of the kmax weights. In such a situation the simple “uphill search” algorithm may converge to a 232 

local maximum and miss the global maximum. This multimodal possibility can be resolved 233 
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by using a simulated annealing approach, which accounts for the multimodal possibility and 234 

finds the global maximum in the presence of one or several lower satellite maxima. For this 235 

purpose it is necessary to accept not only uphill steps but, conditional on a certain probability 236 

p, where 237 

{ ( ) })exp,1( TCCMinp oldnew
−=       (3)238 

       239 

to allow also for downhill moves. The latter can cross a valley and find another possibly 240 

higher maximum. T is the annealing temperature and scales the difference between the new 241 

(Cnew) and the old (Cold) coherence factors. The approach for one step of the calculation is 242 

then 243 

1.) accept uphill moves with probability one, i.e. always 244 

2.) if Cnew< Cold choose a random number R from a uniform (0,1) distribution and accept 245 

the downhill move if  246 

R
nT
CC oldnew

ln
)(

>
−

        (4) 247 

There is no general rule for the choice of T(n).  248 

The present calculations were done with T(n+1)=T(n)/1.01 e.g. a one percent decrease of 249 

temperature per step. Fig. 5 shows the random walks of coherence factor and weights using 250 

the simulated annealing approach. It leads to the same approximate optimum as the simple 251 

“uphill search” discussed before. This is not necessarily always the case but, so far, we have 252 

not observed a difference between the two approaches in calculations on more than fifty data 253 

sets. However, since the computational effort is practically the same for the two approaches, 254 

we have chosen to use the simulated annealing route as our tool for the current and future 255 

calculations. For our application we chose five months with mean monthly and weekly 256 

temperatures. We selected the months January to May, as May is the last month in which 257 
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Norway spruce bud burst occurs in Germany. For the weekly resolution we chose 20 weeks 258 

with mean weekly temperatures. The choice of January or alternatively the first week of the 259 

year as the initial month or week is somewhat arbitrary. In our example that illustrates the 260 

method (Fig. 5), it is evident that the weights from January, February and March temperatures 261 

show no systematic pattern when compared between different data stations. In Hof, April and 262 

May temperature weights of 0.58 and 0.37 exhibited the highest values. Note that the 263 

coherence factor converges to 3.3 in this case. 264 
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3  Results 265 

Model probabilities 266 

To answer the first question of the introduction, we tested the model preferences of 18 mean 267 

phenological time series of Norway spruce bud burst and of the corresponding monthly 268 

temperature time series from January to May. The Bayesian model comparison revealed that 269 

at 17 phenological stations the time series were described best with a change-point model 270 

(Fig. 6a). The only exception is found at Wuerzburg where the linear model exhibited a model 271 

probability of 51%. Overall the change-point model was the best model for phenological data 272 

description (87% average model probability). The linear model was the second best (12%) 273 

and the constant model was the least preferred model (1%). 274 

The change-point model also provided the best data description for April and May 275 

temperature time series. The average change-point model probability of the monthly 276 

temperature time series increased from 39% in January to a maximum probability of 61% in 277 

May (Fig. 6b). The linear and constant models exhibited a considerably large probability in 278 

the months January to March. The mean probability of the constant model had its maximum 279 

for March temperatures (47%). 280 

Change-point probability distribution 281 

As demonstrated above the change-point model was the preferred model to describe 282 

phenological and temperature time series in April and May. In Fig. 7 the corresponding 283 

change-point probability distributions at all 18 stations are summarized with the help of box 284 

plots, including Norway spruce bud burst temperature time series of April and May and 285 

additionally the joint change-point probability of all temperature and bud burst time series 286 

(Fig 7d). 287 
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At the beginning of the 1980s the change-point probabilities of Norway spruce bud burst 288 

encompassed values from 2% to 13%. During the decades of the 1950s, 1960s and 1990s the 289 

change-point probabilities only ranged from 0% to 2% (Fig. 7a). In the 1970s and especially 290 

in the 1980s the upper and lower change-point probability limits, which are symbolized by the 291 

vertical line within each box plot, were higher than in other decades (Fig. 7a).  292 

At the beginning of the 1980s the change-point distributions of April and May temperatures 293 

revealed the highest upper change-point probability limits with values exceeding 6% in Figs. 294 

7b and 7c. The joint (temperatures and phenological) change-point probability distribution 295 

exhibited a clear single peak at the beginning of the 1980s (Fig 7d). 296 

 297 

Coherence factors 298 

To answer the second question of whether temperature and Norway spruce time series evolve 299 

independently or coherently we calculated coherence factors for each station in Germany. At 300 

nine of 18 stations, the coherence factors had a value of two or higher (Fig. 8a). In the 301 

remaining seven cases the factor remained below two. For Frankfurt and Hof the coherent 302 

option was superior to the incoherent treatment by a factor greater than three. In all presented 303 

cases, the coherence factor was never less than 1.1. This important result signifies that 304 

temperature and bud burst time series are more probably synchronous than independent. The 305 

average coherence factor of all climate stations in the monthly resolution amounted to 2.07 306 

and, for the weekly resolution, 2.4 (not shown in Figures).  307 

 308 

Temperature weights  309 

The temperature weights reveal that, at nearly all investigated stations, the change-point 310 

distributions of April and May temperatures correlated with the change-point distributions of 311 

bud burst of Norway spruce (Fig. 8a). At the monthly resolution April and May revealed the 312 

highest temperature weights (of 0.48 and 0.28 respectively). Some exceptionally high 313 
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temperature weights were also found at single stations e.g. Wuerzburg for January and 314 

February (Fig. 8a). 315 

Similar results can be seen in the weekly resolution. Within April (week number 14 to 17) and 316 

May (week number 18 and 20) the temperature weights had their highest values (Fig. 8b). The 317 

maximum temperature weights were seen in week 18 and had values above 0.2. A smaller 318 

accumulation of high temperature weights was seen at the end of February (week 9) with 319 

temperature weights of 0.15. For both the monthly and the weekly resolution, March 320 

exhibited the lowest weights. 321 

 322 

Model averaged rates of change 323 

To answer question three, we compared the model averaged rates of change of Norway spruce 324 

bud burst and of the corresponding temperature time series of April and May. Over the period 325 

1951-2003, the rates of change of Norway spruce bud burst exhibited a discontinuity at the 326 

beginning of the 1980s (Fig. 9a), where the upper limit of the box plots drops to negative rates 327 

of change; equivalent to advancing bud burst. In 2003, the rates of change of all 18 328 

phenological stations ranged from -0.25 to -0.75 days year
-1
 (Fig 9a). At the beginning of the 329 

time series in 1951 the rates of change ranged from 0.35 to -0.02 days year
-1
 which meant that 330 

bud burst was delayed at the majority of the investigated stations.  331 

For the months of April and May we detected cooling and warming periods from 1951 to 332 

2003. In 1951, change rates of April temperatures were between -0.07 and 0.00 °C year
-1
; 333 

equivalent to cooling. At the end of the time series, April temperatures warmed at 18 stations 334 

(0.01 to 0.07 °C year
-1
). In comparison May temperatures showed a stronger warming and a 335 

larger variability. At the beginning of the time series the rates of change of May temperatures 336 

ranged from -0.03 to 0.03 °C year
-1
, at the end (2003) from 0.03 to 0.17 °C year

-1
.  337 
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4 Discussion 338 

This study does not only deliver quantitative results on the correlations between temperature 339 

and Norway spruce bud burst in Germany, but it also offers new insights on model 340 

improvement and to methods for the understanding of ecological responses to climate change.  341 

Most time series of naturally-occurring events in ecosystems do change their slopes. In the 342 

present work we showed, using the approach of Dose and Menzel (2004) that linear 343 

regression models alone are of limited value for the analyses of temperature or phenological 344 

time series. Norway spruce bud burst time series of 17 out of 18 German stations revealed an 345 

abrupt change at the beginning of the 1980s. The change-point model proved to be the 346 

preferred model with an average model probability of 87% to describe this observed 347 

discontinuity. We show that temperature time series also exhibited this discontinuity at the 348 

beginning of the 1980s. April and May revealed the highest change-point probabilities. The 349 

advantage of the Bayesian probability method is that it allows an accurate analysis of the 350 

relationship between phenology and temperature observations. In all cases investigated here, 351 

the results clearly suggest a coherent development of temperature and phenological time 352 

series, with some coherence factors as large as three. Therefore, we expect that matching 353 

point probabilities derived from the two data sets (joint change-point distribution) will be 354 

more informative (e.g. better localized in time than that obtained from a single series of data). 355 

Norway spruce bud burst represents a phenological phase which shows a prompt response to 356 

temperatures of the previous (April) and current month (May) with average temperature 357 

weights of 0.48 and 0.28, respectively. A high coherence factor signifies that the change-point 358 

distribution curves of phenological and temperature time series are largely synchronous, e.g. 359 

exhibit large overlaps (as shown in Fig. 4b). A change-point distribution curve with a clear 360 

peak signifies a higher probability of an abrupt change. The higher the estimated temperature 361 
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weights for a certain month, the more overlapping can be expected in the change-point 362 

distributions of temperatures and the phenological event. It is important to note that no 363 

conclusion can be made regarding the existence or the direction of a cause and effect 364 

relationship; only that Norway spruce bud burst change-point distributions are correlated with 365 

the temperature change-point distributions of a certain month or week. Phenophases are 366 

responding to many meteorological and environmental factors such as light, photoperiod, 367 

temperature, precipitation, humidity, wind, soil conditions etc. (Schnelle, 1955; Menzel, 368 

2002). Despite the many influencing factors, the timing of leaf unfolding of trees is very 369 

likely triggered mainly by temperature. Specifically, chilling temperatures break winter 370 

dormancy and subsequent warming temperatures induce budburst (Dose and Menzel 2006). 371 

Determining whether there is an actual cause and effect relationship requires further 372 

investigation. The fact that spring phenology is very likely primarily driven by temperatures 373 

suggests that we can attribute the observed biological rates of change to the effects of climate 374 

variation. 375 

The comparison of rates of change of Norway spruce bud burst time series with those of 376 

monthly temperatures that exhibit the highest temperature weights gives us further insights 377 

into the relationship. We calculated model averaged rates of change, using the Bayesian 378 

probability approach of Dose and Menzel (2004). Model averaged rates of change are 379 

obtained by the superposition of the constant, the linear and the change-point model rates of 380 

change, weighted by the respective model probabilities. It is worth noting that the model 381 

averaging process does not alter the shape of the rate of change derived from the change-point 382 

model. The model averaging procedure adds a counterbalance due to the constant distribution 383 

from the linear model and a reduction of the amplitude by the amount of the model 384 

probability obtained for the change-point model. The model averaged rates of change of April 385 

and May temperatures have increased from 1951 to 2003, which is equivalent to increased 386 
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warming. In 2003, May temperature change rates of 18 climate stations ranged from 0.03 to 387 

0.17 °C year
-1
 whereas in 1951 May temperature change rates ranged from -0.03 to 0.03 °C 388 

year
-1
. In contrast, change in bud burst of Norway spruce in 2003 was estimated from -0.25 to 389 

- 0.75 days year
-1
 but had showed a delay in 1951. Over most of the investigated period, there 390 

was essentially a zero rate of change; but from the 1980s onwards the rate of change was 391 

negative for Norway spruce bud burst. This finding is consistent with results of other studies 392 

(e.g. Scheifinger et al., 2002; Chmielewski and Rötzer, 2002; Dose and Menzel, 2004, Schleip 393 

et al., 2006) that describe an abrupt change towards earlier occurrence dates after the late 394 

1980s and almost no rates of change before that date. Thus the results of our paper clearly 395 

reveal that the phenological phase has a discontinuity in the 1980s. We confirmed for several 396 

climate stations in Germany that temperatures in April and May had a very similar 397 

discontinuity in the 1980s. The reason for this specific timing of change-points in the 1980s is 398 

most likely linked to altered atmospheric circulation patterns, such as the North Atlantic 399 

Oscillation (NAO) (e.g. Menzel, 2003).  400 

The results of Menzel et al. (2006) and Menzel (2003) underline our findings. Menzel (2003) 401 

found that the anomaly curve of Norway spruce revealed notable phenological advances of 402 

0.13 days year
-1
 during the previous 5 decades (1951-2000). Menzel (2003) detected that, in 403 

general, later spring phases (including Norway spruce) responded to March to May 404 

temperatures. Menzel (2003) calculated the subset regression between phenological anomalies 405 

of bud burst of Norway spruce and the three-monthly running mean temperatures of March, 406 

April and May. Her results showed a R² of 0.79 and a slope of -4.7 days year
-1
.  Menzel 407 

(2003) also applied a two-variable model where the month preceding bud burst (April) was 408 

chosen as the first variable and the mean temperatures of March-May as the second variable; 409 

and explained most of the variability (R² =0.85). In the work of Menzel et al. (2006), most 410 

phases correlated significantly with mean monthly temperatures of the month of onset and the 411 
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two preceding months. For 19% of the phenophases the highest correlation was seen with the 412 

month of onset, 63% with the preceding month and 18% with that 2 months earlier. 413 

The enhancement of resolution of our approach by weekly or even shorter temperature 414 

intervals has pros and cons. On one hand such an enhancement of resolution inherits a loss in 415 

the achievable precision and very likely causes unwanted noise. In other words, if we 416 

conducted our analysis with a daily resolution, we might get high temperature weights of a 417 

certain day which is more likely accidentally and not because of a biological dependence. But, 418 

on the other hand, the results of our weekly analysis reveal more specific information about 419 

further systematic biological dependences. Beside April and May, the end of February 420 

exhibited a systematic accumulation of higher temperature weights.  421 

The state of forcing is often described as a sum of daily rates of forcing (Chuine, 2000). Our 422 

results suggest that bud burst does not simply react to a rate of forcing with fixed temperature 423 

sum or defined threshold value as used by Cannell and Smith (1983), Murray et al. (1989) and 424 

Häkkinen (1999) and others. Forcing temperatures rather exhibit a periodic pattern with a 425 

smaller first signal at the end of February and a greater temperature prompt in April and May. 426 

However, forcing temperatures have changed in recent decades in a nonlinear way. 427 

Our approach of first analysing the properties of the time series, such as model preferences, 428 

change-point probabilities and rates of change, and then, secondly, investigating the 429 

coherence of the temperature and phenological time series gives more detailed insights into 430 

the nature of the interdependences than just analysing directly the effects of air temperature 431 

on the phenological timing. We demonstrated and emphasized how well nonlinear 432 

temperature change patterns are mirrored by the phenological event. As support for more 433 

ecophysiological approaches, one could say that they should incorporate specific forcing 434 

temperature change patterns rather than temperature threshold sums of previous and current 435 

years. Linkosalo (2000) concluded that the formulation of commonly used phenological 436 

models seems to be general enough to suit several different plant species and various 437 
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phenological phenomena. But Linkosalo (2000) also mentioned that it is also possible that the 438 

nature of the control mechanism is not straightforward triggering as stated in the same 439 

models. 440 

Häkkinen (1999) has already discussed the disadvantages of standard statistical methods 441 

because of the dynamic nature of the models of bud development theories. He suggested an 442 

alternative approach of a bootstrap and cross validation method for the evaluation of theories 443 

based on the numerical comparison of the model mean square errors only.  444 

Chuine et al. (1998) tested four commonly used models to predict the dates of flowering of 445 

temperate-zone trees, the spring warming (Hunter and Lechowicz 1992), sequential (Sarvas 446 

1974; Hänninen 1987, 1990b; Kramer 1994b), parallel (Landsberg 1974; Hänninen 1987, 447 

1990b; Kramer 1994a) and alternating models (Cannell and Smith 1983; Murray et al 1989; 448 

Kramer 1994a, 1994b). The main disadvantages of these models are that they are unable to 449 

make accurate predictions based on external data (Kramer 1994a). Chuine et al. (1998) stated 450 

that the external validity is still not existent for the majority of the species. They suggested 451 

that a wrong estimation of the starting date of the forcing phase and a wrong estimation of the 452 

critical state of forcing may be the reason. The comparison of the accuracy of different 453 

models for different species shows that there is no consensus model even if some models 454 

seem consistently more accurate than others (Chuine et al. 1998). 455 

Our study indicates that the method of Bayesian analysis combined with the method of 456 

simulated annealing may bring a non-negligible contribution to the estimation of forcing 457 

temperatures and model selection. The great advantage of Bayesian analysis is that it 458 

considers the inability to prefer one model against another that enforces the collection of new 459 

data. The description of the data in terms of only one model is often unsatisfactory (Dose and 460 

Menzel 2004, Schleip et al. 2006). The Bayesian model comparison analysis allows us to 461 

estimate a reliable combined model averaged rate of change. Compared to the commonly used 462 

linear regression approach, we are able to provide model averaged rates of change at an 463 
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annual resolution. This helps us to describe discontinuities and to quantify the direction and 464 

speed of the changes. Further more the implemented simulated annealing method allows 465 

determining temperature weight coefficients that show us which temperature changes support 466 

phenological change-points. 467 
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Conclusions 468 

We have shown that Norway spruce bud burst and temperature time series both reveal 469 

nonlinear changes at the beginning of the 1980s. For nearly all phenological data examined, 470 

the change-point model was the preferred model to describe the time series. Change-point 471 

distributions of Norway spruce bud burst exhibited the highest Bayesian correlations with 472 

temperatures at the end of February, and in April and May. The annual resolution of the rates 473 

of change of the Norway spruce time series and April and May temperature time series gives 474 

further insight into the coherence of these time series. Since the beginning of the 1980s, April 475 

and May temperature rates of change of all 18 investigated stations increased to positive 476 

values (warming) and Norway spruce bud burst time series started to reveal an enhanced 477 

advancing of the phenological phase. With the help of our method we suggest for phenology 478 

models to incorporate specific forcing temperature change patterns for each phase. The 479 

influence of forcing temperatures may be defined beside daily temperature sums also by 480 

weighted effective temperatures in a sensitive time span. Thus it would be possible to detect 481 

different time spans of relevant forcing temperatures for one phenological phase. Further 482 

more the method allows to determine for each species the individually temperature respond 483 

pattern.  484 

The model comparison option of Bayesian probability theory enables us to test for further bud 485 

burst theories in the future. The theory allows a ranking of a number of different models and 486 

provides numerical measures of their respective probabilities. The model comparison option 487 

of Bayesian theory rests on the built in Occam’s razor (Garret 1991), which limits the 488 

complexity of a model to the amount necessary to explain the data, avoiding the fitting of 489 

noise. Bayesian analysis provides a powerful way of analysing competing models.  490 
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Figure legends 630 

Fig. 1: Distribution and altitude of the climate stations in Germany (black dots) and 631 

corresponding phenological stations (small dots). The radius of the circles around each 632 

climate station is 25 km. 633 

 634 

Fig. 2:  Horizontal boxplots of the onset date of bud burst at all 18 climate stations. The 25th 635 

percentile is found at the left end and the 75th percentile is found at the right end of the box. 636 

The range is marked as black horizontal line, the median as black vertical line in the boxes. 637 

The mean is marked as circle with cross.  638 

 639 

Fig. 3: Bayesian change-point, linear and constant model estimation of the onset of bud burst 640 

Norway spruce (Picea abies L.) in Hof. In this example the change-point model exhibits a 641 

probability of 100%.  642 

 643 

Fig. 4: Distributions of temperature, bud burst and joint (temperature and bud burst) change- 644 

point probability of Norway spruce bud burst (Picea abies L.) in Schleswig (a) and in Hof (b). 645 

In the upper panel the coherence factor has a value of 1.2 and in the lower panel a value of 646 

3.3. Note that the y-axes have different scales. The thick dashed line symbolises the averaged 647 

change-point probability distribution of the weighted temperatures for the months January to 648 

May. The continuous line represents the probability distribution of the phenological data. The 649 

thin dashed line stands for the joint change-point probability. 650 

 651 

Fig. 5: Random walks of coherence factor and monthly mean temperature weights using the 652 

simulated annealing approach for Norway spruce (Picea abies L.) in Hof, Germany. w[1] to  653 

w[5] are weights of January to May mean temperatures respectively, co_fac= Coherence 654 

factor. Note that the x-axis shows the number of random steps and the left y-axis describes the 655 
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values of the coherence factor, the right y-axis represents the proportions of the temperature 656 

weights. 657 

 658 

Fig. 6: Bayesian model probabilities of the change-point, linear and constant model of a) 659 

Norway spruce bud burst at 18 phenological stations in Germany and of b) mean temperatures 660 

from January to May at 18 corresponding climate station. 661 

 662 

Fig. 7:  Box plots of change-point probability distributions of a) Norway spruce bud burst at 663 

18 phenological stations and of b) April mean temperature time series and of c) May mean 664 

temperature time series d) joint (temperature and phenological) change-point probability at 665 

the corresponding 18 climate stations. Change-point model probability distributions were 666 

calculated for the period 1951-2003. The median is represented by the horizontal line within 667 

each box plot. The top of each box is the third quartile (Q3) - 75% of the data values are less 668 

than or equal to this value. The bottom of the box is the first quartile (Q1) - 25% of the data 669 

values are less than or equal to this value. The lower whisker extends to this adjacent value - 670 

the lowest value within the lower limit. The upper whisker extends to this adjacent value - the 671 

highest data value within the upper limit. 672 

 673 

Fig. 8: Coherence factors and a) monthly and b) weekly temperature weights of bud burst 674 

Norway spruce in Germany. In a) the coherence factors are in brackets following the names of 675 

the climate stations. The bars represent the temperature weights for a) the months January to 676 

May and for b) the weeks since the beginning of the year. Temperature weights were obtained 677 

by the simulated annealing optimization.  678 

 679 

Fig. 9: Box plots of Bayesian model averaged rates of change of a) Norway spruce bud burst 680 

at 18 phenological stations in days year
-1
 and of b) April mean temperature time series and of 681 



 31

c) May mean temperature time series in °C year
-1
 at the corresponding 18 climate stations. 682 

Model averaged rates of change were calculated for the period 1951-2003. 683 


