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Abstract

A Mori–Tanaka scheme is presented for modeling the overall thermal conduction be-

havior of composites containing reinforcements with interfacial resistances and pre-

scribed size distributions. The approach is used for studying composites reinforced

by spherical particles with monomodal and bimodal log-normal volume fraction dis-

tributions. Relevant effects of the distribution functions on the overall conductivity

of the composites are found for particle volume fraction distributions with spans in

excess of unity.
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1 Introduction

It is well known that interfacial resistances between reinforcements and matrix

give rise to a size effect in the overall thermal conductivity of composites,

with even highly conductive particles or fibers failing to increase the overall

conductivity when their size falls below certain limits.

For composites reinforced by aligned continuous fibers or by spherical parti-

cles that show thermal interfacial resistances the dependence of the effective

conductivity on the reinforcement size can be described by the well-known

Maxwell effective medium method of Hasselman and Johnson [1]. Benveniste

[2] obtained equivalent results by a Generalized Self-Consistent scheme and

by a Mori–Tanaka theory. Mean field estimates of the above types can be

interpreted in terms of replacing the actual particles or fibers, characterized

by a given conductivity tensor and interfacial conductance, with fictitious

inhomogeneities of the same shape that combine a suitably reduced “replace-

ment conductivity” with a perfect interface. This replacement conductivity is

chosen such that the resulting conductive behavior is equal to that of the ac-

tual configuration. Because the above approaches typically prescribe the same

replacement conductivity for all particles or fibers they effectively treat all

reinforcements as having the same size, without regard for the microgeometry

underlying the chosen mean field model. As a consequence, these models per-

tain to composites containing reinforcements of equal size. Related approaches

were developed for materials in which the reinforcements have a weakly con-

ducting coating (or interphase) of finite thickness, see e.g. [3].
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For spherical particles of isotropic conductivity K (i), interfacial conductance

h, and diameter d the replacement conductivity K (i,r) takes the form [4]

K(i,r) = K(i) dh

dh + 2K(i)
. (1)

When such “replacement particles” are embedded in a matrix of isotropic

conductivity K(m) < K(i) there exists a critical diameter dc, for which the

replacement conductivity of the particle equals the conductivity of the matrix.

This critical diameter can be evaluated from eqn.(1) as

dc =
2

h

K(i)K(m)

K(i) − K(m)
. (2)

Particles with d ≤ dc, accordingly, cannot lead to improvements of the overall

conductivity of the composite.

A more accurate model for describing the overall conductive behavior of com-

posites with interfacial thermal contact resistances was developed by Torquato

and Rintoul [5] within the framework of three-point bounds. In this approach

a three-point microstructural parameter is used to describe the statistics of the

phase geometry, which, accordingly, explicitly enters the scheme. Expressions

for three-point microstructural parameters as functions of the reinforcement

volume fraction are available for a number of microgeometrical configurations

[6]. For more general phase geometries, e.g. randomly dispersed particles that

follow a given size distribution, appropriate microstructural parameters must

be evaluated, which can be a complex task.

A further approach to modeling the overall conductivities of composites with

interfacial resistances employs numerical engineering methods such as the Fi-

nite Element Method for evaluating the thermal fields in discrete microgeome-
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tries described, e.g., by unit cells. Such methods can handle a wide range of

particle shapes, sizes, and arrangements, but are often expensive in terms of

computational resources and analyst’s time, realistic microgeometries tending

to be challenging to mesh and giving rise to models with high numbers of

degrees of freedom. Alternatively, numerical methods can be used to obtain

replacement conductivities of individual particles or fibers, which are then

introduced into mean field models. For a comparison between these two mod-

eling strategies see e.g. [7].

To the authors’ knowledge no low-cost method has been published that pro-

vides estimates for the overall conduction behavior of composites reinforced

by particles that have a given interfacial resistance and follow prescribed size

distributions. The present work is aimed at providing such a model on the

basis of a Mori–Tanaka theory.

2 Mori–Tanaka Approximations

Mean field theories for describing the behavior of composite materials are typ-

ically formulated in terms of phase concentration tensors that connect phase

averaged fields in reinforcements or matrix with the corresponding macro-

scopic fields. The concentration tensors relevant for thermal conduction prob-

lems are the gradient concentration tensors Ā(p) and the flux concentration

tensors B̄(p) which are defined by the relationships

d̄(p) = Ā(p)〈d〉 and q̄(p) = B̄(p)〈q〉 . (3)
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Here d and q stand for the thermal gradient and flux vectors, respectively,

the superscript (p) indicates the phase (matrix or reinforcement), the angle

brackets denote macroscopic fields, and overbars mark phase averaging.

The Mori–Tanaka estimates developed by Benveniste [8] for describing the

effective elastic behavior of inhomogeneous materials can be directly extended

to diffusion problems. In such an approach for thermal conduction the Mori–

Tanaka gradient concentration tensors of matrix and non-dilute reinforce-

ments, Ā
(m)
MT and Ā

(i)
MT, respectively, take the form

Ā
(m)
MT = (ξ(m)I + ξ(i)Ā

(i)
dil)

−1

Ā
(i)
MT = Ā

(i)
dil

(

ξ(m)I + ξ(i)Ā
(i)
dil

)−1
. (4)

where all tensors are of rank 2. I denotes the identity tensor, ξ(i) stands for

the reinforcement volume fraction, and ξ(m) = 1 − ξ(i) is the matrix volume

fraction. The gradient concentration tensor of dilute reinforcements with per-

fect interfaces, Ā
(i)
dil, can be written in analogy to Hill’s [9] expressions for

mechanical concentration tensors as

Ā
(i)
dil = [I + SR(m)(K(i) − K(m))]−1 , (5)

where K(i) is the conductivity tensor of the reinforcements, K(m) and R(m) =

(K(m))−1 are the conductivity and resistivity tensors, respectively, of the ma-

trix, and S is the Eshelby tensor of the diffusion problem. Explicit expressions

for S for ellipsoidal inclusions embedded in an isotropic matrix were given e.g.

by Hatta and Taya [10]. Using the above tensors Mori–Tanaka estimates for

the overall conductivity tensors K∗ of two-phase composites can be obtained
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as

K∗ = K(m) + ξ(i)(K(i) − K(m))Ā
(i)
MT . (6)

Equations (4) to (6) hold for general material symmetries of particles and

matrix, pertain to aligned reinforcements with perfect interfaces, and do not

show an intrinsic length scale. For spherical particles of isotropic conductivity

that are embedded in an isotropic matrix the above equations reduce to the

scalar Mori–Tanaka expressions given e.g. in [11].

Following Duschlbauer [12] the above Mori–Tanaka scheme can be extended

to handle interfacial thermal resistances by introducing dilute replacement re-

inforcement conductivity tensors K(i,r) and the associated dilute replacement

gradient concentration tensors, Ā
(i,r)
dil , which must fulfill the consistency con-

dition

Ā
(i,r)
dil =

1

ξ(i)
(K(i,r) − K(m))−1(K∗

dil − K(m)) . (7)

The replacement tensors K(i,r) and Ā
(i,r)
dil are inserted into eqns.(4) and (6)

in lieu of K(i) and Ā
(i)
dil, respectively. Both replacement tensors depend on

the size of the reinforcements and introduce an absolute length scale into the

composite’s overall conduction behavior.

For general distributions of the conductances on the interface, for general

shapes of the reinforcements, and for general material symmetries of the con-

stituents numerical methods must be used for obtaining K∗
dil, K(i,r), and/or

Ā
(i,r)
dil . For this purpose dilute models consisting of single reinforcements em-

bedded in large matrix regions may be employed, which are subjected to three

linearly independent applied temperature gradients. Ā
(i,r)
dil can then be evalu-
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ated from the phase averaged fields in the inhomogeneity and K∗
dil from aver-

ages over the whole model, compare [12], with K(i,r) following from eqn.(7).

If the reinforcements are of ellipsoidal shape, the phase conductivities are

isotropic and the interfacial conductances are distributed confocally with the

particle shape (implying homogeneous conductances for spherical particles and

aligned continuous cylindrical fibers, and inhomogeneous ones otherwise), an-

alytical expressions for the replacement connectivities can be obtained [12,13]

and the dilute replacement gradient concentration tensors can be evaluated

from them as

Ā
(i,r)
dil = [I + SR(m)(K(i,r) − K(m))]−1 (8)

in analogy to eqn.(5). For the special case of spherical reinforcements with

homogeneous interfacial conductances the replacement conductivity tensor

is isotropic and its only nonzero components are the diagonals, which are

given by eqn.(1). The pertinent Eshelby tensor has the same structure with

Skk = 1/3 [10], so that a Mori–Tanaka expression for the effective thermal con-

ductivity of composites reinforced by spherical particles with finite interfacial

conductance can be recovered from eqns.(1), (4), (6) and (8) as

K∗ = K(m) +
3ξ(i) K(m)(K(i,r) − K(m))

3K(m) + ξ(m)(K(i,r) − K(m))
, (9)

compare [2]. This relationship is equivalent to the Maxwell estimates of Has-

selman and Johnson [1].

In order to account for prescribed size distributions of the reinforcements the

Mori–Tanaka expressions (4) and (7) can be extended to multiple reinforce-

ment phases (j), each of which corresponds to reinforcements of a given size
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class described by appropriate replacement tensors K(j,r) and Ā
(j,r)
dil . In such

a scheme the Mori–Tanaka reinforcement gradient concentration tensors per-

taining to N size classes of reinforcements with volume fractions ξ(j), take the

form

Ā
(i,r)
MT = Ā

(i,r)
dil

(

ξ(m)I +
N
∑

j=1

ξ(j)Ā
(j,r)
dil

)−1
, (10)

and the estimate for the macroscopic conductivity tensor of the composite

follows as

K∗ = K(m) +
N
∑

j=1

ξ(j)(K(j,r) − K(m)) Ā
(j,r)
MT . (11)

The phase volume fractions fulfil the relationship ξ(m) +
∑N

j=1 ξ(j) = 1.

This modeling approach can also handle composites with interfacial resistances

that depend on the reinforcement size, h = h(d). If the reinforcements are non-

spherical and not aligned, an orientation averaging scheme must be introduced

at the level of the dilute replacement tensors in analogy to [7]. It is worth

noting that the algorithm does not pose any restrictions on the width of the

individual size classes.

There are two special cases in which the above tensor expressions can be

reduced to scalar relationships in a straightforward way. For isotropic rein-

forcements of spherical shape that are embedded in an isotropic matrix, all

the tensors involved in eqns.(10) and (11) are of diagonal form with identical

diagonal elements, giving rise to the scalar relationship

K∗ = K(m) +

∑N
j=1 ξ(j)(K(j,r) − K(m)) A

(j,r)
dil

ξ(m) +
∑N

j=1 ξ(j)A
(j,r)
dil

(12)
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with

A
(j,r)
dil =

3K(m)

2K(m) + K(j,r)
, (13)

where K(j,r) is obtained by evaluating eqn.(1) with the particle diameter per-

tinent to size class (j).

Equation (12) also holds for the transverse macroscopic conductivity of com-

posites reinforced by unidirectional continuous fibers that show non-uniform

diameters and interfacial resistances. The pertinent diagonal elements in the

Eshelby tensor, however, take the value of 1/2 and the corresponding trans-

verse dilute gradient concentration factors for the fibers are obtained from

eqn.(5) as

A
(i,r)
dil,T =

2K(m)

K(m) + K(i,r)
. (14)

The axial gradient concentration factor for such materials is unity, the overall

axial conductivity follows the rule of mixtures, and no size effect due to the

interface is present in the axial behavior.

An analogous Mori–Tanaka scheme for studying the thermal conduction prop-

erties of composites with aligned reinforcements having finite interfacial con-

ductances can be formulated in terms of the replacement flux concentration

tensors B̄(i,r), compare eqn.(3), and resistivity tensors R(i,r) = (K(i,r))−1 of the

reinforcements. In such a scheme the equivalent to eqn.(8) takes the form

B̄
(i,r)
dil = [I + K(m)(I − S(m))(R(i,r) − R(m))]−1 . (15)

All relations presented in the present section are explicit. Equations (10) to

(14) are not subject to restrictions in the volume fraction distributions that
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can be handled. Using the tensorial relations, eqns.(10) and (11), for general

reinforcement shapes and volume fraction distributions tends to be time con-

suming, a set of three numerical analyses with linearly independent thermal

loads being required to evaluate the dilute replacement tensors for each size

class of inhomogeneities considered. The scalar equations obtained for the

special cases of isotropic spheres and transversally isotropic aligned continu-

ous fibers with homogeneous interfacial conductances, however, can efficiently

handle a high number of size classes. Accordingly, spherical reinforcements

were chosen for the following examples.

3 Examples and Discussion

In this section the Mori–Tanaka expressions for composites reinforced by

equiaxed particles that show an interfacial resistance and follow prescribed

size distributions, eqns.(12) and (13), are applied to a model composite, the

material parameters of which are given in table 1. This model material ap-

proximates diamond–aluminum composites, which were reported by Kleiner

et al. [14] to reach effective conductivities of up to 670 W/mK at particle

volume fractions of ξ ≈ 0.6. The conduction contrast between particles and

matrix evaluates as K(i)/K(m) = 7.5 and the critical particle diameter takes a

value of dc = 10−5m.

Figure 1 shows predictions for the dependence of the overall conductivity on

the particle diameter for spherical particles of equal size. The curve “E-MTM”

pertains to the Mori–Tanaka estimates, eqn.(9), which, as noted before, are

identical to the predictions of the Hasselman–Johnson [1] model and of Ben-

veniste’s [2] self-consistent scheme. The curves “T-R LB” and “T-R UB” give
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the lower and upper three-point bounds of Torquato and Rintoul [5] eval-

uated with the expressions of Miller and Torquato [17] for the three-point

microstructural parameter pertaining to randomly positioned hard spheres of

equal size. Predictions that combine the differential scheme [15] with eqn. (1)

in the spirit of [16] are marked as “DS”. All four curves show a marked de-

pendence of the overall thermophysical behavior on the particle size, with the

predicted overall conductivities decreasing by nearly a factor of ten within

three orders of magnitude of the diameters. For large particle diameters the

interfacial effects vanish and the Mori–Tanaka estimates merge into the lower

Hashin–Shtrikman bounds [18] for the conductivity of isotropic composites

reinforced by particles with perfect interfaces. The Torquato–Rintoul bounds

become equal to the three-point bounds [6] for spheres with ideal interfacial

conductances, which are much tighter than the Hashin–Shtrikman bounds,

so that the Mori–Tanaka estimates lie a few percent below the three-point

bounds in this regime. For the present material parameters (but not for high

phase contrasts) the predictions of the differential scheme slightly exceed the

upper three-point bounds in the large particle limit. For d � dc the interfa-

cial resistances make the reinforcements behave like non-conducting inhomo-

geneities and the Mori–Tanaka estimates approach the corresponding Hashin–

Shtrikman upper bounds. Like the predictions of the differential scheme they

fall within the Torquato–Rintoul bounds in the small particle regime. At the

critical diameter dc, where the composite thermally behaves like a homoge-

neous material, all the above solutions coincide with the conductivity of the

unreinforced matrix.

For studying the effects of non-uniformly sized particles a monomodal log-

normal distribution of the particle volume fractions in terms of the particle
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diameters,

ξ(d) =
exp

(

−
[

ln(d)−µ
√

2 σ

]2)

√
2π dσ

, (16)

was prescribed. Such log-normal distribution functions can give reasonable

approximations to the size distribution of particles in MMCs, see e.g. Molina

et al. [19]. The two parameters µ and σ in eqn.(16) can be easily evaluated

from standard descriptors of probability densities, such as the expected value,

the standard deviation, the median M = D(50), and the span S = [D(90) −

D(10)]/D(50) of the particle diameters. Here D(x) stands for the diameter

below which x% of the particle diameters are found. In the present study

results are parameterized in terms of medians and spans of the distributions,

for which the relations

µ = ln(M)

σ =
1

1.2816
ln

(

S +
√

S2 + 4

2

)

. (17)

hold. For use with eqn.(12) the smooth distributions (16) were discretized into

size classes, 1000 logarithmically spaced classes being typically employed per

decade of particle diameters.

The dependence of the overall conductivities of the composite on the median

diameters of spherical particles with monomodal log-normal size distributions

is shown in figure 2 for three values of the span. The predictions for a span

of unity, marked as D-MTM/L,S=1, hardly deviate from the Mori–Tanaka

solution for particles of equal size, curve E-MTM. Spans of 5 and 9 do not

qualitatively change the conductivity vs. size curves, but make the transition

between the large and small diameter regimes more gradual, i.e., there is a

decrease of the overall conductivity in the transition region for median di-
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ameters above dc and some increase for median diameters below this value.

For wide distributions with S = 9 the predicted reductions in K∗ can ap-

proach 20% of the value pertaining to equally sized particles for the system

considered. Figure 3 depicts the dependence of the overall conductivities of

composites reinforced by spherical particles of log-normal size distribution for

a wide range of medians and spans. It confirms that log-normal size distri-

butions with spans below unity do not give rise to noticeable effects on the

macroscopic thermophysical behavior of composites with a moderate thermal

conductivity contrast between particles and matrix.

A somewhat larger sensitivity to the span is found for “cropped” uniform

monomodal distributions of the volume fractions,

ξ(d) =































0.8
MS

for M(1 − 0.625 S) ≤ d ≤ M(1 + 0.625 S)

0 otherwise

(18)

for which the span cannot exceed a value of 1.6 and the maximum particle

diameter is limited to twice the median diameter. As can be seen in figure 4

volume fractions of this type lead to a qualitatively different behavior than log-

normal ones. For wide cropped uniform volume fraction distributions (curve

D-MT/U,S=1.59) a decrease in the overall conductivity is predicted for all

median diameters of spherical particles compared to composites reinforced

with uniformly sized spheres (curve E-MTM).

In order to achieve high particle volume fractions in composites larger and

smaller particles may be mixed, resulting in bimodal particle size distribu-

tions. For studying the thermal conduction behavior of such composites, sys-

tems containing two populations of log-normally distributed particles, referred
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to as “small” and “large” in the following, were modeled. The partial distri-

bution functions of the two populations of particles are characterized by their

medians, MS and ML, and by their spans, SS and SL, respectively. Particle

mixes containing different contributions of the two populations are described

by a “mixing parameter”, Ξ, with Ξ = 0 and Ξ = 1 denoting monomodal

distributions consisting only of the small or large particles, respectively. The

total volume fraction of the particles is kept fixed at ξ(i) = 0.6.

Figures 5 and 6 present predictions of the effective conductivity as functions

of Ξ evaluated for log-normal partial distributions of equal span, S=SS=SL,

and for median particle diameters that differ by a factor of 10. In addition,

“rule of mixture” approximations obtained from the relation

K∗
ROM = ΞK∗(d = MS) + (1 − Ξ)K∗(d = ML) (19)

are shown, which are linear interpolations between results obtained with eqn.(9)

for composites reinforced with particles having diameters equal to the median

diameters of the small, d = MS, and large, d = ML, populations of particles,

respectively. In cases where both median diameters are either much smaller

or much larger than dc, the values of K∗ for both partial distributions hardly

differ and eqn.(19) is a good approximation for spans less than unity.

For obtaining figure 5 the median diameters of the partial distributions were

chosen as MS = 10−4m and ML = 10−3m, i.e., they are close to the right-

hand “shoulder” of the overall conductivities as shown in figure 1. The rule

of mixture approximation to the effective conductivity can be seen to nearly

coincide with the Mori–Tanaka estimates for small to moderate spans of the

partial distributions, S ≤ 1, in this case. For very wide partials with spans of
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S = 10 (where the two peaks of the bimodal distribution merge), the effective

conductivities are markedly reduced for all values of Ξ, but a linear dependence

on Ξ is retained, i.e., the predictions of eqn.(12) and (13) closely follow a linear

interpolation between the results pertaining to the corresponding monomodal

volume fraction distributions.

Figure 6, in contrast, pertains to a situation where the median diameters strad-

dle the critical diameter dc, MS = 3.1623×10−6m and ML = 3.1623×10−5m.

Due to the smaller particle sizes the predicted overall conductivities are gen-

erally much lower than in figure 5. The Mori–Tanaka estimates for the overall

conductivity at low to moderate spans, S ≤ 1, in this case are obviously non-

linear in Ξ and they are clearly distinct from the ROM data. Wide partial

distributions with S = 10 again lead to a different overall behavior, the non-

linearity of the curves being somewhat smaller. The nonlinearity of the K∗ vs.

Ξ relationship, of course, vanishes as the ratio between median diameters of

the partial distribution functions, ML/MS, approaches unity, where the two

partials merge.

Predictions pertaining to monomodal log-normal particle volume fraction dis-

tributions with M = ML, S = 1 and ξ(i) = 0.3 are also plotted in figures

5 and 6 for comparison. As expected, the use of bimodally sized particles

provide considerable improvements in the overall conductivity if the median

diameters of both populations are sufficiently large, compare figure 5. Adding

particles that are smaller than the critical size dc, in contrast, while increasing

the particle volume fraction, produces limited gains at best and may actually

degrade the macroscopic conductivity of the composite, see figure 6.

Finally, it is worth noting that difficulties analogous to the ones reported for
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extended Mori–Tanaka models of the overall thermoelastic response of com-

posites, viz. the prediction of non-symmetric “elastic tensors” [20,21] have not

been observed in modeling the conduction behavior, even in cases where the

reinforcements are both nonaligned and anisotropic and the resulting overall

behavior is anisotropic, too [7].

4 Conclusions

The proposed Mori–Tanaka scheme provides a flexible tool for modeling the

overall thermal conductivity of composites reinforced by non-uniformly sized

particles or fibers with interfacial resistances. It is especially simple in de-

scribing macroscopically isotropic materials that contain spherical particles

following prescribed size distributions. The model underestimates the overall

conductivities for large particles and may tend to overestimate them for small

inhomogeneities, the inaccuracies being minor for moderate conductivity con-

trasts between reinforcements and matrix. The method is suitable for handling

general distributions of the reinforcement volume fractions given as functions

of the particle diameter.

Wide monomodal volume fraction distribution functions, with spans consid-

erably exceeding unity, are predicted to lead to noticeable differences in the

overall conduction response compared to particles of uniform size. For narrow

distributions, in contrast, these effects are negligible and simpler methods,

such as the Hasselman–Johnson estimates, give comparable results. Bimodal

volume fraction distributions can give rise to nontrivial behavior when the

partials are sufficiently far apart and straddle the critical diameter, whereas

straightforward interpolation can give acceptable results in other cases.
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infiltration into ceramic particle preforms with bimodal size distributions,

Curr. Opin. Sol. State Mater. Sci. 9 (2006) 202–210.

[20] Y. Benveniste, G. Dvorak, T. Chen, On diagonal and elastic symmetry

of the approximate effective stiffness tensor of heterogeneous media,

J. Mech. Phys. Sol. 39 (1991) 927–946.

[21] M. Ferrari, Asymmetry and the high concentration limit of the Mori–Tanaka

effective medium theory, Mech. Mater. 11 (1991) 251–256.

19



Figure Captions

Figure 1: Predictions for the size dependent effective conductivities of com-

posites reinforced by spherical particles of equal size (volume fraction ξ(i)=0.6,

material parameters following table 6) obtained by a Mori–Tanaka scheme (E-

MTM), a differential scheme (DS), as well as the three-point lower (T-R LB)

and upper (T-R UB) bounds of Torquato and Rintoul [5].

Figure 2: Mori–Tanaka predictions for the size dependent effective conduc-

tivities of composites reinforced by particles (volume fraction ξ(i)=0.6) of

equal size (E-MTM) and by particles having log-normal size distributions (D-

MTM/L) with spans of S=1, S=5 and S=9.

Figure 3: Mori–Tanaka predictions for the effective conductivities of compos-

ites reinforced by particles (volume fraction ξ(i)=0.6) with monomodal log-

normal size distributions described by the medians and spans of the particle

diameters.

Figure 4: Mori–Tanaka predictions for the size dependent effective conductiv-

ities of composites reinforced by particles (volume fraction ξ(i)=0.6) of equal

size (E-MTM) and by particles having a uniform size distribution with a span

of S=1.59 (D-MTM/U).

Figure 5: Comparison of “rule of mixture” (ROM) and Mori–Tanaka pre-

dictions (B-MTM) for the conductivities of composites reinforced by par-

ticles having a bimodal size distribution with MS=10−4m and ML=10−3m

given as functions of the mixing parameter Ξ and parameterized by the span
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S = SS = SL of the two log-normal partial distributions. The result for

a monomodal log-normal size distribution with ξ=0.3, M=1.0 × 10−3m and

S = 1 is marked as D-MTM/L,0.3.

Figure 6: Comparison of “rule of mixture” (ROM) and Mori–Tanaka pre-

dictions (B-MTM) for the conductivities of composites reinforced by particles

having a bimodal size distribution with MS=3.1623×10−6m and ML=3.1623×

10−5m given as functions of the mixing parameter Ξ and parameterized by the

span S = SS = SL of the two log-normal partial distributions. The result for a

monomodal log-normal size distribution with ξ=0.3, M=3.1623× 10−5m and

S = 1 is marked as D-MTM/L,0.3.
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Tables

Table 1

Material parameters of the model material employed in generating figures 1 to 6.

K(i) K(m) h ξ(i)

[W/mK] [W/mK] [W/m2K] [1]

1800 240 5.538×107 0.6
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Fig. 1. Predictions for the size dependent effective conductivities of composites

reinforced by spherical particles of equal size (volume fraction ξ (i)=0.6, material

parameters following table 6) obtained by a Mori–Tanaka scheme (E-MTM), a dif-

ferential scheme (DS), as well as the three-point lower (T-R LB) and upper (T-R

UB) bounds of Torquato and Rintoul [5].
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Fig. 2. Mori–Tanaka predictions for the size dependent effective conductivities of

composites reinforced by particles (volume fraction ξ (i)=0.6) of equal size (E-MTM)

and by particles having log-normal size distributions (D-MTM/L) with spans of

S=1, S=5 and S=9.
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Fig. 3. Mori–Tanaka predictions for the effective conductivities of composites re-

inforced by particles (volume fraction ξ(i)=0.6) with monomodal log-normal size

distributions described by the medians and spans of the particle diameters.
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Fig. 4. Mori–Tanaka predictions for the size dependent effective conductivities

of composites reinforced by particles (volume fraction ξ (i)=0.6) of equal size

(E-MTM) and by particles having a uniform size distribution with a span of S=1.59

(D-MTM/U).
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Fig. 5. Comparison of “rule of mixture” (ROM) and Mori–Tanaka predictions

(B-MTM) for the conductivities of composites reinforced by particles having a bi-

modal size distribution with M S=10−4m and ML=10−3m given as functions of

the mixing parameter Ξ and parameterized by the span S = SS = SL of the two

log-normal partial distributions. The result for a monomodal log-normal size distri-

bution with ξ=0.3, M=1.0 × 10−3m and S = 1 is marked as D-MTM/L,0.3.
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Fig. 6. Comparison of “rule of mixture” (ROM) and Mori–Tanaka predictions

(B-MTM) for the conductivities of composites reinforced by particles having a bi-

modal size distribution with M S=3.1623×10−6m and ML=3.1623×10−5m given as

functions of the mixing parameter Ξ and parameterized by the span S = SS = SL of

the two log-normal partial distributions. The result for a monomodal log-normal size

distribution with ξ=0.3, M=3.1623×10−5m and S = 1 is marked as D-MTM/L,0.3.
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