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Abstract

Semi-analytical Mori–Tanaka methods and numerical models for studying the

overall thermal conduction behavior of metal matrix composites reinforced by di-

amond particles are presented, special emphasis being put on the effects of finite

interfacial conductances. Good agreement between the simulation approaches is ob-

tained and the influence of particle shapes and homogeneous vs. inhomogeneous

interfacial conductances on local and global responses is studied. Analogous meth-

ods are applied to modeling the elastic and thermoelastoplastic behavior of diamond

reinforced metals.
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1 Introduction

Diamond reinforced metal matrix composites (DRMMCs) are promising can-

didate materials for attaining elevated thermal conductivities [1,2], and they

have been identified as holding the potential for breakthrough applications as

heat sinks, e.g., in microelectronics. Accordingly, simulation studies of such

materials, the overall thermal conduction behavior of which is not only gov-

erned by the material properties and the geometrical arrangement of the con-

stituents, but also by the behavior of the interfaces between them [3], are of

considerable practical interest.

To obtain a high effective thermal conductivity, pure or low-alloyed aluminum

of copper are typically used as the matrices of DRMMCs. As the coefficients

of thermal expansion (CTE) of these metals are an order of magnitude higher

than the CTE of the diamonds, substantial thermal stresses must be expected

as consequences of production-related cooling-down processes and of temper-

ature excursions in service. Together with the low flow stresses of the matrices

these indicate a marked tendency towards plastic yielding under purely ther-

mal loading. Furthermore, as these materials are intended for applications that

involve thermal cycling loads, low cycle fatigue and ratcheting are possible con-

cerns. As a consequence, the thermomechanical behavior of these composites

also is an important target for modeling.

It is well known that thermal contact resistances between reinforcements and

matrix give rise to a size effect in the overall conductivity of composites, so that

even highly conductive particles or fibers fail to increase the overall conductiv-
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ity once their size falls below some critical value, see e.g. [4]. Several analytical

approaches to estimating the thermal conduction behavior of composites rein-

forced with spherical or aligned ellipsoidal particles that have non-ideal inter-

faces or are coated with interphases can be found in the literature [4,5,6,7,8,9].

Diamonds, however, have polyhedral shapes and, in addition, experimental ev-

idence indicates that their {100} and {111} faces may show different thermal

conductances when embedded in a metallic matrix [10]. The above analyti-

cal methods do not cover such situations and either semi-analytical models

or numerical approaches must be used for studying the thermal conduction

behavior of DRMMCs in detail. In the present contribution, a semi-analytical

model based on the work of Duschlbauer [11] as well as multi-particle unit

cells are employed towards this goal.

Essentially all analytical and most numerical studies of the thermomechanical

behavior of particle reinforced composites that are available in the literature

have also been based on inhomogeneities of spherical or ellipsoidal shape.

Semi-analytical approaches and unit cell models that can account for polyhe-

dral reinforcements in analogy to the models used for thermal conduction are

brought to bear on the problem, the interfaces between particles and matrix

being assumed to be mechanically perfect.

In the present contribution the main emphasis is put on the development,

comparison, and assessment of modeling tools for studying the thermophys-

ical and thermomechanical behavior of ductile matrix composites reinforced

by uniformly sized equiaxed polyhedral particles.
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2 Methods and Modeling Issues

2.1 Mori–Tanaka Estimates

Mean field methods provide relatively simple models for the overall behavior

of inhomogeneous materials that can be used for a wide range of reinforcement

volume fractions, the fields on the microscale entering via their phase averages.

One group of mean field approaches, Mori–Tanaka estimates, approximate the

behavior of composites that contain reinforcements at non-dilute volume frac-

tions via dilute inhomogeneities that are subjected to effective matrix fields

rather than the macroscopic fields [12]. These effective fields account for the

perturbations caused by all other reinforcements in a mean-field sense. Ben-

veniste [13] expressed the central assumption of Mori–Tanaka methods for

elastic composites as

〈ε〉(i) = Ā
(i)
dil〈ε〉

(m) = Ā
(i)
dil Ā

(m)
MT〈ε〉

〈σ〉(i) = B̄
(i)
dil〈σ〉(m) = B̄

(i)
dil B̄

(m)
MT〈σ〉 , (1)

where 〈ε〉(i), 〈ε〉(m), 〈σ〉(i), and 〈σ〉(m) are the phase averaged strain and stress

tensors of the reinforcement and matrix phases, respectively. 〈ε〉 and 〈σ〉 de-

note the macroscopic strain and stress tensors, Ā
(m)
MT and B̄

(m)
MT the matrix

Mori–Tanaka strain and stress concentration tensors, and Ā
(i)
dil and B̄

(i)
dil the

dilute strain and stress concentration tensors of the reinforcements. The anal-

ogous relationships for the thermal conduction problem take the form

〈∇T 〉(i) = Ā
(i)
dil〈∇T 〉(m) = Ā

(i)
dil Ā

(m)
MT〈∇T 〉

〈q〉(i) = B̄
(i)
dil〈q〉

(m) = B̄
(i)
dil B̄

(m)
MT〈q〉 , (2)
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where ∇T and q stand for the thermal gradient and the heat flux vectors, and

Ā and B̄ for the thermal gradient and heat flux concentration tensors. The

field and concentration tensors in eqns.(1) are of ranks 2 and 4, respectively,

whereas the ranks of the corresponding tensors in eqns.(2) are 1 and 2.

As a consequence of eqn.(2) the Mori–Tanaka gradient concentration tensors

of matrix and reinforcements, Ā
(m)
MT and Ā

(i)
MT, can be written as [13]

Ā
(m)
MT =

(

(1 − ξ)I + ξĀ
(i)
dil

)−1

Ā
(i)
MT = Ā

(i)
dil

(

(1 − ξ)I + ξĀ
(i)
dil

)−1
, (3)

where I denotes the rank 2 identity tensor and ξ stands for the reinforcement

volume fraction. Analogous expressions hold for the flux, strain and stress

concentration tensors. The dilute inclusion gradient concentration tensor, Ā
(i)
dil,

can in turn be obtained in analogy to Hill’s [14] expressions for dilute strain

concentration tensors as

Ā
(i)
dil = [I + SR(m)(K(i) −K(m))]−1 . (4)

Here K(i) is the conductivity tensor of the reinforcements, K(m) and R(m) =
(

K(m)
)−1

are the conductivity and resistivity tensors, respectively, of the ma-

trix, and S is the Eshelby tensor of the diffusion problem, which is given

explicitly e.g. in [15]. The macroscopic (effective) conductivity tensor of the

composite, K∗
MT, can be estimated from the above expressions as

K∗
MT = K(m) + ξ(K(i) − K(m))Ā

(i)
MT . (5)

Analogous relations link the inclusion strain concentration tensors Ā(i), the

elasticity tensors E∗, E(i) and E(m), the compliance tensor C(m) =
(

E(m)
)−1

,

and the mechanical Eshelby tensor S. The Mori–Tanaka estimates, eqns. (2)
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to (5), hold for general material symmetries of matrix and reinforcements,

pertain to aligned ellipsoidal inhomogeneities with perfect interfaces, do not

show an intrinsic length scale, and correspond to one of the pertinent Hashin–

Shtrikman-type bounds in the case of two-phase materials [16].

The above standard Mori–Tanaka scheme can be extended to handle inho-

mogeneities of non-ellipsoidal shapes as well as finite interfacial thermal con-

ductances by introducing phase averaged dilute “replacement” inhomogeneity

conductivity tensors, K(i,r), and the associated dilute “replacement” inhomo-

geneity gradient concentration tensors, Ā
(i,r)
dil . These replacement tensors must

fulfill the consistency condition

K(i,r) = K(m) +
1

ξdil

(

K∗
dil − K(m)

)(

Ā
(i,r)
dil

)−1
, (6)

which follows from eqn.(5) for the dilute case. Here K∗
dil is the effective conduc-

tivity of a composite with dilute reinforcement volume fraction ξdil. The re-

placement tensors K(i,r) and Ā
(i,r)
dil are then inserted into eqns.(3) and (5) in lieu

of K(i) and Ā
(i)
dil, respectively. This combination of the Mori–Tanaka method

with the replacement tensor approach, which was introduced by Duschlbauer

[11], is referred to as “RMTM” in the following. When finite interfacial con-

ductances are present between the phases, the replacement tensors depend on

the sizes of the reinforcements, so that an absolute length scale is introduced

into the Mori–Tanaka scheme. Analogous procedures for the elastic behavior

can be defined in terms of replacement elasticity tensors, E(i,r), replacement di-

lute strain concentration tensors, Ā
(i,r)
dil , and dilute effective elasticity tensors,

E∗
dil, to give

E(i,r) = E(m) +
1

ξdil

(

E∗
dil − E(m)

)(

Ā
(i,r)
dil

)−1
. (7)
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A number of authors modeled mechanically imperfect interfaces by assign-

ing replacement stiffnesses to partially or fully debonded particles, compare

e.g. [17]. In the present study, however, only polyhedral particles with me-

chanically perfect interfaces are considered, for which the replacement tensor

approach may be viewed as an alternative to the compliance contribution

formalism of Kachanov et al. [18].

For spherical particles of isotropic conductivity that are embedded in an

isotropic matrix and show homogeneous interfacial conductances, the replace-

ment tensors can be obtained from well-known scalar relationships and give

rise to Mori–Tanaka estimates [5] that are equivalent to the expressions of

Hasselman and Johnson [4] as discussed, e.g., in [19]. A similar approach can

be followed for ellipsoidal reinforcements with confocally distributed interfa-

cial conductances [11], for which the microfields inside the inhomogeneities

maintain the “Eshelby property” of being homogeneous.

If the conductances show more general inhomogeneous distributions over the

interface or if the reinforcements are of non-ellipsoidal shape, however, the

microfields, the dilute concentration tensors and the Eshelby tensors become

position dependent within the inhomogeneities. In such cases numerical meth-

ods can be used to advantage for obtaining K∗
dil, Ā

(i,r)
dil and/or K(i,r) as well

as their equivalents in elasticity. A very flexible approach to handling these

problems uses volume elements made up of a single inhomogeneity of appro-

priate shape and with appropriately distributed interfacial conductance that

is embedded in a large matrix region. In general, these models are subjected

to three (in the thermal conduction case) or six (in the elastic case) linearly

independent load cases and the microfields are computed numerically, e.g. by

the Finite Element method. From these results K∗
dil can be obtained by vol-
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ume averaging over the whole model. For ideal interfaces Ā
(i,r)
dil can be obtained

from volume averages over the inhomogeneity. In cases involving finite inter-

facial conductances, however, the dilute matrix gradient concentration tensor

Ā
(m)
dil is extracted from the numerical solutions and the replacement inclusion

concentration tensor is then obtained from the relationship

Ā
(i,r)
dil =

1

ξdil

[

I − (1 − ξdil) Ā
(m)
dil

]

, (8)

which ensures that interface effects are subsumed into the replacement in-

homogeneity. Finally, K(i,r) is obtained via eqn. (6). The elastic case can be

handled in analogy. In general this procedure provides approximations rather

than exact solutions and is not equivalent to the use of phase averaged Eshelby

tensors for inhomogeneities with fluctuating microfields as proposed e.g. in

[20]. The replacement tensors evaluated with eqns. (6) to (8) were found to be

largely independent of the particle volume fraction in the dilute cell, ξdil. How-

ever, some care is required in evaluating these equations because the terms

K∗
dil −K(m), E∗

dil − E(m), and I − (1 − ξdil) Ā
(m)
dil vanish for ξdil → 0, making the

algorithm potentially sensitive to roundoff errors.

Figure 1 shows a volume element consisting of a single particle with the shape

of a regular cubo-octahedron (tetrakaidekahedron) that is embedded in a ma-

trix at a particle volume fraction of ξ = 0.000148. This is typical of the cells

that were subjected to homogeneous gradient boundary conditions to evaluate

the replacement tensors. Because both the geometry of the particles and the

distribution of the interfacial conductances of configurations of the type dis-

played in fig. 1 show cubic symmetry, the resulting conductivity tensors, K∗
dil

and K(i,r), are isotropic, whereas the elasticity tensors, E∗
dil and E(i,r), are cu-

bic [21]. When the replacement tensors are combined with an isotropic matrix
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in the Mori–Tanaka formalism, isotropic macroscopic conductivity tensors,

K∗
MT, and cubic macroscopic elasticity tensors, E∗

MT, result because Mori–

Tanaka estimates pertain to aligned reinforcements. A quasi-isotropic overall

elastic behavior corresponding to randomly oriented diamond particles can

be approximated by “isotropizing” the elasticity tensors, e.g. by using the

Hershey–Kröner–Eshelby (HKE) method [22], which was developed to evalu-

ate the macroscopically isotropic elastic response of polycrystals consisting of

randomly oriented cubic grains.

2.2 Multi-Particle Unit Cell Models

To complement the semi-analytical Mori–Tanaka models presented in section

2.1 multi-particle unit cells were employed for obtaining estimates of the over-

all thermal and thermomechanical properties of DRMMCs. Such unit cells,

which are a well-established micromechanical tool for studying the behavior

of discontinuously reinforced composites [23,24,25,26], can provide highly de-

tailed predictions on the microscopic gradient, flux, stress and strain fields

in complex microgeometries, but pose much higher requirements in terms of

analyst’s time and computational power compared to mean field methods.

For the present work unit cells containing 20 randomly positioned particles of

equal size and shape were used. To obtain the model microgeometries periodic

arrangements of equally sized spheres were generated by the two-step algo-

rithm of Segurado [27], which involves random sequential insertion followed

by a Monte-Carlo compaction procedure. Randomly oriented identical regular

cubo-octahedra as shown in fig. 1(left) were then inscribed into the spheres,

which allowed particle volume fractions of some 34% to be attained. This
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strategy provides for the generation of unit cells that contain cubo-octahedral

particles at different positions and orientations, cubo-octahedra that differ in

their orientation only, or spheres that have the same positions and volume

fraction as the cubo-octahedra, compare fig. 2. Together with the capability

of prescribing different or equal conductances at the {100} and {111} faces of

the diamond particles, the resulting family of models allows various aspects of

the phase geometry to be studied in detail at both the micro- and macroscales.

The fine Finite Element meshes required for satisfactorily resolving the dis-

continuities in the interfacial conductance at edges between {100} and {111}

faces led to rather high numbers of degrees of freedom (DOFs) in the thermal

conduction models using cubo-octahedral reinforcements, a typical value being

5,160,000. Coarser meshes with approximately 1,300,000 DOFs were used in

the thermomechanical studies. Periodicity boundary conditions were applied

to all multi-particle unit cells.

In addition to handling the thermal conduction and thermoelastic behaviors of

discontinuously reinforced composites, multi-particle unit cell models are well

suited to studying their nonlinear thermomechanical responses, such as plastic

deformations due to cooling-down processes and other temperature excursions.

The main limitation to the models described above lies in the relatively low

particle volume fraction that can be attained, which is little more than half

of the diamond volume fractions reported for actual samples [28]. Computer

generated arrangements of diamond-like particles with volume fractions of

up to 64 volume percent were described by Flaquer et al. [29]. These model

microgeometries are, however, not periodic and, accordingly, cannot not be

studied by the periodic homogenization procedures employed in the present

work.
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A further difficulty lies in the limited number of particles that could be han-

dled within the constraints of available computer resources, an issue that is

exacerbated by the large number of multi-point constraints required for imple-

menting periodicity boundary conditions, which tend to degrade the efficiency

of Finite Element solvers. As discussed in sections 3.1 and 3.2 some anisotropy

is present in the overall conductivities and elasticities predicted for the three

configurations shown in fig. 2, which indicates that the unit cells are too small

for being proper reference volume elements. Even though ensemble averaging

over different configurations can be employed for improving the predictions of

the macroscopic properties, unit cells containing a higher number of particles

are clearly desirable.

2.3 Material Parameters

The same set of thermophysical and thermomechanical constituent material

parameters, which correspond to diamond particles and a matrix of pure alu-

minum, was used for all simulations. Table 1 lists the thermal conductivities,

K, the isotropic Young’s moduli, E, the Poisson numbers, ν, and the bulk

moduli, B, used for the constituents. The conductances for the {100} and

{111} faces of synthetic diamond particles embedded in aluminum given in

table 2 are preliminary estimates that aim at accounting for differences in the

behavior of the two sets of faces, the lower reactivity of the {111} faces leading

to reduced bonding and to a lower interfacial conductance [30].

Whereas temperature independent elastic constants were employed in all stud-

ies of the thermomechanical behavior of DRMMCs, temperature dependent

hardening curves were specified following the results given for aluminum 99.99
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by Chinh et al. [31]. Table 3 lists the corresponding initial yield stresses, σy,0,

for a number of temperatures. The coefficients of thermal expansion of the

constituents were prescribed as functions of temperature following [32], see

table 4.

3 Results and Discussion

All unit cells discussed in this section were meshed with the preprocessor Hy-

perMesh (Altair Computing, Troy, MI) and the analysis runs were carried out

with the general purpose Finite Element code ABAQUS/Standard (Simulia,

Providence, RI). All models were meshed with 10-node tetrahedral elements.

The multi-particle unit cells were generated such that all particles are of equal

size. Even though Mori–Tanaka methods do not describe uniformly sized par-

ticles, a well-defined absolute length scale is introduced into thermal conduc-

tion models by the choice of the interfacial conductance h. In the following

the sizes of cubo-octahedral particles are given in terms of the diameter of

the circumscribed sphere, d. The diameters of spherical particles, ds, were

chosen to obtain the same volume as the diamond particles, which implies

ds = 2√
5
( 3

π
)1/3 d. For most of the studies presented in the following the size of

cubo-octahedral particles was chosen as d = 200 µm, so that the diameter of

the equivalent spheres results as ds = 176 µm.

For a given particle size an equivalent homogeneous interfacial conductance

heqv can be defined by requiring that it gives rise to the same replacement con-

ductivity K(i,r) as the inhomogeneous interfacial conductances listed in table

2. For cubo-octahedra of d = 200 µm this equivalent homogeneous interfacial
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conductance, heqv,200, takes a value of some 27.7 MW/Km2.

3.1 Thermal Conduction Behavior

In fig.3 predictions for the effective thermal conductivity, K∗, of a DRMMC

with a diamond volume fraction of ξ = 0.34 are compared for different inter-

facial conductance scenarios and different micromechanical models. For ideal

interfaces, h → ∞, marked as “MTM, perfect”, and for vanishing interfacial

conductances, h → 0, marked as “MTM, voids”, the effective conductivity

can be computed by standard Mori–Tanaka methods and does not depend on

the particle size. Semi-analytical Mori–Tanaka predictions are shown for cubo-

octahedral diamond particles with homogeneous (“RMTM, hom”) and inho-

mogeneous (“RMTM, inh”) interfacial conductances, where the former use

heqv,200. Both curves show the sigmoid dependence of K∗ on the particle size

known from the Hasselman–Johnson model [4]. Some effects of the interfacial

scenarios can be seen in the size range 1 µm ≤ d ≤ 100 µm, where the inhomo-

geneous conductances lead to a slightly higher macroscopic conductivity than

the homogeneous ones. The latter do not lie within the three-point bounds

of Torquato and Rintoul [8] (evaluated for heqv,200 and non-interpenetrating

spheres of equal size, and marked as “3PB, hom”) for part of the size range

shown, which is not surprising because they describe physically different sce-

narios. At the critical diameter of ds,cr = 19.7 µm, where the effective conduc-

tivity of the sphere-reinforced composite equals that of the matrix, the upper

and lower three-points bounds coincide. Effective conductivities obtained with

unit cell UCDA for ideal, homogeneous and inhomogeneous interfacial conduc-

tances at d = 200 µm (“UCDA, inh”) slightly exceed the Mori-Tanaka data.
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The replacement conductivities evaluated for spherical and cubo-octahedral

inhomogeneities and different interfacial scenarios are listed in table 5. For per-

fect interfaces the replacement conductivity of the cubo-octahedra coincided

with the physical conductivity of diamonds. As intended, the replacement

conductivities of cubo-octahedra with inhomogeneous and equivalent homo-

geneous interfacial conductances are nearly equal. However, those of spheres

with the same volume and the same interfacial conductance are about 3%

smaller. The corresponding predictions for the effective conductivities, 399.7

W/Km and 392.1 W/Km (compare table 6) differ by about 1.8%.

Table 6 lists predictions for spherical and cubo-octahedral particles at a vol-

ume fraction of ξ = 0.34 that were obtained with a number of models and

interfacial scenarios. For the the considered particle size of 200 µm about 72%

of the potential improvement in conductivity that can be achieved by 34 vol.%

of diamonds is attained. The results obtained from unit cells with spherical

particles, K∗
UCS, approach the predictions of the Hasselman–Johnson model

[4], which coincides with the Mori–Tanaka model for spherical particles. Com-

pared to the spheres, cubo-octahedral particles with homogeneous interfacial

conductances of heqv,200 give rise to macroscopic conductivities that are about

1.5% higher in the Mori–Tanaka approximation (K∗
MTM) and about 2% higher

in the unit cell models (K∗
UCDA and K∗

UCDB). If inhomogeneous interfacial

conductances are introduced into the unit cell models there is an additional

minor increase in the macroscopic conductivity. The differences between the

predictions obtained with the two unit cells UCA and UCB, however, are very

small.

The symmetry of the effective conductivities predicted by the unit cells is

probed in table 7, where results obtained for temperature gradients in the x-, y-
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and z-directions are compared for three configurations. The largest differences

are found for the scenario of perfect interfaces, for which the conductivity

contrast is highest. The predictions obtained for cells UCDA and UCDB differ

only by a small amount, indicating that the positions of the particle centers

rather than the orientations of the cubo-octrahedra control the macroscopic

anisotropy. In all cases considered the differences in K∗ are less than 1% and

the averaged conductivities K∗
avg can be considered as valid estimates.

Figures 4 and 5 concentrate on the distribution of microscopic heat fluxes in

the particles. In fig.4 the three unit cells shown in fig.2 are combined with

homogeneous interfacial conductances, heqv,200, and subjected to unit thermal

gradients acting in z-direction. The resulting intra-particle heat flux distribu-

tions in the individual inhomogeneities are represented in terms of averages

and standard deviations. The spherical particles consistently show slightly

smaller averages and significantly smaller standard deviations of the fluxed

than the cubo-octahedra. This behavior is related to the fact that in dilute

spheres the microfields are homogeneous, whereas in dilute polyhedra they

are not. In fig.5 the fluxes in the particles are compared for unit cells UCDA

and UCDB, which differ only in the orientations of the cubo-octahedra. Even

though inhomogeneous interfacial conductances were prescribed, the two unit

cells show only minor differences in the averages and standard deviations of

the intra-particle distributions of the fluxes. In both cases the fluxes in given

particles are mainly governed by the positions of the centers, which is evi-

dent in the nearly identical variations of the average fluxes with the particle

numbers.

Taken together, the above results allow the conclusion that for moderate parti-

cle volume fractions the combination of the Mori–Tanaka method with replace-
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ment tensors obtained from numerical models provides valid predictions for

the overall conductivity of composites reinforced by cubo-octahedral particles

with inhomogeneous interfacial conductances. For an elevated particle volume

fraction of ξ = 0.6 and a particle size of d = 200 µm the semi-analytical Mori–

Tanaka method predicts a macroscopic conductivity of K∗
MTM = 596 W/Km,

which falls within the three-point bounds of K∗
LB = 567 W/Km and K∗

UB = 639

W/Km evaluated for non-interpenetrating spherical particles having an inter-

facial conductance of heqv,200. All of the above values lie below the maximum

experimentally determined conductivity of K∗
exp,max ≈ 670 W/Km reported

for Al-matrix DRMMCs with particle sizes of d ≈ 100 µm and particle vol-

ume fractions of some 60% that were produced by gas pressure infiltration

[10,30]. This indicates that at least in some actual materials the interfacial

conductances are considerably higher than assumed in the present study. In

addition, the tendency of Mori–Tanaka methods to underestimate the overall

conductivities, especially at elevated particle volume fractions, may play some

role. Finally, the predictions of the unit cell models provide clear evidence

that the inhomogeneous distributions of the interfacial conductances on the

particles’ faces have only a very limited influence on the overall conductivity

of the composite and on the phase averages of the microfields.

3.2 Thermomechanical Behavior

Predictions for the macroscopic elastic moduli and coefficients of thermal ex-

pansion for a particle volume fraction ξ = 0.34 at room temperature are

collected in table 8. Here “MTM, sph” stands for the classical Mori–Tanaka

estimates employing spherical particles [13] and “RMTM, diam” for the Mori–
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Tanaka method using replacement tensors evaluated for cubo-octahedral par-

ticles. For the latter case isotropic effective elasticity tensors were obtained

by applying the HKE method. Torquato’s three-point estimates [33] evalu-

ated for spherical particles of uniform size are listed under the heading “3PE,

sph”, and results from unit cell models shown in fig. 2 are marked as “UCS”

and “UCDA”. Because the unit cells were too small to be reference volume

elements some anisotropy was present in their responses, the differences be-

tween diagonal terms of the elasticity tensor being less than 1.5%, however.

The unit cell results listed in table 8 pertain to macroscopic elasticity tensors

made quasi-isotropic by the HKE algorithm. In contrast to the effective ther-

mal conductivities discussed in section 3.1 the predicted elastic tensors do not

have an intrinsic length scale.

Both the Mori–Tanaka methods and the multi-particle unit cells predict a

stiffer macroscopic behavior for cubo-octahedral particles compared to sphe-

res, the effect being more pronounced in the unit cell models. The overall

elastic behavior obtained from the Mori–Tanaka methods is more compliant

than the predictions of the three-point estimates and the unit cells. This is due

to the well-known fact that Mori–Tanaka approaches provide lower estimates

for the stiffness of composites in which the reinforcements are stiffer than

the matrix; for the spherical particles the MTM results correspond to the

Hashin–Shtrikman lower bounds. For a particle volume fraction of ξ = 0.6 the

predictions for the Young’s moduli and the Poisson number are E∗ = 228.8

GPa and ν∗ = 0.262 for spherical particles and E∗ = 255.9 GPa and ν∗ = 0.241

for cubo-octahedra, respectively. Interestingly, even though a stiffer overall

behavior is obtained with cubo-octahedral particles, both their replacement

Young’s modulus, E(i,r) = 1001.3 GPa, and their replacement bulk modulus,
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B(i,r) = 395.5 GPa, are lower than the corresponding physical moduli listed in

table 1. Evidently, the interplay between E(i,r) and Ā
(i,r)
dil is non-trivial.

Inspection of the results of the numerical models using cubo-octahedral parti-

cles indicated that at the interfaces singularities may be present in the elastic

stress and strain fields in the matrix at reentrant edges and corners. Even

though such singularities cannot be resolved with the Finite Elements mod-

els employed in the present study, their presence does not compromise the

evaluation of the reduced elastic concentration tensors, for which the volume

averaged strains in the inhomogeneities are required. They lead to difficulties,

however, in using criteria for macroscopic yielding that are based on the max-

imum of the equivalent stress in the matrix as predicted by multi-particle unit

cells.

Due to the marked thermal expansion contrast between the constituents and

the low initial yield stress of the matrix, compare tables 3 and 4, a strong

tendency of DRMMCs toward matrix yielding under thermal loading must

be expected. Plastic yielding of macroscopically isotropic composites under

pure thermal loading cannot be described by Mori–Tanaka methods, which

always predict hydrostatic matrix stress states under such conditions. Unit

cell methods, however, are well suited to the task. Thermoelastic modeling

with unit cell UCS (20 spherical particles) indicated that the temperature

change required for initiating local plastic yielding is more than an order of

magnitude smaller in a DRMMC with a matrix of Al99.99 compared to a

high strength aluminum alloy reinforced by SiC particles of the same volume

fraction.

Thermoelastoplastic analysis employing the multi-particle unit cells shown in
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fig. 2 and the temperature dependent constituent properties listed in tables 3

and 4 can be used to study the macroscopic thermomechanical responses as

well as the effects of local thermal stresses and strains in DRMMCs. Figure

6 (left) shows the distribution of the accumulated equivalent plastic strains,

ε̄
(m)
eqv,pl, predicted for the matrix domain of unit cell UCDA after cooling down

from a stress-free temperature of 450 K to room temperature. The plastic

strains can be seen to be highly inhomogeneous and to exceed a value of 0.01

over a considerable part of the volume element. Because hardly any elastic

matrix regions remain, the matrix may be viewed as fully yielded in this

state. Heating up to 393 K from this state leads to further plastic yielding

as displayed in fig. 6 (right), where especially the increased extent of regions

with accumulated equivalent plastic strains in excess of 0.1 is noteworthy. To

further illustrate this behavior, the evolution of the equivalent accumulated

plastic strain in the matrix is shown in fig. 7, where the phase averages and

standard deviations of ε̄
(m)
eqv,pl are plotted for selected temperatures during the

heating-up process. Temperature changes of up to 20 K give rise to some local

yielding, but have little influence on the distribution of the plastic strains

in the matrix. Temperature excursions in excess of 40 K, however, lead to

an increase in the averages of ε̄
(m)
eqv,pl, which indicates to bulk yielding of the

matrix, and to a marked rise in the standard deviations, the latter indicating

an intensifying inhomogeneity of the plastic strains.

Figure 8 compares the macroscopic responses of initially stress-free (virgin)

and cooled-down diamond–aluminum composites to uniaxial tensile loading

as predicted with unit cell UCDA. Up to an applied stress of approximately

20 MPa there is little difference between the two curves, but for tensile stresses

exceeding 25 MPa the residual stresses in the cooled-down material lead to a
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markedly weaker hardening behavior.

The above modeling results clearly indicate that DRMMCs tend to be sub-

ject to marked matrix plasticity effects under thermal loading. The resulting

residual stress states may also strongly influence the mechanical responses.

This behavior must be accounted for in the development, production and use

of such materials for heat sink applications.

4 Conclusions

The thermophysical and thermomechanical behavior of metal matrix compos-

ites reinforced by polyhedral particles was studied by a Mori–Tanaka method

employing replacement conductivity, elasticity and concentration tensors as

well as by multi-particle unit cells. The material constituent parameters were

chosen to correspond to a matrix of pure aluminum reinforced by diamond

particles, and homogeneous as well as inhomogeneous distributions of the in-

terfacial conductances were investigated.

The predictions of the two modeling approaches were compared for a moderate

particle volume fraction of ξ = 0.34 and found to be in good agreement. On

this basis the respective strengths of the two classes of models were made use

of by studying the thermal and thermoelastic responses at elevated diamond

volume fractions with the Mori–Tanaka method and by using the unit cells

for predicting the thermoelastoplastic behavior as well as for focusing in on

details of the fields on the microscale.

The replacement tensor approach used in this study may also be combined

with other mean field methods that can be formulated in terms of concentra-
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tion tensors, such as classical self-consistent models and differential schemes.

The results of the modeling effort support the viability of the concept of

using DRMMCs as high-conductivity heat sink materials. The main hurdles

that have to be overcome are, on the one hand, the provision of interfaces

of high thermal conductance which allow overall thermal conductivities in

excess of 500 W/Km to be obtained from reasonably small diamond particles.

On the other hand, a high mechanical quality of the interfaces and a void-free

matrix must be reliably achieved in order to allow the composite to survive the

high thermal stresses inherent in the given combination of constituents. Also,

service conditions may have to be chosen to minimize cyclic plastic yielding

due to temperature excursions.

Acknowledgments

This work was carried out within the framework of the Integrated European

Project ExtreMat (contract NMP-CT-2004-500253) with financial support

from the European Community. It only reflects the views of the authors and

the European Community is not liable from any use of the information con-

tained therein.

References

[1] B. Maruyama, R.K. Everett, A. Morrish, P. Natishan, A.E. Edelstein,

L.S. Cook. Diamond reinforced composites. In: A.L. Bunsell, J.F. Jamet,

A. Massiah editors, ECCM5, Developments in the Science and Technology of

Composite Materials, Bordeaux (1992), pp. 715–720.

21



[2] C. Owers. Industrial diamond: applications, economics and a view to the future.

Indust. Diam. Rev. 60 (2000) 176–177.

[3] T.W. Clyne. Thermal and electrical conduction in MMCs. In: A. Kelly,

C. Zweben editors. Comprehensive Composite Materials. Pergamon Press,

Oxford (2000), pp. 447–468.

[4] D. Hasselman, L. Johnson. Effective thermal conductivity of composites with

interfacial thermal barrier resistance. J. Compos. Mater. 21 (1987) 508–515.

[5] Y. Benveniste. On the effective thermal conductivity of multiphase composites.

J. Appl. Math. Phys. 37 (1986) 696–713.

[6] Y. Benveniste, T. Miloh. On the effective thermal conductivity of coated short-

fiber composites. J. Appl. Phys. 69 (1991) 1337–1344.

[7] M. L. Dunn, M. Taya. The effective thermal conductivity of composites

with coated reinforcement and the application to imperfect interfaces.

J. Apply. Phys. 77 (1995) 4954-4960.

[8] S. Torquato, D.M. Rintoul. Effect of the interface on the properties of composite

media. Phys. Rev. Lett. 75 (1995) 4067–4070.

[9] C.W. Nan, G. Liu, Y.H. Lin, M. Li. Interface effects on thermal conductivity

of carbon nanotube composites. Appl. Phys. Lett. 85 (2004) 3549–3551.

[10] S. Kleiner, F. Khalid, P. Ruch, S. Meier, O. Beffort. Effect of diamond

crystallographic orientation on dissolution and carbide formation in contact

with liquid aluminium, Scr. mater. 55 (2006) 291–294.

[11] D. Duschlbauer. Computational Simulation of the Thermal Conductivity of

MMCs under Consideration of the Inclusion–Matrix Interface, VDI–Verlag,

Düsseldorf, Germany, 2004.

22



[12] T. Mori, K. Tanaka. Average stress in the matrix and average elastic energy of

materials with misfitting inclusions. Acta Metall. 21 (1973) 571–574.

[13] Y. Benveniste. A new approach to the application of Mori–Tanaka’s theory in

composite materials. Mech. Mater. 6 (1987) 147–157.

[14] R. Hill, A self-consistent mechanics of composite materials,

J. Mech. Phys. Sol. 13 (1965) 213–222.

[15] H. Hatta, M. Taya, Equivalent inclusion method for steady state heat

conduction in composites, Int. J. Engng. Sci. 24 (1986) 1159–1172.

[16] G.J. Weng. The theoretical connection between Mori–Tanaka theory and the

Hashin–Shtrikman–Walpole bounds. Int. J. Engng. Sci. 28 (1990) 1111–1120.

[17] K. Tohgo, G.J. Weng. A progressive damage mechanics in particle-reinforced

metal-matrix composites under high triaxial tension; J. Engng. Mater. Technol.

116 (1994) 414–420.

[18] M. Kachanov, I. Tsukrov, B. Shafiro. Effective moduli of solids with cavities of

various shapes. Appl. Mech. Rev. 47 (1994) S151–S174.
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Tables

Table 1

Thermal and elastic material parameters of the constituents

K [W/Km] E [GPa] ν [] B [GPa]

Diamond 1800 1050 0.1 438

Aluminum 237 70 0.33 69

Table 2

Estimates for the thermal conductances of the diamond–aluminum interfaces

h{100} [MW/Km2] h{111} [MW/Km2]

100 20

Table 3

Initial yield stress σy,0 of Al 99.99 as function of the temperature T (data estimated

from curves given in [31]).

T=293 K T=353 K T=433 K T=623 K T=673 K T=738 K

σy,0 [MPa] 20.8 17.5 12.0 7.5 5.8 4.3
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Table 4

Coefficients of thermal expansion of aluminum and diamonds as functions of the

temperature T [32]

T [K] αAl [1/K] αdiam [1/K]

200 20.3 × 10−6 1.50 × 10−6

300 23.1 × 10−6 1.50 × 10−6

400 25.1 × 10−6 1.79 × 10−6

500 26.4 × 10−6 2.70 × 10−6

600 28.4 × 10−6 3.17 × 10−6

800 34.0 × 10−6 3.81 × 10−6

Table 5

Replacement conductivities of diamond particles embedded in an aluminum matrix

for different interfacial scenarios and particle diameters of d=200 µm (diamonds)

and ds=176 µm (spheres).

sph, perfect sph, hom diam, perfect diam, hom diam, inh

K(i,r) [W/Km] 1800.0 1035.4 1800.0 1067.2 1067.4
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Table 6

Comparison of effective conductivities K∗ predicted by the unit cells UCDA, UCDB

and UCS (see fig.2), by the semi-analytical Mori–Tanaka model (RMTM, cubo-

octahedral particles), and by the Hasselman–Johnson model (HJ, spherical parti-

cles) for different interfacial conductance scenarios for a diamond volume fraction

of ξ = 0.34 and particle diameters of d = 200 µm (diamonds) and ds = 176 µm

(spheres).

K∗
UCDA [W/Km] K∗

UCDB [W/Km] K∗
RMTM [W/Km] K∗

UCS [W/Km] K∗
HJ [W/Km]

perfect 469.0 469.8 461.4 457.7 453.0

hom 404.0 404.2 399.7 393.7 392.1

inh 405.1 405.2 401.0 — —
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Table 7

Effective conductivities obtained by applying thermal gradients in x-, y− and z-

directions to the unit cells UCDA, UCDB, and UCS (see fig.2) for different conduc-

tance scenarios, a diamond volume fraction of ξ = 0.34, and particle diameters of

d=200 µm (diamonds) and ds=176 µm (spheres).

K∗
x [W/Km] K∗

y [W/Km] K∗
z [W/Km] K∗

avg [W/Km]

UCDA perfect 471.9 467.3 467.9 469.0

hom 405.4 403.0 403.4 404.0

inh 406.5 404.1 404.6 405.1

UCDB perfect 472.7 468.7 467.9 469.8

hom 405.7 403.6 403.3 404.2

inh 406.7 404.8 404.2 405.2

UCS perfect 459.8 457.2 456.0 457.7

hom 394.7 393.5 393.0 393.7
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Table 8

Predictions for the effective elastic moduli of diamond reinforced aluminum at a

diamond volume fraction of ξ = 0.34 obtained by Mori–Tanaka methods (MTM and

RMTM), Torquato’s three-point estimates (3PE), and unit cells UCS and UCDA.

E∗ [GPa] G∗ [GPa] B∗ [GPa]

MTM, sph 131.2 50.7 106.1

RMTM, diam 133.9 51.9 106.7

3PE, sph 137.3 53.3 107.3

UCS 135.8 52.7 106.6

UCDA 141.7 55.3 108.0
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Figures

1

2

3

Fig. 1. Cubo-octahedral geometry of the diamond particles used in all numerical

models (left) and dilute unit cell used for obtaining the thermal replacement con-

centration and conduction tensors (right)

Fig. 2. Multi-particle unit cells, UCDA (left), UCDB (middle) and UCS (right), used

in the analysis. The three unit cells have the same reinforcement volume fraction of

ξ = 0.34 and use the same particle centers.
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Fig. 3. Predictions for the effective conductivity of aluminum reinforced with uni-

formly sized diamonds at ξ = 0.34 obtained with Mori–Tanaka methods for four

different interfacial conductance scenarios as functions of the particle size. “MTM,

perfect” represents perfect interfacial conductances, “MTM, voids” vanishing in-

terfacial conductances, “RMTM, hom” a homogeneous conductance on all faces

(heqv,200=27.7 MW/Km2 for d=200 µm), and “RMTM, inh” different conductances

for the {100} and {111} faces. For comparison the three-point bounds of Torquato

and Rintoul [8] pertaining to spheres with homogeneous interfacial conductances

(“3PB, hom”) as well as unit cell results (“UCDA”) are plotted.
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unit cells UCDA, UCDB and UCS (compare fig.2) for a homogeneous interfacial

conductance of heqv,200=27.7 MW/Km2 and loading by a unit thermal gradient

acting in z-direction (particle diameters d=200 µm for the diamonds and ds=176

µm for the spheres, ξ=0.34).
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Fig. 6. Predicted distributions of equivalent plastic strain in the matrix of unit cell

UCDA following cooling down from a stress-free temperature of 450 K to room

temperature (left) and after subsequent heating up by 100 K (right).
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