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In global gyrokinetic simulations it takes a long time for the turbulence to reach

a quasi-steady state, and quantitative predictions about the quasi-steady state tur-

bulence have been difficult to obtain computationally. In particular, global particle-

in-cell gyrokinetic simulations have been inefficient for long simulations due to the

accumulation of noise. It is demonstrated that a simple Krook operator can effec-

tively control noise; it also introduces an unphysical dissipation, which damps the

zonal flows and can significantly affect simulation results even when the relaxation

time is very long. However, it is possible to project out the effects of the Krook

operator on the zonal flows. This permits noise accumulation to be controlled while

preserving the physics of interest: simulations are then run to determine the level of

quasi-steady state transport and the variation across the ensemble of turbulent dy-

namics. Convergence is demonstrated both in the number of computational particles

and the unphysical relaxation time.

PACS numbers: 52.30.Gz,52.65.Tt
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I. INTRODUCTION

Quite long simulations are needed to reach a quasi-equilibrium state in global gyrokinetic

models of ion temperature gradient (ITG) turbulence, even when global profiles of flow

and temperature gradient are strongly constrained: although the turbulent cascade in the

n 6= 0 modes rapidly reaches an apparent quasisteady state, axisymmetric fluctuations in

temperature gradient and flow evolve on long timescales. There is a significant separation in

timescales between the rapid growth of ITG modes and the slow evolution of axisymmetric

perturbations. We can take advantage of this separation of timescales when we introduce a

dissipative noise control operator in a PIC (particle in cell) simulation: a Krook operator

which weakly damps the non-axisymmetric perturbations but does not damp the zonal flows

can substantially improve simulation efficiency without significantly modifying results.

We explore the use of a Krook operator in ORB5, a global gyrokinetic particle-in-cell

(PIC) code[1]. The use of a relaxation operator has been proposed elsewhere, notably in ref.

[2]: for a simulation with an unphysical relaxation term to correctly reproduce the system

dynamics, the effect of the unphysical damping must be sufficiently small. In ref. [2] the

coefficient of the Krook operator was adjusted during the simulation to keep the sum of the

squared weights equal to some constant W ; they then argued that the true late time steady

state could be approached in the limit where W → ∞. We treat the coefficient of the Krook

operator as an adjustable parameter kept fixed during a simulation, and look at the limit

where the coefficient, γS, goes to zero: these limits should be largely equivalent from the

point of view of late time fluxes. We will examine how the behaviour of the simulation is

affected by non-zero values of the Krook coefficient. We restrict our attention to electrostatic

simulations of ITG turbulence with adiabatic electrons, but the conclusions are probably

valid more generally.

The Krook operator counteracts the growth of the marker weights, bounds the computa-

tional noise, and keeps the system close to the initial equilibrium state; but it also damps all

the wavemodes in the system which we wish to simulate. The damping of wavemodes caused

by the Krook operator is not necessarily catastrophic because most of the turbulent struc-

tures are rapidly driven and damped (non-axisymmetric perturbations are strongly Landau

damped), so that an additional small artificial damping may be acceptable. However, it is

clearly important not to artificially damp long-lived structures like zonal flows: the Krook
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term acts somewhat like a collisional term and may have a large impact on the zonal flow dy-

namics. Applying a small zonal flow damping can significantly change the overall simulation

results, especially in near-marginal systems, even when the damping rates due to sources

are very much smaller than the linear growth rates of the ITG modes. The importance of

the preservation of the zonal flows was also noted in Ref. [2], where the cylindrical geometry

considered as an example made conservation straightforward. Because there is an explicit

form for zonal flow equilibria[3], it is possible to control how a source term will impact the

linear zonal flow dynamics, by ensuring the operator acts only on the non-zonal flow com-

ponents of the distribution function. By relaxing towards an equilibrium that includes the

zonal flow structures, we can more accurately reproduce the collisionless physics.

The Krook operator can also be used to maintain the initial temperature profile, but

it is often useful to project out the component which acts on the flux-surface averaged

kinetic energy so that effects due to profile relaxation can be studied separately: a separate

axisymmetric heat source is then applied to model the physical heating.

When we come to use this noise-control operator to perform long simulations, we focus

on a medium-size plasma configuration for which it is possible to run various convergence

tests, and check the dependence on initial conditions.

II. EFFECTS AND SCALING OF THE KROOK OPERATOR

Consider the effects of a simple Krook operator on the linear Vlasov equation. The

evolution of the Vlasov equation can be symbolically written

∂(δf)

∂t
= −ż1(δf) · ∇zf0 − ż0 · ∇zδf − γSδf (1)

where z = (R, v) is the phase space coordinate, δf = f−f0 is the perturbation from the initial

equilibrium, and the subscripts on ż give the order in δf/f . The Krook operator, which is

a time varying source term SK(x,v, t), causes a growth rate shift −γS of the eigenmodes of

δf . This damping of the unstable modes will clearly affect the turbulence: mixing length

arguments would suggest a suppression of transport by a factor of order of the unphysical

change in growth rate. However, other effects like the damping of zonal flows could lead to

larger unphysical effects on transport. Later, we will demonstrate a method for preventing

zonal flow damping by projecting out a component of the source term (conservation of low
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order moments of the distribution function is not sufficient to ensure flow conservation,

because the zonal flow equilibria have a somewhat subtle phase space structure). It is also

natural to project out the heating effect of the relaxation operator, and have a separate

heating operator, but in this section we will consider a Krook term which also acts on the

temperature fluctuations.

We wish to use the Krook operator to keep the marker weights relatively small. The

weights must at least express the low order moments of the particle distribution which

represent the ITG modes and the zonal flows. Given a plasma of a certain size in gyroradius

units, with 1/ρ∗ = a/ρ (a is the minor radius and ρ the thermal gyroradius), gyrokinetic

simulations typically find density fluctuations of the ions δn/n ∼ ρ∗ (which is the maximum

allowed in the formalism). The scaling of density fluctuations implies that typical values

of δf/f & ρ∗, and sets a minimum size for the marker weights. The marker weights are

usually much larger than this (and may grow secularly) because we also resolve changes to

the temperature profile and fine scale filaments in phase space.

For GyroBohm scaling, the global heat diffusion time τR ∼ O(ρ∗−2a/cs) (where cs is the

ion sound speed), and the departure from the initial temperature profile δT/T ∼ 1/γSτR.

In order to keep the δf due to the temperature fluctuations small, it is sufficient to require

δT/T . ρ∗, so γS & ρ∗(cs/a).

For small ρ∗, a larger relaxation rate is needed to control noise accumulation due to

filamentation than to control noise accumulation due to changes in the temperature profile.

We would like to have a substantial proportion of the marker weight representing the current

state of the ITG turbulence, the dynamics of which are largely driven by the low order

moments of the distribution function, rather than having most of the weight representing

the fine scale structure due to filamentation. Consider the power spectrum of fluctuations

in velocity space: we can model the filamentation process as an entropy flux, transferring

fluctuation power from the low order momentum-space moments driven by the instability to

high order moments. In this process, the spatial structures are converted into velocity space

structures by ballistic collisionless flow. The entropy flux to the high order moments can

be approximated by the product of the square weight < δf 2 >l in the low order moments

and a typical filamentation rate γf ; an estimate for the weight in the high order moments

< δf 2 >h∼< δf 2 >l γf/γS is given by balancing collisionless damping against dissipation

by the Krook operator. Because our goal is that the total squared weight be of the same
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order as that in the low order moments, we need the relaxation coefficient to scale with

the filamentation rate. The filamentation rate is comparable to the inverse eddy time or

the linear growth rates, all of which are O(cs/a). Note that γS ∝ cs/a only describes how

the Krook coefficient should scale with system parameters; the absolute value must still be

much smaller than typical linear growth rates to achieve reasonable simulation accuracy.

We now develop a rough estimate for the signal to noise power ratio (which we use as a

proxy for the unphysical effects of noise) as a function of the Krook relaxation coefficient.

In order to time-evolve the gyrokinetic simulation, we evaluate M = N ′
ϕNs(2∆m + 1)

integrals of the gyroaveraged density, using a Monte-Carlo algorithm, where N ′
ϕ is the

number of toroidal Fourier modes resolved, Ns is the number of radial intervals, and the

range of poloidal modes resolved is m ∈ [nq−∆m, nq+∆m] (the non-field-aligned modes are

filtered[1]). The distribution function is represented by a finite number of weights wi = δfpi

at positions (xi, vi), representing a volume of phase space pi, and integrals are calculated

from a numerical distribution function δf(x, v) =
∑

i δ(x−xi, v−vi)wi (note that the ORB5

implementation uses some scale factors which are irrelevant to this discussion). We ignore

the gyroaveraging for the moment: this mostly just reduces the noise by some numerical

factor because the ITG modes are at kρi . 1 (we are interested in scaling rather than an

accurate estimate); the M density integrals are then dj =
∫

dxdv gj(x)δf , where we have

normalised the basis functions gj via
∫

dxg2

j (x) ≡ 1. For each density integral, a Monte-Carlo

evaluation [4] gives a standard error (noise) of

dnoise =

(∑

i w
2

i

N

)1/2

(2)

where the sum is over the N markers in the system (we will suppress the particle index i

for the rest of this section), assuming the markers are distributed evenly in space according

to the spatial density of modes and weight. We consider the decomposition of the weights

w by taking moments of the distribution function: the component wd of each weight w

represents the density fluctuation in configuration space. As long as the decomposition is

orthogonal, the component wd can be considered to contribution a proportion
∑

w2

d/
∑

w2

to the total squared weight of the markers. We assume that in the turbulent steady state

the total square weight in the low order moments (
∑

w2

l ) of the distribution is proportional

to
∑

w2

d so that
∑

w2

l = C2
∑

w2

d with C some constant larger than one, but of order unity.
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The signal representing the density fluctuation is of typical size

dsignal ∼

(∑

w2

d

M

)1/2

(3)

The weight in the low order moments is transferred into the higher order moments of the

distribution by phase mixing/filamentation (with some characteristic rate γf which is of order

cs/a), and then damped by the Krook operator. By balancing the Krook damping against

the increase in squared weight due to filamentation, we produce the estimate
∑

w2/
∑

w2

d ∼

C2γf/γS. This leads to an estimate for the signal-to-noise power ratio,

Signal/Noise = NγS/MγfC
2. (4)

For a simulation without a relaxation operator, the ratio of signal to noise decreases secularly

with time as N/MtsimγfC
2: because the Krook relaxation time can be much shorter than

the simulation time, one can achieve a reasonable signal to noise ratio in a simulation with a

Krook operator with a much smaller number of markers than in a standard PIC simulation,

and reduce the computational requirements considerably.

If γS/γf is kept constant, the total number of markers required to achieve a fixed signal to

noise target therefore scales with M , which in turn scales with 1/ρ∗2, as Nϕ, Ns ∝ 1/ρ∗, and

∆m is independent of ρ∗. The simulation time per timestep is approximately proportional

to the number of markers (per-particle computations generally dominate), and therefore will

also scale like 1/ρ∗2 (this scaling is as good as can be expected for any gyrokinetic code given

that the size of a field aligned grid also scales like 1/ρ∗2).

III. LINEAR ZONAL FLOWS DYNAMICS WITH SOURCE TERMS.

ITG turbulence is mediated strongly by zonal flows (ZFs), and these flows can be sensitive

to small changes in simulation properties, like the introduction of collisionality, or the arti-

ficial damping introduced by a relaxation operator. Even source terms which are intended

only to keep the temperature profile near a target profile may affect the zonal flow dynamics.

Gyrokinetic codes must accurately resolve the correct linear physics of zonal flows, and this

is usually tested explicitly during the benchmarking of a code. In this section, we consider

the predictions of linear theory for the behaviour of long timescale axisymmetric flows in

simulations with sources, and demonstrate how to introduce a Krook operator (the source
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SK) which does not damp zonal flows. We also briefly discuss sources used in other global

codes, and their impacts on linear stability of zonal flows.

We introduce a scheme for ZF conservation in the presence of sources based on an explicit

representation of the ZF structure as calculated in ref. [3]. Ref. [3] gives the long-time zonal

flow potential φ in terms of integrals of the sources R =
∫

dtS. For zonal flows of long

wavenumber compared to the banana width, but small compared to system scales, this

reduces to a relatively simple set of relations. To maintain φ constant (given an initial pure

ZF state) it is sufficient to ensure (at each radial position) that
〈

∫

dv
[

v‖/B − (v‖/B)
]

S(~R,~v)

〉

= 0 (5)

and
〈

∫

dv S(~R,~v)

〉

= 0 (6)

where the angle brackets < . > represent a flux surface average, and the bar over a quantity

indicates an orbit (bounce) average. Note that the second condition is just that the source

does not change the flux surface averaged density.

Given a source term S which perturbs the zonal flows, we can construct a source which

does not perturb the flux-surface averaged potential by adding a second source term, which

we choose based on the ZF solution in ref. [3],

Scorr = g1(s)
[

v‖/B − (v‖/B)
]

f0 + g2(s)f0. (7)

with g1 and g2 chosen such that the two integral relations above hold (in the implementation

we only require that they are true on average across a set of radial bins). The correction

scheme described here appears somewhat artificial because it does not have an obvious phys-

ical motivation (unlike, say, conserving various low order moments of f on a flux surface):

it has been specifically designed to project out zonal flow effects from the Krook operator,

and to do this we must capture the phase space structure of the zonal flows.

We performed simulations with an initially sinusoidal density perturbations to evaluate

the effect of this Krook operator on the residual zonal flows. Figure 1 shows a typical plot of

the radial electric field at a particular radial point during such a test; the rapid oscillation is

the geodesic acoustic mode (GAM), and the late time flows are identified as ZFs. Without

the ZF correction, the zonal flows are rapidly damped, unlike in the case with no Krook

operator or a corrected operator, where the flows persist on the timescale shown. Figure 2
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shows the asymptotic damping rates (for long time and small values of the relaxation rate)

relative to the relaxation rate γS as a function of the radial ZF wavenumber (in units of the

inverse banana width). As γS becomes comparable to cs/a the relative ZF damping rate

decreases. Uncorrected simulations have anomalous ZF damping rates approximately equal

to the relaxation rate. Because the zonal flow conservation property is based on the ordering

krρiq(R/r)1/2 . 1, it is to be expected that the ZF correction is less effective at large radial

wavenumber. Below krρiq(R/r)1/2 = 0.5 the correction reduces the unphysical damping by

a factor of more than 10.

0 50 100 150 200

−0.5

0

0.5

1

 

 
γ=0
Corrected Krook
Naive Krook

FIG. 1: Zonal flow evolution in simulation with a relaxation operator. The dashed blue curve

shows the evolution of the electric field at s = 0.5 for a simulation with no relaxation operator.

The thin solid red curve shows a simulation with the correction added to the Krook operator. The

thick solid black curve shows the result with a Naive Krook operator.

The correction technique does not prevent the artificial damping of GAMs by the Krook

operator. The GAM damping is about the same as in an uncorrected simulation. The GAMs

in any case are linearly damped so their dynamics would not be expected to be as sensitive

to an additional small damping as the zonal flow dynamics. The relaxation rate in the

simulation used to produce figure 2 (γS = 0.06cs/a) was set five times higher than typical

for our nonlinear simulations, in order to demonstrate that the ZF correction is effective;
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FIG. 2: Anomalous zonal flow damping rate (compared to the relaxation rate) as a function of

zonal flow radial wavenumber in a simulation with a corrected relaxation operator.

the artificial GAM damping in nonlinear simulations is generally very small.

In order to control the temperature profile independently of the noise accumulation, we

can also project out the heating effect of the Krook operator, and introduce an axisymmetric

heat source SH into ORB5. In this case the Krook operator SK must not influence the total

kinetic energy on each flux surface, so

〈
∫

dv v2S(~R,~v)

〉

= 0. (8)

We can ensure this by adding a third term to Scorr, g3(s)v
2f0 (flux surface density is already

conserved). The heat source SH damps the components of the perturbed distribution δf(ǫ, s)

on a timescale γH . To ensure that the source does not introduce a density perturbation, a

correction is applied on each flux surface, and we then have

SH = −γH

[

δf(ǫ, s) − f0(ǫ, s)

∫

dvδf(ǫ, s)
∫

dvf0(ǫ, s)

]

. (9)

In the numerical implementation, δf(ǫ, s) is calculated by binning the marker weights on an

(ǫ, s) grid. We do not apply radial smoothing to our heat source, unlike the codes GYRO

and GTC. Because the source SH is even in v‖ and conserves density on flux surfaces, it is
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not expected to affect the linear dynamics of long-wavelength zonal flows. This is unlike the

source of GYRO, which was expected to damp some of the system-scale flows[5]. The source

used in the GTC runs of Ref. [6] on the other hand, is also even in v‖ and conserves density

on each flux surface, so is expected not to linearly damp long wavelength zonal flows.

The equation for the evolution of the weights is then

dwi

dt
= −pi

∂f0

∂z

∣

∣

∣

∣

zi

· żi − γSwi + piScorr(z, t) + piSH(z, t) (10)

IV. NONLINEAR SIMULATIONS WITH A ZF PRESERVING KROOK

OPERATOR.

Several simulations were run using parameters designed to match the CYCLONE base

case[7] near mid radius. The physical parameters are identical to those described in Ref. [1]

with a/ρs0 = 175, Ln = 0.45R0, and a/R0 = 0.36, with s0 the mid-radius point. The nominal

temperature gradient scale length is is LT = 0.145R0. The number of radial, poloidal and

toroidal grid intervals are NS = 128, Nχ = 512 and Nϕ = 256 respectively. The field aligned

filter has a width of δm±5. Only modes with |n| ≤ 120 are kept in the filter, so the number

of resolved toroidal modes N ′
ϕ = 241. The timestep is 0.29(a/cs). Unless otherwise stated,

1.5× 108 markers are used. The logarithmic temperature gradient profile was flat over most

of the simulation region (figure 3). The Krook operator was corrected using the technique

of section III to prevent artificial zonal flow damping, and the relaxation rate was set to

1.26 × 10−2cs/a.

The initial linear growth rates are reduced because of the Krook operator, and given

by γ → γ − γS as predicted. After the linear growth stage, the simulations follow the well

known pattern of saturation through zonal flow generation: low n modes are generated as the

linearly unstable modes approach their peak energies, and the n = 0 mode rapidly becomes

the dominant component. The initially linearly unstable modes then decrease significantly

in energy, and a nonlinear downshift of mode energy occurs, so that the dominant non-

axisymmetric toroidal mode numbers at late times are around half the mode number of the

most unstable linear mode.

Even though classical drift wave turbulence is deterministic, the detailed evolution of an

experiment or a simulation may change wildly with small variations in initial conditions

or parameters. It is not even clear that long-time averages of quantities like heat flux will
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FIG. 3: Relative temperature gradient (R/LT ) versus radius at the beginning (thin line) of a sim-

ulation with a source term, and averaged over the last half of the simulation (t ∈ [850, 1700](a/cs),

thick line).

converge to the same values given different initial conditions: for example, some turbulent

systems are known to be subcritical, and have both a quiescent state and a turbulent state

that can persist at long times. In fact, we are not usually interested in the behaviour

of turbulence with precise parameters and very specific initial conditions, but rather the

generic behaviour of turbulent systems in some parameter range; we are interested in the

ensemble averaged behaviour of the turbulence. For some turbulent systems the time average

asymptotes to the ensemble average (this is known as the ergodic hypothesis) but it is not

known whether this is the case for ITG turbulence, and if it is the case, we do not know how

rapidly this occurs. With the aim of exploring at least a certain portion of the parameter

space, we ran several simulations with different quasi-random initial conditions (the marker

weights are initialized using the same Hammersley sequence, but we use a parameter C to

modify the sequence a′
i = mod[ai + C, 1.0] and vary the initialisation). Figure 4 shows the

fluxes in the three simulations, averaged over the radial range s = [0.52, 0.72] and using a

moving time window. We use the time averaging window length suggested by ref. [8] of

500(a/cs): at time t in the plots the averaging window is [t − 500(a/cs), t]. The unit used
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for the flux is the Dimits flux χD = χGBa/Ln ∼ 0.8χGB, where the gyroBohm diffusivity is

defined as χGB = ρ2(cs/a). Ref. [8] argues that there is a transient period in their simulations

after which this moving average of the flux asymptotes to the long term average, and the

transient period is finished after 400a/cs, but our simulations the transients are longer, and

there are substantial variations at late time: we suggest that the length of the transient

and the window length required for good statistics are not universal. Although the use of a

time averaging technique greatly reduces the variability in the flux signal, there remain large

fluctuations from the ensemble trend, and these occur even at late time. To quantify the

simulation-to-simulation variability, we find the standard deviation of the time-windowed

flux average (ignoring the first 200cs/a before nonlinear saturation) away from the ensemble

trend. Here we somewhat arbitrarily take a quadratic fit to the data to represent the

ensemble trend. The normalised standard deviation away from the fit is 0.13χD; the fit and

lines two standard deviations above and below the fit are shown in figure 4. Despite the

very small sample of simulations, this fitting and variance measurement procedure at least

gives a rough quantification of variability within the ensemble: we can then assess whether

changing some other parameter has had a significant impact on flux levels, by examining

whether the moving-averaged values of the flux lie in the error bounds. In general the results

of other gyrokinetic codes will also be sensitive to intrinsic variability, but this is often not

discussed, and results are often given without quantification of repeatability. We point out

that the quadratic fit generally trends downwards, and it is not clear that the ensemble has

converged to some late time steady state.

Noise effects are diagnosed using the signal to noise diagnostic proposed in Ref [9]. This

diagnostic estimates the proportion of the squared density perturbation resolved in the

simulation resulting from Monte-Carlo sampling errors (due to the finite number of markers).

The relative importance of many effects of physical turbulence and noise driven processes

(like, for example, heat fluxes) might be expected to be dependent on this ratio. More

sophisticated analyses of interactions of turbulence with noise[10] might be able to give

direct estimates of how the spectral properties depend on noise levels, but we pursue the

pragmatic alternative of demonstrating convergence with the number of markers in the

simulation. Previous convergence tests[9] indicated that reasonable results are obtained

when the signal to noise ratio (SNR) is above 10, and the simulations presented here have a

SNR above 30 unless otherwise indicated. A typical trace of the signal to noise ratio is shown
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in fig. 5; there is no long term trend evident in the noise level. The signal level is low in the

initial part of the linear evolution because the ITG modes was allowed to grow from marker

noise. We also performed convergence tests with respect to particle number (leaving all other

parameters fixed). Because the system is turbulent, two simulations with slightly different

parameters have exponentially divergent evolution, so that they rapidly become significantly

different. The very strong sensitivity of detailed simulation evolution to parameters makes

it very difficult to demonstrate absolute simulation convergence except for small and short

simulations[1]. However, the simulations are not intended the evolution of a specific set of

turbulent eddies, but rather to model the generic evolution of a turbulent system with certain

boundary conditions. The simulation results of interest are by nature statistical quantities,

like the level and variation of time-averaged late time fluxes. It is therefore sufficient to

demonstrate the convergence of these averaged quantities rather than the detailed simulation

history. We ran cases with 3.5, 7.5, 15 and 30 × 107 markers to look at the convergence of

late-time quantities with respect to noise. The early-time instantaneous flux traces shown

in figure 6 rapidly become uncorrelated, even though the initial perturbation (a smooth

density perturbation we call mode initialisation) is the same. However, the moving time

averages of the flux (Fig. 7) all fall within the variability bounds of the ensemble simulations

shown earlier, indicating that changing the number of markers does not have a statistically

significant effect on the flux, even for the case with the smallest number of markers. The

late time SNR is roughly inversely proportional to the number of markers.

To show the effects of the Krook operator on the noise, and noise on the simulation, we

performed a simulation without the Krook source term SK but with the axisymmetric heat

source SH . In this simulation there is a late time drop in the flux (Fig. 8) as the noise

accumulates (at around t(cs/a) = 450), which occurs around the time where the signal to

noise ratio drops below 10 (Fig. 5). Noise is expected to accumulate at a roughly constant

rate (in a converged, steady state simulation), and the noise power scales with the reciprocal

of the number of markers, so given that the SNR is 10 after a period 200(a/cs) of saturated

turbulence, we estimate that we would need 25 times as many markers to maintain the

SNR above 30 until t = 1700: the simulation with a Krook operator is in this sense far

more efficient. The average late time flux on the interval t(cs/a) ∈ [400, 900] is ∼ 40%

or 1.0χD lower that in the simulation using the Krook operator, a much larger deviation

than expected from intrinsic chaotic variation: this indicates that the simulation is clearly
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FIG. 4: Temporal moving average (thick lines) over 500(a/cs) of χ/χD on the radial range s =

[0.524, 0.724] for three simulations with R/LT0 = 7.2 with different initial conditions. The thick

solid line is a quadratic fit to the three moving averages. The dashed lines based on the simulation-

to-simulation variability bound the likely values of the flux.

affected by the removal of the Krook operator and the consequently increased noise level.

The signal (in the n 6= 0 modes) eventually asymptotes to the noise level, indicating a noise

dominated simulation, but the flux is relatively constant at late times. In fact, the much

lower burstiness of the flux signal compared to noise-controlled simulations seems to be a

strong indicator of simulation failure (a pure noise field is expected to have short temporal

and spatial correlation lengths). The drop in flux may well be the result of unphysical

perpendicular diffusion in the noise field[11] which can damp radially extended structures

(such as those shown in fig. 9), even when the noise induced diffusion is much lower than

the expected turbulent diffusion rate. The drop in flux occurs together with a reduction in

the amplitude of the energy in the dominant toroidal mode numbers (n ∈ [5, 20]) and a large

increase in the n = 0 energy, but the energy in the high n component of the spectrum does

not change much as the flux drops. The zonal flow organises into a single radial oscillation.

Streamers cannot be seen in plots of the non-zonal potential, which shows little organised

structure at late time (Fig. 10), as previously noted[11].
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FIG. 5: Signal to noise ratio in two simulations with R/LT0 = 7.4 and 1.5 × 108 markers. One

simulation (thin line) uses a Krook operator with γS = 1.26 × 10−2(cs/a), the other (thick line) a

heat source with γH = 1.26 × 10−2(cs/a).

The initial temperature gradient is relatively flat, although some departure from flat-

ness and the nominal maximum value occur due to the effects of the canonical Maxwellian

equilibrium[12]. Temperature gradients are controlled by the Krook operator during the sim-

ulation, but still evolve somewhat, and the region with a flat temperature gradient broadens

(Fig. 3) at late time, as the average gradient reduces slightly. There are also significant

temperature fluctuations on short radial length scales, even when temporally averaged over

the last half of the simulation. There is a very clear correlation between the late time tem-

perature gradient profile and the zonal flow structure which can be seen in figures 11 and

12. The short wavelength radial temperature fluctuations might play an important role in

the nonlinear zonal flow dynamics, but our heat source is expected to damp these radial

temperature fluctuations somewhat. Further study of the effect of unphysical heat sources

in gyrokinetic simulation would be desirable.

Figure 12 shows the formation of zonal flows on both large and small scales. The standard

interpretation of zonal flow drive is through the radial derivative of the Reynolds stress: the

Reynolds stress has a global-scale quasi-steady profile due to the quasi-equilibrium profile, as
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FIG. 6: Instantaneous value of χ/χD on the radial range s = [0.524, 0.724] for four simulations

with R/LT0 = 7.2 but different numbers of computational markers.

well as small scale time-fluctuating component due to random turbulent fluctuations. Large

scale flows due to the turbulence gradient are absent in radially homogeneous turbulence

simulations, and might need to be explicitly damped for the purposes of benchmarking

against flux tube codes. Even though the growth timescale of system-scale flows is expected

to become much longer than typical gyrokinetic timescales in large systems, this is evidently

not the case here with a/ρ = 140: system-scale flows are seen almost immediately after

saturation.

Plots of the flux versus time and radius (figure 13) can be roughly described as a back-

ground averaged flux, plus diagonally aligned bursts. This appears to be the result of an

avalanche process which will be considered in detail elsewhere.

We also performed simulations without projecting out the effects of the Krook operator

on zonal flows. Four simulations were performed with 300, 150, 75 and 37.5 million markers

with a naive Krook operator: all of these simulations appear to be well converged in particle

number, and we treat them here as an ensemble of equivalent simulations. The moving-

average flux traces are shown in figure 14, together with the 2σ bounds from the ensemble

of simulations using a ZF conserving Krook operator. Near the beginning of the simulation
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FIG. 7: Moving time average (over 500(a/cs)) of χ/χD on the radial range s = [0.524, 0.724]

(thin solid curves) for three simulations with R/LT0 = 7.2 but different numbers of computational

markers. The thick solid line gives the fit from figure 4, and the dashed curves are the variability

bounds from figure 4.

(t = 800a/cs) the averaged flux levels are close to those in the zonal flow conserving ensemble

but towards the end (t = 1450a/cs) all the average flux levels are above the 2σ bounds. It is

therefore clear that the ZF correction makes a significant difference to late time flux levels.

Qualitatively, there is a clear decrease in the long radial wavelength components of the zonal

electric field when the zonal flow conservation is turned off: long wavelength flows no longer

build up. It appears that the fluxes reach a quasi-steady state much more quickly when we

introduce this artificial zonal flow damping which suggests that the long timescales required

to reach steady state in the earlier simulations are a result of the buildup of large scale zonal

flows. Note that we are considering the collisionless limit, but physical tokamaks are at least

somewhat collisional, and even small values of collisionality will damp the large scale flows.

In a simulation with collisions the ZF correction may be less important.

Convergence of the simulations with respect to the relaxation time was tested by allowing

the relaxation time to become long while keeping the temperature gradients and noise levels

fixed. We used the heat source SH to fix the temperature profile fixed, while projecting out
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FIG. 8: Average χ/χD on the radial range s = [0.524, 0.724] for two simulations with R/LT0 = 7.2

(solid lines) and their temporal moving average (dashed lines) over 500(a/cs). One simulation (thin

line) uses a Krook operator with γS = 1.26 × 10−2(cs/a), the other (thick line) a heat source with

γH = 1.26 × 10−2(cs/a).

the heating effects of the Krook term SK , as described in section III. Average noise levels in

the simulation are expected to be proportional to 1/NγS, so we scaled the number of simu-

lation markers inversely with the relaxation rate γS to keep noise levels fixed. Simulations

were run with γS = 0.63, 1.26, 2.52 and 5.04× 10−2(cs/a), and γH fixed at 1.26× 10−2(cs/a)

(for γS = 0 the initial linear ITG growth rate is 0.14(cs/a) at midradius). Moving time

averages of the diffusivity in each of these simulations are plotted in figure 15, along with

the variability range from figure 4. In the limit where the relaxation parameter is small, we

have several simulations with different values of γS but similar dynamics, which are quanti-

tatively difficult to distinguish. Even though the three flux traces for γS ≤ 2.52×10−2(cs/a)

do not lie entirely within the variability bounds, there is no clear trend with γS, and the

departures are on the boundary of statistical significance. We therefore conclude that the

Krook operator has at most a small effect for γS ≤ 2.52 × 10−2(cs/a). For the simulation

with γS = 5.04 × 10−2(cs/a), the heat flux is very small, and the simulation appears to be

marginally stable. As a rule of thumb, we suggest that γ/γS & 10 is probably sufficient to
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FIG. 9: Non-zonal electric potential (as greylevels) on the plasma cross section in the late-time

saturated phase of the simulation with R/LT0 = 7.2 (solid lines) and a Krook operator with

γS = 1.26 × 10−2(cs/a).

obtain reasonable simulation accuracy, given that the difficulty of time averaging (among

other things) precludes a very accurate comparison with other codes or experiment. The

expected scaling of noise levels with 1/NγS was well observed, so the late-time SNR of all

these simulations was around 30.

V. CONCLUSIONS

A relaxation operator is an attractively simple way to ensure that marker weights stay

bounded in gyrokinetic PIC simulations and that the turbulence approaches a steady state.

In order to preserve the physics of interest, the relaxation operator must act only on states

which have large typical damping or forcing rates so that the additional effect of the opera-

tor is negligible in the balance. All the nonaxisymmetric perturbations are rapidly Landau

damped (although they may have a positive net growth rate), but some axisymmetric per-

turbations are not collisionlessly damped. In particular, the zonal flows in the plasma

sometimes have zero or near-zero damping (they are not linearly damped), and control the
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FIG. 10: Non-zonal electric potential (as greylevels) on the plasma cross section in the late-time

noise-dominated phase of the simulation with R/LT0 = 7.2 (solid lines) and a heating operator

with γH = 1.26 × 10−2(cs/a).

level of non-axisymmetric turbulence. We demonstrated numerically that a small artificial

damping of the zonal flows has a large effect on simulation results. We therefore require

that the relaxation operator does not damp the zonal flows in the plasma. Using a Krook

operator which does not damp zonal flows, we have demonstrated that simulation results

are not significantly modified even for relatively large values of the relaxation rate, and that

simulation times are not limited by noise accumulation. To perform the simulations shown

in this paper without using a Krook operator would require at least an order of magni-

tude more markers; this is likely to be typical, so that the use of a zonal-flow conserving

Krook operator will result in a reduction in computational requirements over a standard

PIC simulation by more than an order of magnitude, without significantly modifying the

results.

We note that other techniques have also been examined for noise reduction in δf PIC

simulations using coarse-graining onto phase space grids[13, 14]. These schemes can be less

dissipative than a Krook operator because they act preferentially on fine-scale structure

in the distribution function. There are some drawbacks to the coarse-graining approach,
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FIG. 11: Change in inverse temperature scale length R/LT − (R/LT )|t=0 versus time and radius

for a simulation with (R/LT0)|t=0 = 7.4.

however, including the need to handle a high resolution 5-D grid. A side-by-side compar-

ison would be interesting to examine whether the reduction in dissipation is sufficient to

justify the additional computational expense. It would also be useful to determine the level

of unphysical zonal flow dissipation in a coarse-grained simulation as a function of grid

resolution.
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FIG. 13: Flux χ/χD as a function of time and radial position, during the late nonlinear phase, for

the simulation with R/Lt0 = 7.4.
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FIG. 14: Temporal moving average (thin solid lines) over 500(a/cs) of χ/χD on the radial range

s = [0.524, 0.724] for four simulations with R/LT0 = 7.2 with different numbers of markers and a

naive Krook operator. The upper thick solid line shows a quadratic fit to these temporal moving

averages. The lower thick solid line shows the fit from the simulations using a corrected Krook

operator, and the dotted lines are the error bounds around this fit.
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FIG. 15: Moving time average (over 500(a/cs)) of χ/χD on the radial range s = [0.524, 0.724] for

three simulations with R/LT0 = 7.2 but different values of the relaxation coefficient.


