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Abstract. The non-Maxwellian electron energy distribution function (EEDF) in

the positive column of a neon dc-discharge was reconstructed from the visible

emission spectrum obtained with an overview spectrometer. The analysis is based

on Bayesian probability theory (integrated data analysis), which allows for the use

of the full information in the spectral data by incorporating all important underlying

physical mechanisms. The data are described by a collisional-radiative model and a

statistical description of the spectroscopic measurement. An extensive and consistent

set of electron impact excitation cross sections and Einstein coefficients obtained

through semi-relativistic B-Spline R-Matrix calculations is employed, and estimates for

uncertainties are included in the analysis. The results are consistent with theoretical

modeling and reference measurements.
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1. Introduction

Low-temperature plasmas are widely used, e.g., in industrial processes and for lighting

purposes [1]. The control and optimization of these plasmas requires diagnostic

methods to assess characteristical plasma parameters, among which the electron energy

distribution function (EEDF) is a very important one. In this paper a spectroscopic

method to infer the EEDF is presented, which makes use of a probabilistic data analysis

called Integrated Data Analysis (IDA).

IDA [2, 3] is an approach to employ all physical information for inference. A

full forward model of the experimental data and a thorough error analysis are

used in a probabilistic (Bayesian) calculus to determine quantities of interest along

with their uncertainties. The approach enables the analysis of data in cases with

complicated dependencies (e.g., mass spectrometry [4]) that are barely analyzable with

classical methods. Further benefits are resolution enhancements or a clear increase of

significance [5].

The experimental determination of EEDFs is usually performed by measurements

of the current-voltage characteristics of a probe in contact with the plasma. The non-

invasive spectroscopic approach offers an alternative to these measurements. Probe

measurements suffer from the formation of sheaths in the plasma, which limit the

applicability of probes in the region of gradients in the plasma parameters. The

spectroscopic approach can attain spatial resolution by using a suitable optic and is

able to cope with gradients in the parameters of interest. Consequently, the idea to use

emission spectroscopy for the determination of the EEDF was brought up long ago [6].

First attempts to use this approach are based on line-ratio techniques mapping the

intensities of different spectral lines onto temperatures [7].

Ideally, the line-ratio technique requires some monotonic relation between the

desired parameters of the EEDF and the used line-ratios. This is not necessarily fulfilled

for all plasmas. The approach used here is based on a method described by Fischer and

Dose [8], where a collisional-radiative model (CRM) allows us to relate the line intensities

to the EEDF. In the present work, the data descriptive model was extended by direct

modeling of the full spectrum, rather than the analysis of derived line intensities. The

use of the full spectrum makes it possible to employ sophisticated parameterizations

of the EEDF, and hence the approach is not limited to the reconstruction of a small

number of parameters in the way line-ratio techniques are. The influence of the atomic

data used for the collisional-radiative modeling was addressed. The quantification of the

uncertainties of these model parameters are a crucial part of the analysis. The EEDF

obtained using the IDA approach was reconstructed together with its uncertainty band,

which is a result of the consistent propagation of the uncertainty of the input parameters

and the measurement.

The spectroscopic data to be analyzed were obtained using a cylindrical neon

dc-discharge. The discharge is a well-examined physical system ([9, 10] and references

therein) with a high reproducibility, thereby allowing for the comparison of equivalent
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discharges with the same geometrical parameters, gas pressure, and electrical circuit.

This was taken advantage of to validate the result of the analysis.

The essential prerequisite for the application of the spectroscopic approach is the

availability of a collisional radiative model and particularly the atomic data for the

spectral lines which are taken into account. The applicability of a similar analysis

was already shown for helium discharges [8]. Generally the atomic data basis for the

noble gases is sufficient to allow a good collisional-radiative modeling. Lithium beam

diagnostics used, e.g., in the edge plasma of high-temperature plasma experiments

[11,12] are another example of the application of collisional-radiative modelling for the

analysis of spectroscopic data.

The line radiation emitted by excited neutrals in a plasma carries information about

the kinetics of the plasma components. In the case of low-temperature plasmas, the main

excitation channel is electron-impact excitation, and thus the emission spectrum carries

information about the electrons in the plasma. The basic physics of a low-temperature

plasma in the parameter regime under consideration can be summarized as follows:

The electrons gain energy in the electric field used to sustain the plasma, while the ions

absorb only a negligible fraction of the energy because of their much lower mobility. The

electrons interact with the neutral gas atoms and ions via various inelastic processes.

The energy distribution of the electrons is determined by the balance between heating

and inelastic processes. Accordingly, the form of the EEDF generally deviates from a

Maxwellian distribution associated with a thermalized electron ensemble.

This paper describes the analysis of the spectral data. After a description of the

experimental setup, the analysis procedure and the data descriptive model are presented.

The error assessment of the data as well as the proper treatment of uncertainties of the

atomic input data are discussed. Different aspects of the analysis can also be found in

recent conference proceedings [13].

2. Experimental Setup

fibre

imaging−lense

spectrometer
micro−

HVA

20k

Figure 1. Experimental setup of the spectroscopic measurement.
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The experimental setup shown in fig. 1 is simple and inexpensive. It consists of

a dc glow-discharge and a miniature fiber optics spectrometer observing the emitted

light. The cylindrical discharge (radius 1.5 cm) was operated with neon at a pressure

of 67 Pa and a typical discharge current of 10 mA. The light from the positive column

of the discharge was imaged onto an optical fiber, which transmitted the light from

the image plane to the spectrometer. The employed imaging-lens had a focal length of

15 cm, resulting in an opening angle of the cone of the line of sight that is much smaller

than the depicted one. A Czerny-Turner type spectrometer with a spectral resolution of

∆λ/λ ≈ 10−3, which can be read out digitally, was used to obtain the spectral data. The

response of the spectrometer as a function of wavelength was calibrated by replacing the

discharge tube with a standard light source in an Ulbricht sphere. It will be shown that

this optical setup is sufficient to extract information on the EEDF using the presented

analysis procedure.

3. Integrated Data Analysis of the Spectroscopic Data

IDA is a formalized way of analyzing experimental data which is based on a probabilistic

model for the data (see [5] and references therein). The forward data model defines a

mapping from the parameters of interest (and possibly more parameters) to a simulation

of the measurement. Typically, Monte-Carlo sampling techniques are used to invert

this mapping and to find the parameters of interest compatible with the measured

data. The statistical uncertainty of the measurement is taken into account and the

resulting uncertainty of the extracted parameters of interest is obtained. A probabilistic

description in the framework of Bayesian probability theory allows for taking into

account systematic uncertainties of the data model. Beyond the scope of the analysis

under consideration, IDA enables a joint analysis of data from different experiments

measuring the same or related quantities. Some aspects of IDA will be discussed to

provide insight into the data analysis procedure used to extract the EEDF from the

spectral data.

The Probabilistic Model of the data consists of the forward model of the data

and a description of the statistical fluctuations of the measurements. Specifically, the

probability distribution function (pdf) of each element of the data vector ~D needs to be

formulated. (Here ~D is given by the measured intensities of each pixel of the CCD chip of

the spectrometer.) The joint pdf P ( ~D|~Θ) of all elements of ~D is called likelihood. Bayes’

Theorem is used to compute the pdf of the model parameters ~Θ from the likelihood:

P (~Θ| ~D) = P ( ~D|~Θ) · P (~Θ)

P ( ~D)
(1)

P (~Θ| ~D) is called posterior. The pdf P (~Θ), which emerges in a formal way here, is

called prior. The notations “posterior” and “prior” refer to the status of the knowledge

about ~Θ “with” and “without” (or “after” and “before”) taking into account the

information contained in the data, which is incorporated in the likelihood.
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The evidence P ( ~D) is not a function of ~Θ and therefore does not affect the inference

of ~Θ for a given model. In principle, P ( ~D) can be obtained from the normalization of the

posterior pdf and allows for comparison of different models [14]. Note that P ( ~D) is not

considered in this analysis, because the Metropolis Hastings Monte-Carlo algorithm [15]

which was used (see also below) cannot be used to obtain the normalization of P (~Θ| ~D).

The posterior pdf quantifies all information about ~Θ that can be gained from the

data analysis. Generally estimators for the parameters of interest (e.g., the expectation

value and rms-variance) are derived from the P (~Θ| ~D). A posterior pdf can be combined

with other information from independent sources by using it as prior together with

the likelihood of the independent measurement. The computation of P (~Θ| ~D) for

each parameter vector involves the computation of the forward model for this set of

parameters. The characterization of the high-dimensional posterior with a limited

number of computations of the forward model is accomplished using Monte-Carlo

sampling.

Implementation of IDA. The practical implementation of a data analysis typically

consists of the following steps:

1. Formulation of the forward model for the data

2. Statistical data model: formulation of the likelihood

3. Quantification of prior knowledge including systematic effects

4. Inference: Inversion of the model using Monte-Carlo sampling

5. Focusing: marginalization onto the quantities of interest

The reconstruction of the EEDF, which will be shown in the next section, is based

on these steps.

3.1. Forward Calculation of the Spectroscopic Data

The forward calculation is a simulation ~Dsim(~Θ) of the experimental data for a given

set of model parameters ~Θ. The forward model is not of probabilistic nature. It is

combined with the errors statistics of the measurement to obtain the likelihood, as

described below. In order to take advantage of the full information content of the data,

the forward model being presented describes the raw data, i.e., the intensities of the

different spectrometer pixels, rather than deduced quantities such as line intensities.

Essentially ~Dsim(~Θ) consists of a stationary collisional-radiative model (CRM)

revealing the population densities ni of excited states and ions in the discharge plasma

and a description of the spectroscopic measurement. The chain of the different elements

of the forward calculation can be summarized as follows:

fe(~Θf ) →
CRM

ni

·Aij~ω

4π

→
lifetime

ǫij

∫

l.o.s.
ǫijdV

→
radiation transport

Lij

⊗s(λ)

→
line shape

Lλ →
calibrations

~Dsim . (2)
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The EEDF fe, which depends on the subset ~Θf of the model parameters, enters the

CRM. The calculated population densities ni are multiplied by the inverse lifetime of

the excited states Aij (Einstein coefficient) times the photon energy ~ω and the inverse

of the full solid angle (4π)−1 to obtain the locally emitted power ǫij [W/(m3 · sr)].The

radiation has to pass through the plasma before it leaves the discharge device. The

apparent lifetime of the excited states is affected by the transport of photons if the

absorber density is high, e.g., for transitions to the ground state of the atom [16].

Together with the integration along the line of sight (l.o.s.) of the spectrometer, the

description of this opacity results in the effective radiance Lij of each transition.

The line intensities given by the effective radiance have to be convoluted (⊗) with

the line shape s(λ) to obtain the effective spectral radiance Lλ. The line shape is

determined by the apparatus function, which was obtained here from distinct lines in

the spectrum as described in the subsection 3.1.6.

The modeling of the spectrometer output furthermore comprises the description of

the response per incident power of each pixel (intensity calibration) and the mapping

of pixel numbers onto wavelengths (wavelength calibration). The absolute intensity

calibration was measured using a standard light source.

Notation of the Excited States. A convenient labelling of the excited states similar to

Paschen’s notation is used throughout the paper: The principal quantum number n and

the orbital angular momentum l of the excited electron are combined with an energy

ordered index, which is one for the state with highest energy among the states with

identical n and l.

In the context of the CRM, an index is used for the atomic states taken into

account. In the present work, we chose 0 for the ground state, 1 to 30 for the excited

states (increasing with energy), and 31 for the ionized atom.

3.1.1. Collisional Radiative Model. The population densities of the atomic states ni

were described by a set of balance equations accounting for all elementary processes

populating or de-populating an atomic level i (equation 3). Ions were treated as an

additional state. With a few exceptions, the rates of the elementary processes are

proportional to the population density of another excited state. his was used for the

solution of the following system of coupled equations for the stationary case:

0
!
=

dni

dt
= ne

[
∑

k 6=i

(〈σe
ki ve〉nk − 〈σe

ik ve〉ni)

]

︸ ︷︷ ︸

Electron (de-)excitation

+

[
∑

k>i

ΛkiAkink −
∑

k<i

ΛikAikni

]

︸ ︷︷ ︸

Radiative transitions

. . .

+ na

[
∑

k 6=i

〈σa
ki va〉nk −

∑

k 6=i

〈σa
ik va〉ni

]

︸ ︷︷ ︸

Atom collisions

. . .
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− ne 〈σe
i∞ ve〉ni

︸ ︷︷ ︸

Electron impact ionization

− 〈σa
ii va〉n2

i

︸ ︷︷ ︸

Chemo-ionization

. . .

+ ne

(
βrad + βDE

)
n∞

︸ ︷︷ ︸

Recombination

− Γini

︸ ︷︷ ︸

Wall de-excitation

(3)

The rate coefficients of radiative transitions which are not optically thin (see also

below) and the rate coefficients for chemo-ionization were calculated by iteratively

solving the linearized system of equations.

Electron excitation and de-excitation. The transition rate is given by the rate coefficient

ne〈σv〉 = ne

∫∞

0
σ(E)

√

2E/me fe(E)dE multiplied by the density of atoms in the

initial state of the excitation. Different parameterizations of the energy distribution

fe(~Θf ) are employed to determine electron collision rates for the CRM. See also

sec. 3.3.2 for a description of the used excitation-cross-sections.

Radiative transitions. For optically thin transitions, the transition rate is given by the

Einstein coefficient Aki. The escape factor 0 < Λki ≤ 1 accounts for the radiation

transport in optically thick regimes. Its computation is described below. See also

sec. 3.3.2 for a description of the used coefficients.

Atom collisions. Collisions of the excited atoms with neutral gas atoms lead to

excitation transfer between metastable and resonant states of neon, which have

the lowest excitation energy among the excited states. The calculation of the rate

coefficient is analogous to the electron excitation but much simplified since the

atoms are a Maxwellian ensemble at room temperature. The rate coefficient for the

respective transitions were taken from [17]

Electron impact ionization. The charge carrier balance is determined by ionization.

Only singly charged neon ions are taken into account. The cross-sections were

taken from [18,19]

Chemo-ionization. The energy of two excited neon atoms is greater than the ionization

energy. Therefore collisions between excited atoms may lead to ionization of one of

the atoms, while the other atom returns to the ground state. The rate coefficient

for the chemo-ionization of two metastable atoms was taken from [20].

Recombination The volume recombination, consisting of the two-body radiative βrad and

three-body dielectronic βDE recombination, is listed only for reasons of completeness

here. In the considered low pressures regime it can be neglected compared to the

recombination at the confining walls of the discharge [21].

Wall de-excitation. Excited atoms or ions coming into contact with the wall of the

discharge tube are de-excited to the ground state. The flux Γi was obtained by

considering diffusion of the excited atoms and ambipolar diffusion of the ions in the

plasma.
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Figure 2. The radial variation of the EEDF as obtained by a hybrid model [9,22] (left)

and the radial variation of the 30 excited states considered in the CRM (right, see 3.1

for the notation), obtained with the EEDF depicted on the left; r0 is the radius of

the discharge tube.The radial variation for most excited states are similar (overlapping

curves). Only the three labeled curves, which are the metastable states 3s4 and 3s2,

as well as one of the 3p states, show a somewhat different behavior.

3.1.2. Radial Dependence of the Elementary Processes and the Population Densities.

The discharge device is cylindrically symmetric. In the positive column of the discharge,

where the presented measurement was performed, the plasma is homogeneous along the

z-axis of the cylindrical tube. Consequently, the plasma in the positive column is to be

characterized by a specification of the relevant quantities as a function of the distance r

from the discharge center.

The radial dependence of the population densities is relevant for the modeling of

the spectroscopic data, because it enters the line of sight integration. In the forward

model, the CRM was solved for the rate coefficients at the center of the discharge

(r = 0), whereas the radial dependence of the population densities was implemented

using separate profiles:

ni(r) = ni(r = 0) · nr
i (r) (4)

Instead of using the often used zeroth order Bessel’s function for nr
i (r), the profiles

were obtained in a preparatory step by solving the CRM at different radial positions.

The EEDF at different radial positions was taken from results of hybrid models [9]

(see fig. 2). The radial excited state profiles given by [9] could not be used directly,

because the 3pi multiplet was implemented as a single combined state in this work. In

order to investigate the influence of the assumption of fixed profiles on the line of sight

integration, additional scale parameters were introduced for each radial profile (see also

table 1).

3.1.3. Radiation Transport. Resonance radiation photons may be re-absorbed by

atoms in the final state of the respective transition, particularly for transitions to

the ground state. The repetitive emission and absorption resembling many features
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of particle diffusion is called radiation transport. The radiation transport influences

the collisional radiative model by changing some of the rates of radiative decays and

also affects the amount of light leaving the plasma and reaching the spectrometer. The

re-absorption of photons yields an apparent enhancement of the lifetime τi = (
∑

j

Aij)
−1

of the excited state, which was quantified using the escape factor Λki:

A′
ki = Λki · Aki, 0 < Λki ≤ 1 (5)

Approximate models of the radiation transport in discharge tubes were developed in [16].

In these models approximate analytical formulae are used, which take into account the

geometrical dimensions of the discharge and the atomic data of the respective transition.

The formulae given by [16] were employed in the present model for transitions to the

ground state.

3.1.4. Optical Depth of Transitions to Metastable States. The second-highest

populated states of the neon atoms are the metastable states [2s22p5(2P◦
3/2)3s]J = 2 (1s5)

and [2s22p5(2P◦
1/2)3s]J = 0 (1s3), which have a negligible radiative decay rate. Their de-

population is caused by electron impact de-excitation, collisions of the metastables with

the glass tube, and collisional transfer to resonant states. The density of the metastable

atoms is sufficiently high to cause an optical depth of transitions to these states. The

formulae for the escape factors to the ground state are not directly applicable here,

since the absorber density varies spatially. However, the result of the approximation

[16] can be used to obtain lower limits for the actual escape factors by inserting the

radial maximum of the respective metastable density. The reason for this estimation

is that the enhancement of the lifetime has to be smaller than the enhancement that

would result from the maximal density.

In order to account for the variation of the metastable densities as a function of the

radius, effective absorber densities were introduced. These were used with the formulae

of [16]. The values of the effective densities were fitted to the measured spectra in the

inversion procedure.

3.1.5. Line of Sight Integration. The contribution of the transition j → i to the overall

radiance of the plasma surface has to be obtained by an integration along the line of

sight (l.o.s.):

Lij =

∫

ds
1

A⊥(s)

∫

dA⊥ εij(s, r⊥). (6)

Here A⊥(s) is the area perpendicular to the l.o.s. of the plasma volume, which is imaged

onto the optical fiber. A⊥(s) depends on the position s along the l.o.s. and is computed

taking into account the area of the optical fiber, the opening angle of the optics, and the

enlargement factor of the imaging optics. Equation (6) can be regarded as the average

of εij over the area A⊥(s), which is integrated with respect to s.
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3.1.6. Line Shape. The effective spectral radiance Lλ(λ) can be regarded as the

intensity distribution of the light after passing the dispersing grating of the spectrometer.

It is obtained by convolving the spectral radiance of the plasma Lplasma(λ) with the

apparatus function sa:

Lλ(λ) =

∫

Lplasma(λ
′)sa(λ − λ′)dλ′. (7)

Since the width of the apparatus function is large compared to the line broadening

effects in the plasma, the latter may be neglected and the line shape is given by the

apparatus function s = sa. In our analysis, the effective spectral radiance was obtained

by summing up the radiance of each transition Lij multiplied by the line shape:

Lλ(λ) =
∑

ij

Lijs(λ − λij), (8)

where λij is the wavelength of the light emitted by the respective transition.

As a first approximation, the apparatus function of a spectrometer using a grating

as its dispersive element can be described by a Gaussian function (see fig. 3). In order to

model the form of the function with higher precision, a spline was fitted to the measured

line profiles. For this purpose, well-separated spectral lines at different wavelengths were

shifted and rescaled, and a smoothing spline was fitted to all points of the superimposed

lines. Emission spectra of Helium and Krypton discharges were used to obtain an

adequate number of lines at different wavelengths. Two different spline approximations

were used for lines located above and below λ = 750 nm, because the data show a change

of the line shape for large wavelengths. An error σs(λ − λ′) was determined from the

residuals of the smoothing spline fit. It quantifies the variation of the apparatus function

for spectral lines with different intensities and at different wavelengths. (Compare also

section 3.3.)
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Figure 3. Left: Line profile of the spectrometer obtained by shifting and scaling

different lines (see text). The error band of the smoothing spline (solid curves, blue)

is shown together with a Gaussian fit (broken curve, red) for comparison. Right: The

error of the profile is determined using the absolute value of the residuals from the

smoothing spline weighted with their respective statistical errors.
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3.1.7. Calibration of the Spectrometer. The description of the response of the CCD

chip has to take into account the dark current Ddark,i and calibration factor Ci for

each pixel. The mapping of pixel numbers to wavelengths was implemented using a

second-order polynomial:

Dsim,i = Ci · Lλ(λi) + Ddark,i; λi = λ0 + λ′i + λ′′i2. (9)

The output of the used spectrometer Dsim,i for each pixel i has a dynamic range of 12

bit and is expressed in analog-to-digital units (ADU).

The fluctuation of the dark current and the readout noise σro,i were determined

by repeated measurements without light incidence. The parameters of the wavelength

mapping λ0, λ
′, λ′′ were fitted to the data together with parameters of the EEDF.

The calibration factor was determined using a standard light source. The response

of the CCD pixels si, when exposed to the spectral radiance Ls(λi) of the standard light

source, was measured and Ci was computed:

Ci =
T

Ts

(si − Ddark,i)

Ls(λi)
. (10)

Here T and Ts are the exposure times of the spectral measurement of the plasma and

the standard light source. As the calibration factor is the result of a measurement,

it is also subject to statistical uncertainty with the standard deviation σC,i.

Assuming independent and Gaussian-distributed noise of the spectral measurement,

the uncertainty of Ci can be estimated using Gaussian error propagation:

σC,i =
T

TsLs(λi)
· σspec,i. (11)

Here σspec,i is the rms-variance of the spectral measurement of the standard light source

(see also next section).

3.2. Formulation of the Likelihood Function

The likelihood P ( ~D|~Θ) states the probability to obtain the measured data ~D given the

parameter set ~Θ. It represents the statistical model of the measurement. The likelihood

of each pixel Di can be obtained from the value of the model Dsim,i and the distribution

of the statistical error of this pixel. For Gaussian-distributed independent statistical

fluctuations the likelihood of the data is given by:

P ( ~D|~Θ) =
1

∏

i

√

2πσ2
i

exp

{

−1

2

∑

i

(Di − Dsim,i)
2

σ2
i

}

. (12)

Here σi is the uncertainty of the measurement of pixel i of the CCD given in ADU. It

consists of two contributions: the photon noise σph and the readout noise σro,i. The

photon noise is caused by the statistical incidence of photons at the detector. It follows

photon statistics and σph is proportional to the number of photo-electrons generated in

the CCD. The readout noise was assumed to be independent of the signal amplitude

and the same for all pixels.
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Figure 4. The statistical fluctuation of the spectrometer is obtained by repeated

measurements of the spectrum of the standard light source. It is described by counting

statistics (Poisson distribution, σ2 ∝ I). The variance σ2
spec,i is obtained from 100

exposures and is shown as a function of the intensity measured in analog-to-digital

units. The straight line is fitted to data in the range from 0 to 2500 ADU.

Determination of the Statistical Error of the Spectral Measurement. As described

in [23], the noise of the signal obtained by a CCD sensor depends on the amplitude

Di − Ddark,i in the following way:

σ2
spec,i = Eγ · (Di − Ddark,i) + σ2

ro. (13)

The conversion factor Eγ is equal to the inverse number of photon electrons per ADU.

Experimentally the dependence of the variance σ2
spec,i on the signal amplitude was

determined from repeated measurements of the spectrum of the standard light source.

The variance of each pixel of the spectrum of the standard light source was plotted

against Di−Ddark,i (see fig. 4). The parameters of equation. (13) were fitted to the data

in fig. 4, with the following result:

Eγ ≈ 1

28.46
; (14)

σ2
ro ≈ 5.72 ADU2. (15)

Effective Width of the Likelihood σeff,i. The uncertainty of the apparatus function

σs(λ − λ′) (see sec. 3.1.6) and of the relative intensity calibration σC,i (see sec. 3.1.7)

were taken into account by using an effective width of the Gaussian likelihood:

P ( ~D|~Θ) =
1

∏

i

√

2πσ2
i

exp

{

−1

2

∑

i

(Di − Dsim,i)
2

σ2
eff ,i

}

. (16)

σ2
eff ,i = σ2

spec,i + σ2
C,i +

∑

jk

L2
jkσ

2
f (λi − λjk). (17)

The usage of the effective likelihood is equivalent to the introduction of additional model

parameters with Gaussian priors and subsequent marginalization, as derived in [24].
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3.3. Prior Distributions

For all parameters treated in a probabilistic way, the prior pdfs P (~Θ) have to be specified.

This means that the available knowledge about the respective parameter is quantified

without taking into account the experimental data,

Generally speaking, there are two kinds of parameters that have to be described

probabilistically: First, the parameters of interest, which are inferred from the data and

are to be determined in the inversion procedure. Second, parameters which we are not

interested in, but whose values are not known precisely. In table 1 the parameters of

the forward model and the assigned priors are summarized. The choice of the prior

distributions is discussed in the following paragraphs.

Table 1. Summary of the parameters ~Θ used in the forward model. Parameters, for

which no prior is stated, are not treated probabilistically The Gaussian priors of the

line shape and the intensity calibration of each pixel are taken into account by the

effective width of the likelihood (see text).

Symbol Parameter Description Remarks, Prior
~Θf Parameters of the EEDF Flat prior

Ne Electron density Uniform prior

σij Scale of electron impact excitation cross sections Gaussian prior

Aij Einstein coefficients Gaussian prior

Dm Diffusion coefficient of metastables -

DI Ambipolar diffusion coefficient of Ions -

Λij Escape factors (EF) of transitions to ground state -

C3s4/3s2 EF of transitions to the metastable levels Flat prior for eff. densities

pNe Gas pressure -

TNe Gas temperature -

r Diameter of the discharge tube -

nDuran Refractive index of glass -

d Thickness of glass -

n5si,4di Populations of unmodeled atomic levels Exponential prior

n3si,3p,3d,.. Radial profiles of the excited state densities Gaussian prior

s(λ) Line shape Gaussian prior, analytic

λ0, λ′, λ′′ Wavelength calibration Uniform priors

Ci Intensity calibration Gaussian prior, analytic

Cscale Scale of intensity calibration Gaussian prior

3.3.1. Parameters of interest. For the parameters we are interested in no additional

information was included in the analysis and flat prior distribution were employed. The

parameterization of the EEDF is given in equation (21). Beneath the parameters of the

equation (21), which are the electron temperature and the values of the spline nodes,
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also the electron density was extracted from the spectral data and a flat prior was used

for Ne.

3.3.2. Atomic Data. For the electron excitation cross sections and Einstein coefficients,

a dataset from semi-relativistic B-spline Breit-Pauli R-Matrix (BSRM) calculations was

used. Details of these calculations can be found in refs. [26,27]. Briefly, they are based

on a close-coupling description of e − Ne collisions, including the lowest (in energy) 31

target states. Using term-dependent, and hence non-orthogonal orbital sets, which were

individually optimized for each target state of interest, allowed for a highly accurate

target description with a relatively small number of configurations in the configuration-

interaction expansion. The above data were chosen, since they represent a complete,

and internally consistent, dataset for all transitions of interest.

Data for oscillator strengths from the same BSRM model were combined with

those from the atomic line database NIST [28]. Where data from NIST are available,

a weighted average of the Einstein coefficients was computed using the uncertainties

stated by NIST and the ones described below. The cross sections for ionization of neon

in the ground and excited states were taken from [18] and [19].

The uncertainties of the electron-impact excitation cross sections were incorporated

using a single, energy-independent scale parameter for each cross section. This is

a reasonable choice, since in BSRM calculations the energy dependence of the cross

sections is known to be more reliable than the absolute scale. [29]. The use of a single

scale parameter also allowed for an efficient implementation in the model.

A log-normal distribution [30] was used as prior for the scale parameters. Its pdf

is given by:

Glog(x|µ̃, σ̃) =
e−(ln x−µ̃)2/(2σ̃2)

xσ̃
√

2π
; (18)

µ = eµ̃+σ̃2/2; σrms = (eσ̃2 − 1)e2µ̃+σ̃2

with an expectation value µ and a rms-variance σrms. The relative width (σrms/µ)

used is listed in table 2. The numbers were chosen according to details of the BSRM

calculations and the available independent experimental validations of the cross sections

(see [26,27,31,32]).

Table 2. Uncertainties of the excitation cross sections.

final state σrms/µ of log-normal distribution

(relative error)

2p53s J = 1 10%

2p53s J = 2 20%

2p53p 40%

2p54s 60%

2p53d 60%
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The uncertainty of the Einstein coefficients Aij was assessed by considering the

results of the BSRM calculations in the length and the velocity form of the electric

dipole operator. Since both should, in principle, yield the same result, the difference

was used as an estimate for the uncertainty [33]. Figure 5 shows the relative difference

between the results in the two forms of the dipole operator as a function of the absolute

value of the Einstein coefficient. For small Aij, the calculations are expected to be less

accurate compared to stronger transitions. Consequently, the relative width of the prior

distribution σrms/µ in fig. 5 was chosen depending on the value of Aij. It is taken as

large as the biggest relative difference for a certain value of Aij, but never smaller than

10%. Where both numbers were available, a weighted average of the Einstein coefficients

from the BSRM calculations and the NIST database [28] was computed.
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Figure 5. Absolute value of the relative difference 2|Aij,(v) − Aij,(l)|/(Aij,(v) + Aij,(l))

between the BSRM results for the Einstein coefficients in the length and velocity form of

the dipole operator plotted as a function of the absolute value of the Einstein coefficient.

The straight line depicts the rms-width of the prior distribution as a function of the

absolute value of the coefficient (see text).

3.3.3. Escape Factors to Metastable States. The effective densities of the metastable

states (1s5 and 1s3) were implemented by means of correction factors C3s4/3s2 to the

densities obtained by the collisional-radiative model (cf. 3.1.4). These correction factors

have to be smaller than unity, since the maximum of the population density is located

in the center of the discharge, for which the CRM was calculated. A uniform prior

distribution between 0 < C3s4/3s2 < 1 was used for the factors.

3.3.4. Population Densities of Unmodeled Levels. In the spectral range described by

the forward model, there are a few lines originating from excited states, for which no

cross-section data is available. In order to complete the forward model in these areas,

the population densities of these states (4di, 5si) were introduced as parameters of

the forward model. The population densities are expected to be somewhat lower than

the lower-lying states that are described by the CRM. In concordance with the MaxEnt
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principle [34], exponential distributions were used as priors. The expectation value of the

respective density was estimated using a Boltzmann factor for an electron temperature

of 4 eV.

3.3.5. Prior Distributions of the Radial Profile Integrals. An assumption about the

radial profiles of the excited states populations is necessary for the line of sight

integration. In order to account for the uncertainty of this assumption scale factors

were introduced for the radial profiles. A log-normal prior distribution with expectation

value of 1 and a rms-variance of 0.1 was used. The assignment of the rms-variance was

based on the variation of the integral of the radial profiles for profiles taken directly

from [9] compared to the multiplet-resolved computation described above.

3.3.6. Priors of the Wavelength Calibration. The wavelength calibration is well

determined by the data. Hence the posterior for λ, λ′, and λ′′ is strongly dominated

by the likelihood. Uniform prior distributions were used for the parameters of the

calibration.

3.3.7. Priors of the Absolute Intensity Calibration. In addition to the uncertainty

of the calibration factors that is caused by the finite precision of the calibration

measurement (cf. 3.1.7), there is an uncertainty in the (wavelength-integrated) radiance

of the standard light source. The uncertainty of the calibration measurement of each

pixel was incorporated in the effective width of the Gaussian likelihood (equation 3.2).

The uncertainty of the radiance, which is specified by the supplier of the standard

light source (Labsphere Inc., http:\\www.labsphere.com), was taken into account by

a scale parameter for the spectral radiance of the standard light source. A log-normal

prior distribution with an expectation value of 1 and a rms-variance of 0.05 was used as

prior.

3.3.8. Priors of the Apparatus Function. As described in 3.1.6, the apparatus function

extracted from measured spectra is subject to uncertainty. This uncertainty was

accounted for by the effective width of the Gaussian likelihood described above. The

description with an effective likelihood is equivalent to the introduction of additional

parameters with Gaussian prior distributions and a subsequent marginalization [24].

3.4. Inversion Procedure

The characterization of the posterior (equation 1), i.e. the numerical computation of

estimators for the parameters of interest of the high dimensional pdf, is performed using

a Markov chain Monte-Carlo (MCMC) algorithm, (see e.g. [15]).

A Markov chain is a sequence of random variables {~Θ1, ~Θ2, . . .} where the next

state ~Θt+1 is sampled from a distribution P (~Θt+1|~Θt), called the transition kernel, which

only depends on the current state of the chain ~Θt. A time-homogeneous Markov chain
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whose transition kernel does not depend on t, will converge to a unique stationary

distribution φ. When an arbitrary starting state ~Θ0 was chosen, the chain will take a

number of steps before it converges to the stationary distribution. A Markov chain with a

selectable desired stationary distribution, can be constructed e.g. using the Metropolis-

Hastings algorithm. The transition kernel of the Metropolis-Hastings algorithm consists

of a proposal distribution from which a sample is drawn and accepted with a certain

probability depending on the desired φ of the chain. The dependece of the algorithm

on the previous state arises because φ is evaluated at ~Θt and ~Θt+1.

In the present case the desired stationary distribution is the posterior pdf

(equation 1), whose numerical implementation is based on the likelihood and the priors

described above. A Cauchy distribution for each element of the parameter vector ~Θ

is used as proposal distribution (single-component Metropolis-Hastings algorithm [15]).

In a so called burn-in phase the width of the proposal distributions is adjusted in a way,

that a fraction of roughly 0.35 of the drawn proposal samples are accepted during the

Metropolis-Hastings algorithm. As a matter of experience this acceptance rate allows

a good convergence of the chain. During the burn-in the chain also departs from the

initial state of the chain, thus getting rid of the influence of the initial values of the

inversion procedure.

The numerical computations were performed on a linux cluster. On each CPU a

chain of the length of O(104) samples was computed. A burn-in of a few hundreds of

samples was used in each chain to adjust the width of the proposal distributions. The

samples of the burn-in were not used for the characterization of the posterior.

The set of samples {~Θ1, ~Θ2, . . . , ~Θn} obtained this way was used for the estimation

of the parameters of interest. The possibility to formulate estimators for quantities

derived from the actual model parameters was employed to depict the reconstructed

EEDF fE(~Θ) at a given energy E. The expectation value for fE was extracted from the

MC samples in the following way:

〈

fE(~Θ)
〉

=

∫

fE(~Θ)P (~Θ| ~D) d~Θ ≃ 1

n

n∑

i

fE(~Θi). (19)

Its variance is given by:

Var
(

fE(~Θ)
)

=
〈

f 2
E(~Θ)

〉

−
〈

fE(~Θ)
〉2

≃ 1

n

n∑

i

f 2
E(~Θi) −

(

1

n

n∑

i

fE(~Θi)

)2

. (20)

In the plots of the results section, which are showing the reconstructed EEDF,

fE is shown as given in equation (21) and multiplied by the electron density Ne. The

parameters of interest that are depicted in the plots are accordingly: Ne, Te and the

values of the spline nodes of equation (21).

3.4.1. Parameterization of the EEDF. The parameterization used to implement the

EEDF in the reconstruction is a Maxwellian distribution multiplied by an energy



CRM in neon 18

 [nm]λ560 580 600 620 640    

]
 s

r 
m

2
m

W
 [ λ

L 510

610

710

Measured Data

σ
re

si
d

u
al

/

-8
-6
-4
-2
0
2
4
6
8

 [nm]λ680 700 720 740 760    

]
 s

r 
m

2
m

W
 [ λ

L 510

610

710

Measured Data

σ
re

si
d

u
al

/

-8
-6
-4
-2
0
2
4
6
8

 [nm]λ800 820 840 860 880

]
 s

r 
m

2
m

W
 [ λ

L 510

610

710

Measured Data

σ
re

si
d

u
al

/

-8
-6
-4
-2
0
2
4
6
8

Figure 6. Result of the forward model. The intensity is shown as a function of

wavelength on a logarithmic scale. The curve inside the light-colored (red) area depicts

the modeled spectrum with the uncertainty of the apparatus function. The black

curve with error bars shows the measurement and its uncertainties. The dashed (blue)

line represents the difference between model and measurement in units of standard

deviations.

dependent factor:

FM(E) = 2

√

E

π(kTe)3
exp

{−E

kTe

}

︸ ︷︷ ︸

Maxwellian

× exp {fSpline(E)} . (21)

The modification factor allowed us to describe EEDFs that deviate from Maxwellian

distributions, as expected from independent kinetic modeling. The factor was

implemented using either an approximating spline [35] or a piecewise linear interpolated

function in the argument of an exponential function. The exponential in equation (21)

is used to assure positivity of the EEDF.

4. Results and Discussion

For a successful inversion it is necessary, though not sufficient, that the forward model

provides a consistent and unbiased description of the measured data. Figure 6 depicts

the result of the forward model together with the measurement. The dashed (blue) curve

shows the difference between model and measurement in units of standard deviations.
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Figure 7. The distribution of the differences between model and measurement is

shown in units of standard deviations. The fitted Gaussian curve has a width of 1.14

and a mean of 0.23. The histogram is the projection of the dashed (blue) curve in

fig. 6.

It can be seen that every feature of the neon spectrum in the considered range of

wavelengths is incorporated in the model (note the logarithmic scale). This is possible

due to the extensive set of atomic structure and collision data available from the BSRM

calculations. The only significant deviations between model and data are located at

wavelengths above 800 nm. The residuals are mainly located at the large-wavelength

side of some spectral lines. An imperfect description by the apparatus function at

large wavelengths is a possible explanation for this behavior. The use of the second

apparatus function at high wavelengths (see also 3.1.6) improves but does not solve this

discrepancy. This is also indicated by the presence of the tail towards negative residuals

in fig. 7, where the overall distribution of the residuals between model and measurements

is shown. Despite the mentioned tail, the bulk of the distribution has almost the shape

of a Gaussian distribution with width one in units of standard deviations. Keeping

in mind, that the modelled data ranges over almost three orders of magnitude, this

indication of the consistency of model and data as well as the correct assignment of

error statistics can be regarded as an achievement.

4.1. Reconstruction of Simulated Spectral Data

The reliability of the inversion procedure was verified by inverting a simulated spectrum

obtained using the forward model. The parameters of interest, which were used to

generate the simulated data, have to be reobtained if the reconstruction works correctly

and the model uncertainties are reflected in the result.

The parameterization given by equation (21), consisting of a Maxwellian

distribution and a spline allowing form-free deviations, was used for the EEDF of the

simulated data. The correcting spline was chosen such that the EEDF approximates

the reference EEDF [9]. The result of the inversion is shown in fig. 8 together with the

EEDF used for the generation of the simulated spectrum. The color-coded histograms



CRM in neon 20

Energy [eV]
0 5 10 15 20 25 30 35 40 45

]
-1

 e
V

-3
[m e

 N×
f(

E
) 

710

810

910

1010

1110

1210

1310

1410

0

5000

10000

15000

20000

25000
Maxwell+Spline

EEDF of Simulation

p
ro

b
ab

ili
ty

 [
a.

u
.]

Figure 8. Reconstruction of simulated data. The result of the reconstruction (Maxwell

+ Spline) is shown together with the EEDF used to simulate the data. The histograms

show the marginal posterior distribution for the EEDF at a given energy (see text).

show the marginal distribution of the EEDF at different energies, as sampled during the

MC inversion. The histograms are summarized in the overlayed curve with error band,

which was obtained by computing the expectation value and variance of the logarithm

of the EEDF as a function of energy (equation (19) and equation (20)). The logarithmic

scale was chosen, since the marginal distributions show a flat shape in the logarithm of

the EEDF, which can be reasonably described by mean and variance in contrast to the

strongly asymmetric shape in the linear scale.

For the interpretation of the given confidence region, it is important to keep in mind

that the EEDF at adjacent energies is correlated. The correlation length of the EEDF

is determined by the flexibility of the employed parameterization. Only a deviation

in a region larger than the correlation length indicates a significant disagreement. See

also [12] (and references therein) for a discussion of different ways to specify profile

uncertainties.

The EEDF is correctly reconstructed in the entire energy range. In the region

above 45 eV the error band increases strongly. The EEDF is not constrained by the

spectral data in this region. When increasing the flexibility of the parameterization of

the EEDF, e.g., by using a higher number of knots of the spline, the error band increases

to some extent also in the region between 12 and 19 eV. The spectral data only weakly

constrains the EEDF in this region. The number of knots of the correction spline was

chosen in a way, that the EEDF of kinetic modeling can be correctly described, but

no unnecessary flexibility is introduced, which would increase the uncertainty of the

reconstruction.
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4.2. Reconstruction of Measured Data
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Figure 9. Reconstruction of the EEDF from a neon dc-glow discharge. The histograms

show the marginal posterior distribution (color-coded z-axis) of the EEDF at the

respective energy, as obtained by Monte-Carlos sampling. The line with error bars

summarizes the histograms by showing the expectation value and rms-variance of the

logarithm of the EEDF. The Maxwellian with a temperature of 3.5 eV (dashed curve)

and the reference distribution obtained by hybrid modeling ([9,22], solid curve without

error margins) are shown for comparison.

The result of the reconstruction of the EEDF from spectral data measured in the

positive column of the discharge is shown in fig. 9. The result of hybrid modeling [9,22] of

the EEDF at the center (r = 0) of the positive column of an equivalent neon discharge

with identical parameters (gas pressure 0.67 Torr, tube radius 1.5 cm, and discharge

current 10 mA) is shown for comparison. The result of the hybrid model was validated

with probe and LIF measurements [9] and acts as reference here. The Maxwellian

distribution is shown to demonstrate the deviations from thermal equilibrium, which

can be clearly observed.

It can be seen that the distribution is reconstructed up to energies of about

30 eV, where it has fallen off to 10−4 of its maximum value. The shape of the

reference distribution is well reproduced, especially in the region below 20 eV, where

reconstruction and reference agree within the stated uncertainty. Between 20 and 30 eV

the reconstructed EEDF slightly exceeds the reference distribution, and the error band

is wider in this energy range. Beyond 30 eV the posterior shows a flat shape and only

an upper limit for the electron density at these energies can be given.

4.2.1. Energy Dependence of the Elementary Processes. In order to validate the

result of the reconstruction with respect to the obtained uncertainty band, the energy
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Figure 10. The relative change of the population densities for an increase of the

EEDF is shown as function of the energy for the 31 exited states considered in the

model. See 3.1 for the notation of the states.

dependence of the elementary processes was considered. The variation of the population

densities caused by a change of the EEDF at a given energy was calculated. A piecewise

constant parameterization of the EEDF was used:

fpw(E) =







f1 for E < E1

f2 for E1 < E < E2

...
...

fn for En−1E < En

(22)

ach fi was sequentially increased by 10% and the resulting variations of the population

densities ∆ni/ni were plotted versus the energy Ei; see fig. 10. The thresholds for the

different excitation and de-excitation channels can be observed clearly (direct excitation,

stepwise excitation, and cascade contributions).

The reconstruction of the EEDF is expected to be well determined by the data in

energy regions where two conditions are fulfilled: First, the variation of the population

densities must not be small and second, there have to be differences in the shape of

∆ni/ni(E) for some of the excited states. When the values of ∆ni/ni(E) for all states

are proportional to each other, a variation of the EEDF influences all line intensities in
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a similar way. In that case, the EEDF cannot be unambiguously reconstructed.

The uncertainty of the reconstructed EEDF reflects how well these conditions are

fulfilled for different energy regions. The uncertainty of the reconstructed EEDF exhibits

a minimum around 17 eV, where the spread in the variations is large. Above 30 eV,

where the error band starts to increase considerably, the variation of the population

densities also becomes small. In the region between 10 and 17 eV, the EEDF is

constrained by the chosen parameterization with six spline knots. Samplings with more

flexible parameterizations of the EEDF also show an increased error band in this region.

5. Summary

A data analysis procedure for the reconstruction of the EEDF from optical emission

spectroscopic data was implemented and applied to data from the positive column of a

neon dc-discharge. The model of the plasma and the spectroscopic measurement was

described by employing a complete and consistent set of atomic structure and electron

collision data generated through semi-relativistic B-Spline R-Matrix (close-coupling)

calculations. The probabilistic nature of the approach allowed us to account for the

uncertainties of the atomic data set as well as other uncertainties of the model, of

experimental or theoretical nature. The consistent propagation of the uncertainties

made it possible to state a confidence region of the reconstruction result, which agreed

well with published EEDFs from hybrid modeling.
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