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Abstract. Three different theoretical approaches are presented: quasi-isotropic approximation (QIA), Stokes vector 
formalism and complex polarization angle method, which allow describing polarization of electromagnetic waves in 
weakly anisotropic plasma.  QIA stems directly from the Maxwell equations under assumption of weak anisotropy and 
has a form of coupled differential equations for the transverse components of the electromagnetic wave field. Being 
applied to high frequency (microwave or IR) electromagnetic waves in magnetized plasma, QIA describes combined 
action of Faraday and Cotton-Mouton phenomena. QIA takes into account curvature and torsion of the ray, describes 
normal modes conversion in the inhomogeneous plasma and allows specifying area of applicability of the method. 
In distinction to QIA, Stokes vector formalism (SVF) deals with quantities, quadratic in a wave field. It is shown (and this 
is the main result of the paper) that equation for Stokes vector evolution can be derived directly from QIA. This evidences 
deep unity of two seemingly different approaches. In fact QIA suggests somewhat more information than SVF; in 
particular, it describes the phases of both transverse components of the electromagnetic field, whereas SVF operates only 
with the phase difference. 
At last, the coupled equations of the quasi-isotropic approximation can be reduced to a single equation for complex 
polarization angle (CPA), which describes both the shape and orientation of the polarization ellipse. In turn, equation for 
CPA allows obtaining equations for traditional parameters of polarization ellipse, which in fact are equivalent to the 
equation for Stokes vector evolution. It is pointed out that every method under discussion has its own advantages plasma 
polarimetry.  
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1.INTRODUCTION 

Interaction of electromagnetic normal modes in inhomogeneous plasma and their polarization state evolution was 
studied by Budden [1,2], who suggested the system of coupled wave equations for the components of the 
electromagnetic wave field. Coupled wave equations for weakly anisotropic media, were specified in [3] in the form 
of quasi-isotropic approximation (QIA) of the geometrical optics method. QIA was developed in depth in 
subsequent publications [4,5] and briefly outlined in the books [6,7]. 

An alternative approach – “Stokes vector formalism” (SVF) – was initiated in the papers [8,9]. This approach, 
operating with the Stokes vector, was applied for analysis of electromagnetic waves polarization in fibers [10] and in 
the inhomogeneous plasma [11-14]. Comparative analysis of two approaches mentioned have been performed by 
Serge  [15], who has analyzed advantages and shortcomings of each technique, omitting yet their deep unity.  



It was shown recently [16] that equation for Stokes vector evolution can be derived in a consequent way from the 
Maxwell equations on the basis of the quantum-mechanical diagonalization procedure, which generalizes QIA 
approach. Another derivation of SVF equations – directly from QIA equations – was suggested in [17]  

This paper intends to derive equations for the Stokes vector evolution in a simplified way, based on QIA 
equations. We would like to discuss here distinctions between two approaches under discussion and simultaneously 
to point out their practical equivalence in conditions, when the total phase of the wave field is not significant. 
Besides, one more approach is outlined [18], which involves complex polarization angle (CPA). Interrelations 
between CPA and traditional angular parameters of polarization ellipse are presented and the equation for CPA is 
derived from QIA equations. 

The paper is organized as follows. Sect. 2 outlines the basic equations of quasi-isotropic approximation. Sect.3 
derives SVF from QIA equations. Sect.4 compares two approaches under discussion. Sect. 5 derives evolution 
equation for CPA, taking into account both Faraday, and Cotton Mouton effects. Simultaneously Sect.5 points out 
equivalence between CPA and SVF for narrow beams. At last, stemming from equation for CPA, Sect. 6 derives 
evolution equations for traditional angular parameters of polarization ellipse.  

2. QUASI-ISOTROPIC APPROXIMATION (QIA) 

Quasi-isotropic approximation (QIA) of the geometrical optics method [3-7] describes propagation of 
electromagnetic waves in weakly anisotropic media. In similar media all the components of the anisotropy tensor 

mnmnmn δεεν 0−=  are small as compared with 0ε , where 0ε  is an electric permittivity of the isotropic 
background medium, mnε  is the full tensor of electrical permittivity and mnδ  is a unit tensor. QIA operates with 
two small parameters. One of them is traditional “geometrical” small parameter  

   

 1/1 0 <<= LkGOμ  (1) 
   

where k0 is a wave number and L is a characteristic scale of the medium inhomogeneity. Besides, QIA  involves 
anisotropic” small parameter 

   

 1/||max 0 <<= ενμ mnA , (2) 
   

which characterizes weakness of the medium anisotropy.  
According to [3-7], asymptotic solution of the Maxwell equations in the lowest approximation in small 

parameters GOμ  and  can be presented as Aμ
   

 )exp( Ψ= ikAΓE , (3) 
   

where  and Ψ  are correspondingly amplitude and eikonal of the electromagnetic wave in isotropic medium 
and is a polarization vector, which is orthogonal to the reference ray, like in an isotropic medium. Let the unit 
vectors e1 and e2 together with the tangent unit vector l form a basis for the Popov’s orthogonal coordinate system 

, associated with a selected (reference) ray [19] (see also Ch.9 in the book [20] as well as Ch.4 in the book 
[21]; in the latter one Popov’s system appears as “ray centered coordinate system”). Unit vectors e1 and e2 of the 
Popov’s orthogonal system obey the equations 
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The most important feature of these vectors is their ability to describe parallel transport of the electrical vector E 
along the reference ray in an isotropic medium. 

In the Popov’s orthogonal coordinate system the polarization vector Γ can be presented as 
   

 2211 eeΓ Γ+Γ= . (5) 
   

The components and of polarization vector obey the QIA equations 1Γ 2Γ
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where σ  is an arc length along the reference ray. In distinction to the original form of the QIA equations, written in 
frame of natural trihedral coordinate system [3-7], equations (6) do not contain torsion of the ray, because the 
Popov’s orthogonal system provides parallel, i.e. torsionless transport of the electrical intensity vector along the ray.  

For weakly anisotropic collision plasma permittivity of isotropic background could be written as V−= 10ε  and 
the components of the anisotropy tensor are given by                                   
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where  and  are standard plasma parameters [2], 22 /ωω pv = 22 /ωωcu = pω  and cω  are plasma frequency and 
electron cyclotron frequency correspondingly and  are dimensionless parameters: VRQP ,,,
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Parameter w is a collision frequency cν  normalized to sounding microwave frequencyω : ων /cw = . Eqs.(7) are 
linearized in collision parameter w, which is considered to be small enough. At last, ||α  and ⊥α are polar and 

azimuthal angles, characterizing orientation of the magnetic field  in the orthogonal basis (e1, e2), Fig.1.  0B
 
 

 
FIGURE 1.  Orientation of  the  static magnetic vector in the orthogonal basis . 0B 21,ee

3. EQUATION FOR STOKES VECTOR EVOLUTION DERIVED FROM QIA  

For monochromatic wave field the components of the full (four components) Stokes vector  
are connected with the components of the polarization vector by relations [22]:  

( )3210 ,,, ssss=S
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According to eqs. (9), the derivatives σddss kk /=&  with respect to ark length σ  are as follows: 
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For further calculations it is convenient to present the anisotropy tensor as a sum of Hermitian and anti-Hermitian 
parts: 
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Using derivatives ,  from eqs.(6) and taking into account that , , one can obtain 1Γ& 2Γ& h
ji

h
ij νν =* a

ji
a
ij νν −=*
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Following [8-14], let us rewrite eqs. (12) in a compact vector form: 
   

 SMS ˆ=& , (13) 
   

where M  is a general form of differential Mueller matrix for weakly anisotropic media:  ˆ
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This  matrix  can be presented as a sum of three terms 
   

 bda MMMM ˆˆˆˆ ++= , (15) 
   

partially remaining representation of Mueller matrix in [13,15]. The first, attenuation component, 
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describes attenuation, common for all the component of the Stokes vector The second term 
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corresponds to the phenomenon of dichroism, that is for selective attenuation of normal modes. At last, matrix 
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describes birefringence. 
According to eqs.(7), Hermitian and anti-Hermitian parts  and  of the anisotropy tensor hν̂ aν̂ ν̂  are: 
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Substitution of (19) into general relations (16-18) leads to the representation of differential Mueller matrix for 
weakly anisotropic magnetized plasma. The term 
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describes common attenuation for all components of the Stokes vector, the factor always being 
negative. Next term 
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answers to the phenomenon of dichroism. At last, the term 
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corresponds to birefringence.  



 Though the expressions (20-22) generally are similar to the Segre’s results [13,15], however some explicit 
distinctions are observed. In particular, the papers [13,15] do not contain the term with Q in Eq. (20) (this term can 
be substantial when u is not small enough) and the elements of matrix (21) are twice as large as compared with the 
corresponding matrix elements in [13,15] (the reason is an arithmetic inaccuracy in [13]). 

In the case of collisionless plasma, when w=0 and consts =0  it is convenient to deal with a reduced (three 
component) Stokes vector ),,( 321 sss=s [22]: 

   

 ,2cos2cos1 ψχ=s   ,2sin2cos2 ψχ=s χ2sin3 =s .   (23) 
   

Here ψ  is the azimuth ( )πψ ≤≤0  and ab /tan =χ  is ellipticity ( )4/4/ πχπ ≤≤−  of polarization ellipse.  In this 
case eq.(13) takes a simplified form  

   

 sΩs ×=& , (24) 
   

where  is a vector with the components [11-14]: ( 321 ,, ΩΩΩ=Ω )
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4. COMPARISON OF QIA EQUATIONS WITH EQUATIONS FOR STOKES VECTOR 
EVOLUTION 

The equations for Stokes vector, derived from quasi-isotropic approximation of geometrical optics, are very close 
in form to the equations, obtained in [11-14] on the basis of quite simple if not primitive electrodynamical model, 
dealing with independent normal modes in locally homogeneous anisotropic medium. In contrast to SVF, QIA stems 
from Maxwell equations in a consequent way, using an asymptotic expansion of the wave field in small parameters 

Aμ  and GOμ , eqs.(1) and (2).  
Equations of QIA determine evolution of polarization vector along the rays, experiencing curvature and torsion,  

and are able to describe mode conversion due to medium inhomogeneity [3-5]. Therefore equations for the Stokes 
vector evolution obtained from quasi-isotropic approximation of geometrical optics, acquire all the merits of QIA, in 
particular, they are able now to describe effects of the ray curvature and torsion in a consequent way, as well as to 
take into account normal wave interaction and mutual conversion. Another important conclusion is that QIA justifies 
the equations of SVF, making clear that SVF is valid only for weakly anisotropic plasma.  

 In spite of high degree of similarity, QIA equations (6) and eqs.(13) for Stokes vector evolution can not be 
considered as completely identical ones because of phase distinctions. To illustrate this, let us present polarization 
vector  as )||,|(|),( 21 2121

δδ ii ee ΓΓ=ΓΓ=Γ
   

 )||,|(| 2/)(
2

2/)(
1

2/)( 212121 δδδδδδ +−−+ ΓΓ= iii eeeΓ  (26) 
   

and express four field parameters (two modules || 1Γ , || 2Γ  and two phases 1δ , 2δ ) through the components 
 of the Stokes vector S. It follows from eqs.(9) that  3210 ,,, ssss
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According to eqs.(27), only three field parameters: two modules || 1Γ , || 2Γ  and phases difference ( )21 δδ − , can 
be extracted from Stokes vector. It means that four equations (12) for Stokes vector components are not completely 
equivalent to the QIA equations (6): the phase half sum 2/)( 21 δδ +  principally can not be extracted from Stokes 
vector. The reason is that four components  and  of the Stokes vector are connected by a relation 

 and are not independent.  
210 ,, sss 3s
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2
0 ssss ++=

It is worth noticing that in the case of single wave beam the phase 2/)( 21 δδ +  does not influence on the shape of 
polarization ellipse. However, this phase might be important for polarization of the wave field, created by 
superposition of  two or more polarized wave beams.  



5. COMPLEX POLARIZATION ANGLE (CPA)  

Tangent of CPA is defined as a ratio of complex amplitudes [3-7]: 12 /tan ΓΓ=γ . It was shown recently [18], the 
components γ ′  and γ ′′ of CPA γγγ ′′+′= i characterize the angular parameters χψ ,  of the polarization ellipse: real 
part γ ′  defines polarization angle, ψγ =′  and imaginary part – its ellipticity: e==′′ χγ tantanh . 

It follows from QIA equations (6) that complex polarization angle γ  in magnetized plasma satisfies the 
following equation: 

   

 )22sin(sincos ||
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⊥−−= αγααγ VuikVuk& . (28) 
   

Here σγγ dd /=&  is a derivative along the ray. This equation can be presented also as [18]: 
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where 2
2

2
1 Ω+Ω=Ω⊥ . The term  in eq.(29) corresponds to the Faraday effect, and the term to Cotton-

Mouton phenomenon. Eqs.(28) and (29                          
) for CPA have proved to be very helpful for solution of problems in plasma polarimetry.  

3Ω ⊥Ω

6. EVOLUTION EQUATIONS FOR TRADITIONAL ANGULAR POLARIZATION 
PARAMETERS 

It follows from Sect. 5 that ,ψγ && =′ χχγ 2cos/&& =′′ , χγ 2sin2tanh =′′ , χγ 2tan2sinh =′′  and 
χγ 2cos/12cosh =′′ . Substituting these relations into equations (29) one can obtain the following system of 

equations for the traditional angular polarization parameters ),( χψ : 
   

 

).22sin(
2

,2tan)22cos(
22

3

⊥
⊥

⊥
⊥

−
Ω

−=

−
Ω

+
Ω

=

αψχ

χαψψ

&

&
 (30) 

   

This system was not known so far. It might be very helpful for plasma polarimetry. Both eq.(30) for CPA and eqs. 
(33) for angular parameters ψ and χ  are equivalent to the eq (24) for 3-component Stokes vector. In fact, when 
parameters ( γ ′ , γ ′′ ) or ),( χψ  being determined from eq. (29) and (30) correspondingly, Stokes vector can be found 
from eq. (23).  

7. CONCLUSIONS  

Quasi-isotropic approximation of the geometrical optics method provides adequate description for evolution of 
the polarization vector in inhomogeneous weakly anisotropic plasma. QIA equations take into account: i) curvature 
and torsion of the ray; ii) longitudinal and lateral inhomogeneity of plasma; iii) torsion of the static magnetic field; 
iv) weak absorption and dichroism; v) normal modes conversion in the inhomogeneous plasma. It is shown here that 
QIA equations allow to substantiate Stokes vector formalism and to derive the equation for the Stokes vector 
evolution in a consequent way. Besides, QIA equations allow deriving the equation for the complex polarization 
angle as well the equations for angular parameters of polarization ellipse. These equations are shown to be 
equivalent to the equation for the Stokes vector evolution and promise to become an effective instrument in plasma 
polarimetry.  
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