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Abstract

Global linear gyrokinetic particle-in-cell (PIC) simulations of electromagnetic modes in pinch and

tokamak geometries are reported. The Global Alfvén Eigenmode, the Mirror Alfvén Eigenmode,

the Toroidal Alfvén Eigenmode and the Kinetic Ballooning Modes have been simulated. All plasma

species have been treated kinetically (i.e. no hybrid fluid-kinetic or reduced-kinetic model has been

applied). The main intention of the paper is to demonstrate that the global Alfvén modes can be

treated with the gyrokinetic PIC method.
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I. INTRODUCTION

Significant progress has been achieved in gyrokinetic turbulence simulation assuming

electrostatic perturbations. However, in the presence of magnetic fluctuations, there exist

new branches of modes, for example the Alfvénic Ion Temperature Gradient driven mode

(AITG) (or Kinetic Ballooning Mode – KBM), the Toroidicity-induced Alfvén Eigenmode

(TAE) that can play an important role for plasma stability and transport. Kinetic modifica-

tions to Magneto-Hydro-Dynamic (MHD) modes are important as well because its associated

nonlinear effects can lead to a significant loss of fast particles. Another application for these

modes is the so-called MHD spectroscopy, where the basic properties of the magnetic equi-

librium (such as the safety factor profile) can be determined measuring the MHD activity.

The destabilization of the shear Alfvén waves occurs as a result of a competition of the drive

by fast particles and various damping mechanisms due to non-ideal (kinetic) effects such

as electron and ion Landau damping, collisional damping, continuum damping, radiative

damping, etc. A proper description of the various damping mechanisms is a key issue in

determining stability criteria of energetic particle-driven Alfvén modes in burning plasma

experiments. Still, the proper description of damping mechanisms is an issue of debate [1–6].

Furthermore, there are measurements of mode damping from the Mega-Ampere Spherical

Tokamak [7, 8] and the Joint European Torus [9] to be expected.

The most rigorous first-principle approach to the kinetic theory of MHD modes is the

global gyrokinetic description. Recently, a global gyrokinetic eigenvalue code [2, 3] has

been developed. Being capable of capturing all kinetic effects in the linear regime, this

approach is however difficult to extend for nonlinear problems. In contrast, the gyrokinetic

particle-in-cell (PIC) method can be used both in linear and nonlinear regimes. In the

past, electromagnetic PIC simulations have struggled with stringent numerical constraints

associated with the so-called cancellation problem [10, 11]. This problem has been solved

recently (see Refs. [10–14]). The key point to its solution is a careful balance between the

adiabatic current computed with the markers and the so-called skin terms in Ampére’s law

discretized on the spatial grid (see Ref. [11] for details). In this paper, we employ the method

of Ref. [14] to solve the cancellation problem.

The paper is organized as follows. In Sec. II, the basic equations and their discretization

are presented. Sec. III describes the simulation of the Global Alfvén Eigenmode, Sec. IV dis-
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cusses the simulation of the Kinetic Mirror Alfvén Eigenmode, while results for the Toroidal

Alfvén Eigenmode are shown in Sec. V. Finally, before some concluding remarks (Sec. VII)

the simulation of Kinetic Ballooning Modes is discussed in Sec. VI.

II. BASIC EQUATIONS AND NUMERICAL APPROACH

We use the linear two-dimensional δf PIC-code GYGLES. The code allows for elec-

tromagnetic perturbations and treats all particle species (ions and electrons) on the same

footing (kinetically). In this section, we give a short description of the equations solved in

the code. A detailed description can be found in Refs. [11–18].

The code solves the gyrokinetic Vlasov-Maxwell system of equations [19, 20]. The dis-

tribution function is split into the background part and the perturbation fs = F0s + δfs

(the index s = i, e is used for the particle species). The background distribution function

is usually taken to be a Maxwellian. The perturbed distribution function δfs is found from

the linearized Vlasov equation:

∂δfs

∂t
+ Ṙ(0) · ∂δfs

∂R
+ v̇

(0)
‖

∂δfs

∂v‖
= − Ṙ(1) · ∂F0s

∂R
− v̇

(1)
‖

∂F0s

∂v‖
. (1)

Here, [Ṙ(0), v̇
(0)
‖ ] correspond to the unperturbed gyro-center position and parallel velocity.

[Ṙ(1), v̇
(1)
‖ ] are the perturbation of the particle trajectories proportional to the electromag-

netic field fluctuations. The equations of motion are:

Ṙ =
(

v‖ −
q

m
〈A‖〉

)

b∗ +
1

qB∗
‖

b ×
[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

(2)

v̇‖ = − 1

m

[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

· b∗ (3)

with φ and A‖ being the perturbed electrostatic and magnetic potentials, µ the magnetic

moment, m the mass of the particle, B∗
‖ = b · ∇ × A∗, b∗ = ∇ × A∗/B∗

‖ , A∗ = A +

(mv‖/q)b the so-called modified vector potential, A the magnetic potential corresponding

to the equilibrium magnetic field B = ∇×A and b = B/B the unit vector in the direction

of the equilibrium magnetic field. The gyro-averaged potentials are defined as usual:

〈φ〉 =
∮ dθ

2π
φ(R + ρ) , 〈A‖〉 =

∮ dθ

2π
A‖(R + ρ) , (4)

where ρ is the gyro-radius of the particle and θ is the gyro-phase. The perturbed electrostatic

and magnetic potentials are found self-consistently from the gyrokinetic quasi-neutrality
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equation and parallel Ampére’s law:

−∇ ·
(

en0

Ti
ρ2

i∇⊥φ
)

= (ni − ne) ,

(

βi

ρ2
i

+
βe

ρ2
e

−∇2
⊥

)

A‖ = µ0

(

j‖i + j‖e
)

, (5)

where ns =
∫

d6Z Fs δ(R+ρ−x) is the gyro-center density, j‖s = qs
∫

d6Z Fs v‖ δ(R+ρ−x)

is the gyro-center current, qs is the charge of the particle, d6Z = B∗
‖ dR dv‖ dµ dθ is the

phase-space volume, ρs =
√
msTs/(eB) is the thermal gyro-radius and βs = µ0n0Ts/B

2
0 is

the plasma beta corresponding to a particular species. In practice, we modify the quasi-

neutrality equation and Ampére’s law to the following:

− Cq∇ ·
(

en0

Ti
ρ2

i∇⊥φ
)

= (ni − ne) , CA

(

βi

ρ2
i

+
βe

ρ2
e

)

A‖ −∇2
⊥A‖ = µ0

(

j‖i + j‖e
)

, (6)

where the quantities Cq and CA take into account the finite extent of the velocity-space

domain which is limited to the sphere v ≤ κvvth (see Ref. [11] for details) in the simulations:

Cq = erf

(

κv√
2

)

−
√

2

π
κv exp

(

− κ2
v

2

)

; erf(x) =
2√
π

x
∫

0

e−t2dt (7)

CA = erf

(

κv√
2

)

−
√

2

π
κv

(

1 +
κ2

v

3

)

exp

(

−κ
2
v

2

)

(8)

The perturbed part of the distribution function is discretized with markers:

δfs(R, v‖, µ, t) =
Np
∑

ν=1

wsν(t)δ(R− Rν)δ(v‖ − vν‖)δ(µ− µν) , (9)

where Np is the number of markers, (Rν , vν‖, µν) are the marker phase space coordinates

and wsν is the weight of a marker. The electrostatic and magnetic potentials are discretized

with the finite-element method (Ritz-Galerkin scheme):

φ(x) =
Ns
∑

l=1

φlΛl(x) , A‖(x) =
Ns
∑

l=1

alΛl(x) , (10)

where Λl(x) are the finite elements (tensor product of B splines [21, 22]), Ns is the total

number of the finite elements, φl and al are the spline coefficients. A detailed description of

the discretization procedure can be found in Refs. [11, 12, 14, 15, 17]. We apply the so-called

phase factor transform [15] to all perturbed quantities in the code. The cancellation problem

[10, 11] is solved using the iterative scheme No. 2 described in Ref. [14].
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III. GLOBAL ALFVÉN EIGENMODE

The Global Alfvén Eigenmode (GAE) is basically an MHD mode [23, 24] with a frequency

below the minimum of the Alfvén continuum branch with given mode numbers (m and n).

This mode can be formed as a result of the presence of the equilibrium current density

profile [24]. The GAE mode is known [23] to exhibit a spatial localization around the radial

position r = rc where the Alfvén continuum has a minimum dωA/dr = 0.

The simplest geometry where the GAE mode can be found is a screw pinch. We consider a

screw pinch with the safety factor q = 1.05+3.25s2 (the flux surface label s =
√

ψ/ψa, where

ψ is the poloidal flux and ψa is the poloidal flux on the edge), the length of the pinch L =

2πR0 (here R0 = 5.5 m), the radius of the pinch r0 = 0.55 m. We assume flat temperature

profiles Ti = Te = 5 keV and the profile of the plasma beta β(%) = 0.6(1 − s2) + 0.045.

To compute the background parallel current, we substitute the background magnetic field

B = ∇ψ ×∇ϕ + T (ψ)∇ϕ into Ampére’s law. The resulting expression for the background

parallel current density is j
(0)
‖ = (B/µ0) dT/dψ. Assuming that this current is carried by

the electrons, one can write it as

j
(0)
‖ = − e

∫

v‖dv‖2πv⊥dv⊥F0e = − en0ue , (11)

where ue is the mean electron velocity and F0e is the electron background distribution

function. We choose it to be a shifted Maxwellian:

F0e = n0

(

me

2πTe

)3/2

exp

[

− me(v‖ − ue)
2

2Te

]

exp

[

− mev
2
⊥

2Te

]

. (12)

Note that actually a Spitzer problem [25] must be solved to obtain the distribution function

which then is not a shifted Maxwellian. However, detailed effects of the equilibrium are

more important for other type of modes as e.g. the internal kink. Thus we leave it as a topic

for further investigation.

The velocity shift in the Maxwell distribution function will affect the right-hand-side of

the Vlasov equation, Eq. (1), but also Ampére’s law has to be rewritten as follows:

(

CA − Cq
u2

e

v2
the

)

ω2
pe

c2
A‖ −∇2

⊥A‖ = µ0

(

j‖i + j‖e
)

. (13)

Drift kinetic electrons have been used to derive Eq. (13) and an unshifted Maxwellian has

been assumed for the ion background distribution function. The simulation domain in the
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velocity space is shifted for electrons so that −κvvthe +ue ≤ v‖ ≤ κvvthe +ue (an appropriate

“shifted initial loading” is employed).

In Fig. 1, the shear Alfvén spectrum from ideal MHD for the mode numbers (m = 2,

n = 1) is plotted together with the simulation result. One can see that the frequency of

the GAE mode resulting from the PIC simulations is close to that obtained with the three-

dimensional linear MHD stability code CAS3D [26] and is indeed below the minimum of the

continuum branch. Throughout the paper all MHD continua have been calculated using the

CONTI code [27]. In Fig. 2, the electrostatic and magnetic potentials of the mode are shown.

One sees that the gyrokinetic eigenmode structure is quite close to the ideal MHD result.

As expected, the maximum of the eigenmode is close to the position of the minimum of the

Alfvén continuum. In contrast to MHD, not only the frequency but also the collisionless

damping rate of the GAE mode can be found within the gyrokinetic approach (note that

the mode is marginally stable in ideal MHD). For the parameters used, ω = 5 MHz and

γ = −24 kHz have been obtained. The ratio between the damping rate and the frequency is

γ/ω ≈ 0.5%. The numerical parameters in our simulation are as follows: the number of ion

markers Ni = 500 000, the number of electron markers Ne = 500 000, the number of radial

B-splines Nr = 64, the number of B-splines in the parallel direction Nz = 4 and the time

step ∆t = 10−8 s. In our simulations, we have employed the iterative approach of Ref. [14]

to solve the cancellation problem [10, 11]. This gives us the capability to go beyond the first

calculations (no plasma β) of a GAE mode within a PIC approach [28].

The computation of the GAE mode is an important step towards the global gyrokinetic

simulation of so-called cascade modes in tokamaks (see Ref. [29] and the papers cited therein)

which belong to the same type (associated with an extremum in the Alfvén continuum) as

the Global Alfvén Eigenmodes [29]. Also note the importance of the GAE modes for the

low-shear stellarators like Wendelstein-7X [28, 30].

IV. KINETIC MIRROR ALFVÉN EIGENMODE

In a cylindrical pinch, the branches of the shear Alfvén continuum belonging to different

Fourier mode numbers can cross each other. In arbitrary geometry, the background magnetic

field can be written as

B =
∑

m,n

Bmn(s) cos(mθ − nNperϕ) (14)
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with the poloidal and toroidal angles (θ, ϕ), the poloidal and toroidal mode numbers (m,n),

and the number of periods Nper. One can see that different mode numbers can couple with

each other due to the geometry where correspondingly Bmn 6= 0. This coupling forms gaps

in the crossing points, breaking the degeneracy of the Alfvén spectrum. It is known that

global eigenmodes can exist inside such gaps [31]. One example of such a global mode is

the Mirror Alfvén Eigenmode (MAE) which exists in the gap of the shear Alfvén continuum

introduced by the “mirror harmonic” B01 of the background magnetic field. The radial

position rn of the MAE gap corresponding to the toroidal mode numbers n and n+Nper and

to the poloidal mode number m can be found from the value of the rotational transform:

ι(rn) = (Nper/2 + n)/m.

Non-ideal effects such as finite gyro-radius effects or electron parallel dynamics replace

the shear Alfvén continuum by a discrete spectrum of Kinetic Alfvén Waves (KAW) [32].

Two KAWs can interact in the vicinity of the gap leading to the formation of the quasi-

steady states appearing as new global modes in the KAW spectrum [33]. Such a mode in the

vicinity of the “mirror” gap is called the Kinetic Mirror Alfvén Eigenmode (KMAE) [34].

There are experimental data indicating that the MAE and KMAE modes have possibly

been observed in stellarator experiments [35]. The mirror component of the equilibrium

magnetic field is especially important for the optimized stellarators of the Wendelstein line

[36]. A preliminary analysis of a stellarator reactor configuration has shown that the MAE

and KMAE modes possibly cause the largest energy loss, being resonant with most energetic

α-particles [37].

The simplest configuration where the mirror-type coupling can occur is the bumpy pinch.

It is obtained setting all Fourier components of the magnetic field Eq. (14) except the

mirror component B01 to zero so that B = B0[1 + c0 cos(Nperϕ)] with B0 = B00 and the

bumpiness parameter c0 = B01/B00. We consider a bumpy pinch with the parameters close

to the stellarator Wendelstein 7-X [36]: the length of the pinch L = 2πR0 with the large

radius R0 = 5.5 m, the minor radius ra = 0.55 m, the magnetic field on axis B0 = 2.5 T,

the number of the periods Nper = 5 and the bumpiness c0 = 0.12. The safety factor

q(s) = 0.0587s3 − 0.2071s2 + 0.0062s+ 1.1762 with s =
√

ψ/ψa the flux-surface label, ψ the

magnetic poloidal flux and ψa the poloidal flux on the plasma edge. The ion end electron
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densities are given by the expression (here a = i, e):

na(s) = n0(1.0011 − 0.04230s+ 0.6511s2 − 5.5094s3 + 27.496s4 − (15)

87.165s5 + 177.74s6 − 228.92s7 + 172.29s8 − 65.518s9 + 8.8187s10) .

The ion and electron temperatures are constant Ti(s) = Ti0 and Te(s) = Te0. The parameters

chosen are n0 = 1019 m−3, Ti0 = Te0 = 5 keV (such parameters correspond to β ≈ 0.67%

in the position of the gap). The numerical parameters in our simulations are as follows:

the number of ion markers Ni = 1 000 000, the number of electron markers Ne = 4 000 000,

the number of radial B-splines Nr = 64, the number of B-splines in the parallel direction

Nz = 8, the time step ∆t = 10−8 s.

We present the results of our simulations in Figs. 3-5. In Fig. 3, the corresponding part

of the Alfvén spectrum is plotted. One can see that the frequency of the simulated global

mode ω = 6 MHz lies slightly above the gap in the continuum which corresponds to the

Kinetic Mirror Alfvén Eigenmode (KMAE) [34]. In Fig. 4, the eigenmode structure of the

electrostatic potential and the magnetic potential is shown. One can see, as expected, that

the eigenmode is located around the position of the “mirror” gap (cf. Fig. 3) s = 0.5 in the

shear Alfvén spectrum. Both the mode width and the mode frequency agree well with the

reduced-kinetic approach proposed in Ref. [34]. However, in our simulations we clearly see

an even eigenmode (the electrostatic potential corresponding to the coupling Fourier modes

has the same sign) whereas a reduced-kinetic computation similar to Ref. [34] suggests that

the eigenmode is odd (the coupling Fourier components have opposite sign). A detailed

in-depth comparison of the reduced-kinetic model [34] and the gyrokinetic theory is needed

to understand this rather subtle discrepancy. Such a study is, however, beyond the scope

of the present paper whose main objective is to report the results of our PIC simulations.

In Fig. 5, the time evolution of the electrostatic potential and the magnetic potential is

plotted. One can see that the Fourier modes with the toroidal mode numbers differing in

Nper (n = −14 and n = −9) couple with each other (they have the same phase and similar

amplitude) indicating that we have found indeed the KMAE mode. This mode is damped.

The damping rate is γ = −40.12 kHz so that γ/ω ≈ 0.67%.

Continuing the simulation for a longer time, we have found that there are other damped

components in the resulting time trace in addition to the dominant eigenmode described

above. These additional components (e.g. KMAEs with several knots in their radial struc-
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ture, see Ref. [34]) form a discrete spectrum in the vicinity of the mirror-induced gap in the

shear Alfvén spectrum. We have observed similarly complex time traces in the vicinity of

the toroidicity-induced gap. This issue will be discussed in detail in the next paragraph.

V. TOROIDAL ALFVÉN EIGENMODE

A more prominent example of the global gap modes in the shear Alfvén spectrum is

the Toroidal Alfvén Eigenmode (TAE). This is a global mode inside the gap induced by

the “toroidiciy” harmonic B10 in the Fourier expansion of the background magnetic field

Eq. (14). The radial position rm of the gap corresponding to the poloidal mode numbers m

and m+1 can be found from the value of the safety factor: q(rm) = (1/2+m)/n with n the

toroidal mode number. Analogously to the case of the mirror-induced gap, an interaction

between two KAWs in the vicinity of the toroidicity-induced gap can lead to a formation

of meta-stable states appearing as a new global kinetic mode in the shear Alfvén spectrum,

the so-called Kinetic Toroidal Alfvén Eigenmode (KTAEs), see Ref. [1, 2, 33].

We consider a large-aspect-ratio circular cross-section tokamak with the major radius

R0 = 10 m, the minor radius ra = 1 m, the magnetic field on the axis B0 = 0.95 T,

the safety factor q(r) = 1.6 + 0.6(r/ra)
2 with r the small radius. The ion and electron

temperature and density profiles are taken to be constant with Ti = Te = 3.8 keV and

n0 = 2× 1018 m−3 [these parameters correspond to β = 2µ0n0(Ti +Te)/B
2 ≈ 0.7%]. We use

flat profiles in order to exclude the influence of diamagnetic effects on the TAE mode (their

role will be studied elsewhere).

In the PIC method, one solves the gyrokinetic Vlasov-Maxwell system as an initial-

value problem. We choose as initial condition the perturbation of the electron distribution

function with the toroidal mode number n = − 2 and the poloidal spectrum including two

harmonics with m = 3 and m = 4. For the safety factor used, the gap in the shear Alfvén

spectrum resulting from the coupling of these poloidal harmonics corresponds to qm = 1.75

and appears at the radial position sm = 0.5 (here, s =
√

ψ/ψa is the normalized poloidal

flux). We choose the initial electron perturbation to be radially localized around the position

of the gap sm. The initial velocity space dependency of the electron distribution function is

chosen to be Maxwellian. The initial ion distribution function is chosen to be zero.

In Fig. 6, the solution of the initial-value gyrokinetic problem is plotted (both the elec-
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trostatic and magnetic potentials). In this simulation, the numerical parameters are the

same as in Table III. One can see a damped signal with a characteristic beating structure

indicating that there are several eigenmodes mixed in the time trace. Note that these eigen-

modes have close frequencies (the beating frequency is small) which makes the eigenmode

separation technically difficult: one needs long runs but the runtime is limited for damped

modes because at some point the physically relevant damped signal becomes comparable

with the numerical noise. This in contrast with the eigenvalue approach Ref. [2] where a

particular eigenmode is selected naturally.

One can estimate the frequencies of the modal components using the Fourier analysis.

For the signal shown, the Fourier component with the largest amplitude is that with the

frequency ω = 0.417 MHz (see Fig. 7). In addition, the Fourier component with the fre-

quency ω = 0.44 MHz can also be clearly seen. Both dominant frequencies are inside the

toroidicity-induced gap (see Fig. 9) indicating that these eigenmodes belong to the TAE fam-

ily. Indeed, in Fig. 8 one can clearly see two coupling poloidal harmonics with the poloidal

mode numbers m = 3 and m = 4 (the much smaller sidebands can be seen as well). Note

that the dominant poloidal harmonics of the electrostatic potential coincide in their phase

whereas they have opposite phases for the magnetic potential. Formally, this can be seen

combining the local condition for the appearance of the gap in the shear Alfvén spectrum

k‖m + k‖m+1 = 0 with the ideal MHD property E‖ = −∇‖φ− ∂A‖/∂t ≈ 0 where k‖ is the

parallel wave number and E‖ is the parallel electric field.

In the ideal MHD calculations (using an eigenvalue code) we have found two TAE modes:

one with the frequency at the lower end of the gap and another one with the frequency at

the upper end (see Fig. 9). One sees that the frequencies found with the gyrokinetic PIC

code are shifted slightly inside the gap comparing with the ideal MHD frequencies. This can

be caused by several reasons. First of all, the gyrokinetic model includes all kinetic effects

such as the finite electron conductivity, finite ion compressibility, Finite Larmor Radius

effects etc. All these effects are absent in the ideal MHD model. Another possible reason for

the differences between the ideal MHD and the gyrokinetic frequencies may be related to

the treatment of the plasma background. In the PIC simulation, we take an analytic large-

aspect-ratio expressions for the background magnetic field whereas the ideal MHD code uses

numerical equilibria (produced by the VMEC code [38]). Also, the ideal MHD code assumes

the plasma density profile to decrease at the edge whereas the flat density profile is used for
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the PIC simulation.

In Fig. 10, the eigenmode structure of the ideal MHD TAE mode with the frequency at

the lower end of the gap is compared with the radial structure resulting from the gyrokinetic

PIC simulation. The gyrokinetic radial structure has been taken at some particular point

of time and represents a typical pattern seen in the simulations. This pattern can be clearly

seen, for example, near the maximums of the TAE oscillations (see Fig. 8). At the points

where the signal crosses zero, one sees usually more complicated structures dominated by the

sidebands. Both the gyrokinetic radial pattern and the ideal MHD eigenmode are localized

around the radial position rm of the gap. In Fig. 10, one can see that the gyrokinetic

radial pattern resembles the ideal MHD eigenmode reasonably well, especially taking into

account that the gyrokinetic signal is actually a mixture of more than one eigenmode. Also,

the differences in the gyrokinetic and ideal MHD models as well as the differences in the

treatment of the plasma background mentioned above may have influenced the result.

The ideal MHD results have been calculated using a reduced MHD model which is the

limiting case of the kinetic theory applied here. Within the complete MHD model (such

as used in CAS3D [26]) the TAE mode properties can be modified by finite β effects (the

mode structure becomes more localized in the radial direction and the mode frequency is

closer to the continuum). A detailed in-depth comparison of the gyrokinetic simulations in

the MHD parameter range with the different formulations of the ideal MHD theory remains

an important task for future research.

Note that the Fourier analysis is not really accurate for the damped sine waves (and can

not be used to determine the damping rates). Instead, we employ Prony’s method [39]. This

method assumes that the signal can be expressed as a sum of complex exponents:

φ(t) =
N
∑

k=1

Ck exp(λkt) , λk = iωk + γk . (16)

Being an extension of the Fourier analysis, Prony’s method allows to estimate simultaneously

the damping rate, the frequency and the complex amplitude of the modes contributing to

the PIC solution of the initial-value gyrokinetic problem.

In Tables I, II and III, the amplitudes (absolute values), frequencies and damping rates

obtained with Prony’s method [see Eq. (16)] are shown for simulations using different particle

and grid resolutions. Table I corresponds to a simulation with Ni = 1 800 000 ion markers,

Ne = 7 200 000 electron markers, Nr = 48 radial B-splines, Nz = 32 B-splines in the toroidal
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direction and the time step ∆t = 10−8 s. Table II has been obtained in a simulation with

Ni = 2 000 000, Ne = 8 000 000, Nr = 80 and other numerical parameters the same as in

Table I. Finally, Table III results from a simulation with Ni = 4 000 000, Ne = 16 000 000,

Nr = 80 and other numerical parameters the same as in Table I. One sees that, in

addition to the eigenmodes found using the Fourier analysis, eigenmodes with considerably

larger damping rates are also present in the signal (possibly, KTAE modes). The relative

contribution of a particular eigenmodes to the signal appears to depend on the particle

and grid resolution. One can see that the dominant frequencies found with the Fourier

transform correspond to the Prony’s modal components with the smallest damping rates.

These contributions are present at all resolutions. The relative deviation of the dominant

frequencies over the simulations is less than 1%. The damping rates show somewhat larger

relative deviations but this is due to the much smaller absolute values of the damping rates

compared to the frequencies. One sees that our simulations have converged both in terms

of the particle and grid resolution.

In conclusion, the existence of several eigenmodes with comparable frequencies and damp-

ing rates in the vicinity of the toroidicity-induced gap in the shear Alfvén spectrum is not

something unusual. In fact, this is a typical situation [31]. In this paper, we have seen that

advanced methods, such as Prony’s method or its refinements, can be used to separate the

eigenmodes mixed in the signal resulting from the initial-value PIC simulations.

VI. KINETIC BALLOONING MODE

At a critical value of the plasma pressure, a new branch of unstable electromagnetic

modes can be excited [40], the so-called Kinetic Ballooning Modes (KBMs) or Alfvén Ion

Temperature Gradient driven modes (AITG). In Ref. [41], it has been shown that the low-

frequency part of the Alfvén continuum can become unstable in the presence of the ion

temperature gradient. The AITG modes are drift-Alfvén eigenmodes, destabilized by the

free energy of the thermal particles in the presence of the pressure gradient, resulting from

the discretization of the unstable continuum due to non-ideal effects (e.g. Finite Larmor

Radius effects). These instabilities may have significant implications for both energetic and

thermal particle transport.

We consider a circular cross-section tokamak with the major radius R0 = 2.0 m, the minor
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radius ra = 0.5 m, the safety factor q(ρ) = 1.25+0.67ρ2+2.38ρ3−0.06ρ4 where ρ = r/ra, r is

the small radius. The temperature profiles Ti(ρ) = Te(ρ) = T0 exp{−0.5 tanh[(ρ−0.6)/0.2]}
with the temperature on the axis T0 = 7.5 keV. The density profile is defined as n0(ρ) =

na exp{−0.44 tanh[(ρ − 0.6)/0.35]} with the density on the axis na chosen appropriately

in order to obtain the β-value needed. We choose the toroidal mode number n = 7 and

the poloidal mode numbers 8 ≤ m ≤ 20. Results of our simulations are presented in

Figs. 11 and 12. In Fig. 11, the frequency and the growth rate of the instability is plotted.

One can see how the electrostatic mode (here, the Trapped Electron Mode coexisting with

the Ion Temperature Gradient driven mode) is replaced by the KBM instability when β

is large enough (recall that the time evolution particle-in-cell approach delivers the most

unstable mode in the spectrum). In Fig. 12, the spatial structure of the electrostatic and

the magnetic potentials is shown in the tokamak cross-section. One can see that both

potentials have ballooning structure. The numerical parameters in our simulations are as

follows: the number of the ion markers Ni = 1 000 000, the number of the electron markers

Ne = 4 000 000, the number of radial B-splines Nr = 64, the number of B-splines in the

toroidal direction Nz = 32, the time step ∆t = 5 × 10−9 s.

VII. CONCLUSIONS

In this paper, we have presented global gyrokinetic PIC simulations of the Global Alfvén

Eigenmode, Kinetic Mirror Alfvén Eigenmode, Toroidal Alfvén Eigenmode, and the Kinetic

Ballooning Mode. The key numerical component of our simulations is the solution of the

cancellation problem [10, 11] using the iterative approach of Ref. [14]. This allows to keep

the number of markers in the same range as in comparable electrostatic PIC simulations.

The main result of our paper is to demonstrate that global Alfvén modes can be treated

in tokamak and pinch geometries in a unified manner with the gyrokinetic PIC method.

Up to now, the kinetic properties of the global Alfvén modes in a tokamak geometry have

been approached using reduced-kinetic [1], hybrid fluid-kinetic [42] or gyrokinetic-eigenvalue

approaches [2]. The drawback of the reduced-kinetic and hybrid fluid-kinetic approaches is

that they can not guarantee to include all relevant physical mechanisms. The gyrokinetic

eigenvalue approach being capable to capture all physics is limited to linear problems only.

Being a first-principle non-perturbative approach, the gyrokinetic PIC simulations can re-
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cover all kinetic effects, too. For example, in this paper we have seen that such purely

kinetic phenomena as the intrinsic damping of the global Alfvén eigenmodes due to back-

ground plasma and formation of kinetic global Alfvén modes in the continuum part of the

spectrum (e.g. the Kinetic Mirror Alfvén eigenmode in Sec. IV) are present in the gyroki-

netic PIC simulations. Recovering such kinetic properties of the global Alfvén modes with

the gyrokinetic PIC method validates this approach as a reliable tool for future research

in the MHD parameter regime. This validation appears to be especially important in the

light of the difficulties which the electromagnetic PIC simulations have had for a long time

[43–45] and which have been resolved only recently [10, 11, 14].

In contrast with the eigenvalue approach, the PIC method can be easily extended to

nonlinear regimes. The linear simulations presented in this paper are an important step

towards the global nonlinear gyrokinetic treatment of electromagnetic modes in tokamak

geometry (both electromagnetic turbulence and nonlinear dynamics of kinetic MHD modes

destabilized by the fast particles). The PIC simulation of the kinetic effects caused by the

fast particles will be the focus of our future work.
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FIG. 1: (Color online): The shear Alfvén spectrum in a screw pinch. The GAE mode frequency

resulting from the PIC simulation is compared with the MHD result. The solid line corresponds

to the continuum branch with the poloidal mode number m = 2 and the toroidal mode number

n = 1.
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FIG. 2: (Color online): The eigenmode structure (the electrostatic and magnetic potentials in

arbitrary units) of the GAE mode in screw pinch geometry. The PIC simulation result is compared

vs. the MHD result.
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resulting from the PIC simulations is plotted vs. the continuum branches corresponding to the

coupling modes with the toroidal mode numbers n = −14 and n = −9. The poloidal mode number

is m = 13.
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FIG. 4: (Color online): The eigenmode structure (the electrostatic and magnetic potentials in

arbitrary units) of the KMAE mode in bumpy pinch geometry. One sees two coupling modes with

the toroidal mode numbers n = −14 and n = −9. The poloidal mode number is m = 13.
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FIG. 5: (Color online): Time evolution of the electrostatic and magnetic potentials (arbitrary

units). The KMAE mode in bumpy pinch geometry. One sees that the modes with the toroidal

mode numbers n = −14 and n = −9 couple with each other. The poloidal mode number is m = 13.
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units). The TAE mode in a tokamak with the coupling poloidal mode numbers m = 3 and m = 4.

A beating structure indicates that more than just one eigenmode is present in the signal.
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frequencies present in the signal which explains the beating seen on Fig. 6.
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well correlated with each other. The much smaller sidebands are plotted as well. The arrows show

a typical point in time at which the radial pattern (Fig. 10) can be clearly seen.
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end of the gap, see Fig. 9). The gyrokinetic radial pattern is taken at the point of time indicated

with arrows in Fig. 8.

27



0 1 2 3 4 5 6

β  (%)

0

0.5

1

1.5

2

ω
  (

M
H

z)

0 1 2 3 4 5 6

β  (%)

0

0.2

0.4

0.6

0.8

γ 
 (

M
H

z)

ITG + TEM
ITG + TEM

KBM KBM

FIG. 11: The frequency and the growth rate of the ITG+TEM (small β) and KBM (larger β)

instabilities in tokamak geometry.
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FIG. 12: (Color online): The structure of electrostatic and magnetic potentials (KBM instability)

in the tokamak cross-section. Parameters as on Fig. 11 corresponding to the point with β = 4%.
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TABLE I: see parameters in the main text

|Ck| ωk γk

13.2 % 0.44 MHz -6.5 kHz

12.2 % 0.38 MHz -50.9 kHz

11.4 % 0.5 MHz -19.4 kHz

10.2 % 0.53 MHz -63.9 kHz

8.4 % 0.419 MHz -4.12 kHz
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TABLE II: see parameters in the main text

|Ck| ωk γk

26.4 % 0.44 MHz -6.81 kHz

17.6 % 0.42 MHz -4.24 kHz

10.4 % 0.51 MHz -25.38 kHz

5.1 % 0.5 MHz -11.92 kHz
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TABLE III: see parameters in the main text

|Ck| ωk γk

21 % 0.44 MHz -6.3 kHz

15.5 % 0.4 MHz -49.4 kHz

14.3 % 0.417 MHz -4.3 kHz

6.7 % 0.513 MHz -22.8 kHz
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