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Nuclear Reaction Analysis with3He holds the promise to measure Deuterium depth profiles up tolarge
depths. However, the extraction of the depth profile from themeasured data is an ill-posed inversion problem.
Here we demonstrate how Bayesian Experimental Design can beused to optimize the number of measurements
as well as the measurement energies to maximize the information gain. Comparison of the inversion proper-
ties of the optimized design with standard settings revealshuge possible gains. Application of the posterior
sampling method allows to optimize the experimental settings interactively during the measurement process.

PACS numbers: 02.50.Le, 02.50.Tt, 25.55.-e, 29.85.Fj

I. INTRODUCTION

The rising price for oil has recently shifted the focus to other possible sources of energy, preferably without adverse effects to
the environment. One of the methods presently being developed is nuclear magnetic fusion. The objective of fusion research is
to harness the energy provided by the fusion of hydrogen isotopes. In the fusion experiment ITER, presently under construction
in Cadarache, France, the necessary data to design and operate an electricity-producing plant shall be gained. ITER is atokamak,
an intermittent operating device in which strong magnetic fields confine a torus-shaped plasma. Since the confinement is not
perfect (and must not be) there are always interactions between the plasma and the plasma-facing (wall) components (PFCs)
which have to be taken into account. One of the key aspects in the licensing process of ITER is a strict upper limit of the
total amount of radioactive tritium accumulated in the vessel walls, which is presently at 700g tritium[1]. The prediction of
the amount of retained tritium is complicated by the material choice of ITER (Fig.1): The main vessel walls are Beryllium,
the strike-points are made of carbon (CFC) and the other parts of the divertor are tungsten. During the operation of ITER the
interaction of the plasma and high energy 14MeV-neutrons with the vessel walls will lead to erosion, redeposition, material
mixing and alloy formation. Since even the hydrogen retention properties of pure materials are still subject to currentresearch,
a significant amount of additional experimental data is required to develop and calibrate the theoretical models which will be
needed to process the huge number of material combinations created in ITER.

However, even the first step - measuring hydrogen depth profiles in material composites - is challenging for many reasons;
here we will mention only two: a) Hydrogen and its isotopes are very volatile, which can easily distort measurements of depth
profiles and b) Hydrogen is usually the main component of the residual gas in vacuum chambers which precludes the use of
many well-established analysis methods.

One method which holds great promise to overcome these difficulties is the Nuclear Reaction Analysis (NRA) of deuterium
using3He as probing particle. It is a specific and sensitive method,and has a sufficient analysis depth. However every data point
takes about 30min to measure and the extraction of the concentration depth profile is an ill-posed inversion problem requiring
the deconvolution of the measured data vector, here even more challenging than in Rutherford Backscattering[2]. Therefore the
experimental setup (ie the choice of the analysis energies)should provide a maximum of information. So far the most common
choice of the3He energies for the measurements was simply equidistant. Using Bayesian Experimental Design the performance

FIG. 1: In-vessel view of ITER. The surface of the main chamber is Beryllium, the material of the divertor (in lower part of the vacuum vessel)
is carbon and tungsten. Source:[1], published with permission of ITER.
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of the method can be improved considerably (in some cases up to orders of magnitude) and quantitative measures can be derived
about the expected utility of further (time consuming) measurements. sectionNuclear Reaction Analysis The basic principle of
Nuclear Reaction Analysis is straightforward: The sample is subjected to an energetic ion beam (here3He) with initial energy
E0

i and incoming angleφ , which reacts predominately with the species of interest (Deuterium) and the products of the reaction
are measured under a specified angleθ . Given the total number of impinging ions Ni , the energy dependent cross-section of the
reactionσ (E), the efficency of the detection and the geometry of the set-upµ the measured total signal countsdi depend (in the
limit of small concentrations) linearly on the concentration profilec(x) of the species in the depthx:

di = d
(

E0
i

)

= µNi

∫ x(E0
i )

0
dxσ (E)c(x) = µNi

∫ x(E0
i )

0
dxσ

(

E
(

x,E0
i

))

c(x)+ εi, (1)

whereεi ∼ N(0,σi) represents normal distributed noise. Repeated measurements with different initial energies of3He provide
increasing information about the Deuterium depth profile. The question addressed in the following is:Given a set of already
measured data d

(

E0
i

)

which measurement energy should be chosen next?
To evaluate Eq. 1 we first need to specify the cross sectionσ (E) and the energyE (x) of the incident particle on its path

through the sample.

A. Cross-Section

The relevant cross-section for the reaction D+3He→ p+ 4He+ 18.352 MeV (in standard notation written as D
(

3He, p
)

4He)
has been (re-)measured recently [3] in the range of 550 keV to6MeV and the obtained cross-section values have been given in
tabular form. Using the same method as [3] we added several cross-section measurements at energies below 690keV and fitted
both data sets taking into account also earlier measurements [4, 5]

σ (E [MeV]) = 829.98∗ E2.83962
(

0.270713∗e−2.2158E+0.0182765
)

E3.47626+0.270713∗e−1.17229E−0.00123669
[mb] . (2)

using the Levenberg-Marquardt algorithm minimizing theχ2-misfit with the variance set todi . The cross-section is plotted in
Fig.2a and shows a broad maximum around 630 keV and is above 3 MeV nearly constant at 8 mb/sr up to 6 MeV (above that
there are no data available). The reaction energy is very high (Q=18.352 MeV) and most of the energy is transferred to the
resulting proton. This leads to a very good S/N-ratio of the measurement because other particles can easily be separatedby
energy.

B. Energy Loss

The energy loss of the impinging3He-ion in the sample is determined by thestopping power S(E) of the sample

dE
dx

= −S(E), (3)

which can be solved to get the depth dependent energyEi(x) for different initial energiesE0
i . Parameterizations and tables ofS

for different elements are given in [7]. Since the amount of hydrogen in the sample is usually well below 1% (with the exception
of a very thin surface layer), the influence of the hydrogen concentration on the stopping power can be neglected in most cases.

C. Simulation of Mock Data

To simulate mock data for typical accelerator parameters a tungsten sample
(

ρ = 19.3g/cm3
)

with a (high) surface con-

centration of 12% Deuterium, followed by an exponentially decaying Deuterium concentration down to a constant background
level, described by

c(x) = a0∗exp

(

− x
a1

)

+a2 = 0.1exp

(

− x

2.5∗1018 at
cm2

)

+0.02 (4)

has been used [22]. The corresponding mock data for a set of initial energies E0={500, 700, 1000, 1300, 1600, 2000, 2500,
3000}keV is shown in Fig. 2b. The variations in the detected yieldsdisplay the interplay of the increasing range of the ions
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FIG. 2: a) Differential cross-section of the nuclear reaction D(3He,p)4He in the laboratory system with a reaction energy of Q=18.352 MeV
(left). b) On the right hand side the typical results for an NRA measurement are shown (simulated data of a tungsten samplewith an exponen-
tially decaying D concentration profile (cf. Eq.4). The uncertainties due to the counting statistics are usually dominated by the uncertainty of
the analysis current.

with increasing energy and the reduced cross-section at higher energies modulated with the decreasing Deuterium concentration
at larger depths. The increase of the signal by raising the initial energy from 2500 keV to 3000 keV is already caused by the
constant Deuterium background of 2%. The accelerator time which would be needed to obtain the 8 data points is around one
working day taking into account the necessary interleaved calibration measurements:The ion bombardment causes an energy
and depth dependent loss of Deuterium. Commonly a first ordercorrection is applied by normalizing the yields with respect to
the yields obtained from repeated calibration measurements using the same (typically low, e.g. 690keV) initial energy[23].

The uncertainty of the detector is given by Poisson-statistics. However, fluctuations in the beam current measurementsare
very often the dominating factor, affecting the pre-factorNi in Eq.1. An accuracy of up to 3% can be achieved (e.g. by
using the number of Rutherford-scattered3He ions on a thin gold-coating on top of the sample as reference). The error of the
renormalization procedure is harder to quantify. For simplicity we will useσi = max

(

5%di,
√

di
)

as uncertainty of the data in
the following, acknowledging that there is room for improvement.

II. BAYESIAN EXPERIMENTAL DESIGN

Bayesian Experimental Design (BED) offers the tempting possibility to actively select (and optimize) the experimental pa-
rameters for the next measurement(s) based on objective criteria. Especially if measurements are expensive or time consuming
(like in the case of energy changes of an accelerator) it is a huge advantage to know where to look next, so as to learn as much
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as possible. The problem of experimental design has alreadybeen studied by Lindley back in 1956 [10] in a Bayesian setting
and Fedorov published his influential book in 1972 [11] - but the limitations in computational power limited the application of
experimental design almost always to simple (linear) problems. This situation changed in the recent years and consequently
there is a renewed interest to apply BED also to (non-linear)real-world problems (see e.g. [12] and references therein or e.g.
[13–16]. Not surprising the interest is biggest in branchesof physics where the experimental possibilities are severely restricted:
Astronomy, Fusion research,... Given the excellent account of BED in [12] we only summarize the key principles: In a firststep
an appropriateutility function Uhas to be agreed upon: It describes the value which we assign to the measurement results of an
experiment and may include parameters like costs of an experiment, duration, parameter uncertainty etc. Several utility func-
tions are considered in [17]. With focus on parameter estimation it was proposed [10, 18] to use the Kullback-Leibler divergence
(KLd) between the posterior and the prior distributions as utility function. The KLd for a new datum D is given by

UKL (D,d,η) =

∫

dα p(α|D,d,η) log

[

p(α|D,d,η)

p(α|d,η)

]

. (5)

Next we try to identify the actionη which maximizes the expected utility. ’Expected’ utility because we have to account for the
prediction uncertainty forD. To compute the expected utility (EU) we have to average overthe new datum D weighted by the
marginal likelihood for the new datum given the observationof the old datad

EU (d,η) =

∫

dD p(D|d,η) ·UKL (D,d,η)

=

∫

dD p(D|d,η)

∫

dα p(α|D,d,η) log

[

p(α |D,d,η)

p(α |d,η)

]

=

∫

dD p(D|d,η)

∫

dα
p(D|α,d,η) p(α|d,η)

p(D|d,η)
log

[

p(D|α,d,η) p(α|d,η)

p(α|d,η) p(D|d,η)

]

=
∫

dD
∫

dα p(D|α,d,η) p(α|d,η) log

[

p(D|α,d,η)

p(D|d,η)

]

=

∫

dD
∫

dα p(D|α,d,η) p(α|d,) log

[

p(D|α,d,η)
∫

dα p(D|α,d,η) p(α|d)

]

(6)

where we dropped theη−dependence of the posterior ofα in the last line, since our knowledge aboutα is not influenced by a
possible future action. Closer inspection of Eq. 6 reveals that only two different probability distributions are required to compute
the expected utility: the posterior distribution ofα given the old datad, p(α|d) and the likelihood of the new datumD based on
the previous measurements,p(D|α ,d,η).

A. The Linear Design

Assuming that the concentration profilec(x) depends linearly on the concentrationsci (xi) , i = 1..q at a given set ofq support
pointsx then Eq.1 can be recast in the following form

d = f + ε = M c+ ε, (7)

where the data vectord is of sizep, the matrixM is a pxq−matrix and the parameter-vectorc hasq components. However, the
requirement of linearity applies only to the concentrationparameter vectorc, the functional form of the concentration may be
much more complex, e.g.c(x) = c1 ∗ (x−x3)

4 + c2∗
√

|x−x1|, although almost alwaysc(x) is chosen to be constant between
the different support points:c(x) = ci ,∀x∈ [xi ,xi+1] or as linear interpolation between the support points. The noise vectorε is
normally distributedε ∼ N

(

0,Σ−1
)

, whereΣ is a diagonal matrix with the entriesΣ
ii

= 1/σ2
i . Every row ofM

j
is given by the

solution of Eq. 1 for a specified initial energyE0
j , m

(

E0
j

)T
. The consideration of the uncertainties in the entries of the matrix

due to energy straggling of the impinging particles is beyond the scope of the present paper, but see e.g. [19].
With a Gaussian likelihood for the existing data and a flat prior for the parameters the posterior of the concentration vector

reads

p(c|d,η) ∝ p(d|c,η) =
1
Z

exp

(

−1
2

(

d−M c
)T Σ

(

d−M c
)

)

=

√

detA

(2π)q exp

(

−1
2

(

c−c0
)T

A
(

c−c0
)

)

(8)
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FIG. 3: Expected Utility for subsequent measurements. All measurements are performed with the initial energy E0 suggested by the maximum
of the EU in the corresponding cycle (indicated by marks on the energy axis).

with

A = MTΣM and c0 = A−1MTΣd. (9)

The posterior distribution ofc including the new data pointD with its uncertaintyσ , p(c|D,d,η) can similarly be cast in a
Gaussian form. Therefore Eq. 6 can be solved analytically [11] and yields a simple closed form for the exponential utility
[15, 16]:

EU(d,η) =
1
2

(log(1+G)− r) (10)

with

G =
m(η)T A−1m(η)

σ2 . (11)

If p(D|c,η) is Gaussian thenr = 0. The variation of the EU depends on the vectorm(η) which in turn is uniquely determined
by the choice of the initial energyE0

p+1. The optimum (maximum of the EU) can be found by a simple 1-D scan of the energy.
The sequential design approach in action is displayed in Fig3. Starting from the surface the concentration at increasingly

larger depth intervals is of interest. For this example the chosen depths are 0 nm, 80 nm, 240 nm, 470 nm and 950 nm. After
initial measurements at 400 keV, 700 keV and 3000 keV (representing the lower and upper limit of the useful energy range for
the measurements and one calibration measurement) the bestenergy for the next measurement has to be determined. The EU for
this first cycle has a maximum at 1250keV (solid line). After ameasurement with this energy the EU for the next measurement
has its maximum at 960keV and about twice the EU than before. This, on the first glance, surprising increase of the EU can
be made transparent: With 5 unknowns and 5 (informative) measurements the solution space of this linear problem no longer
covers a sub-manifold of the parameter space: It ’collapses’ and the volume of the ’occupied’ parameter space starts to be
determined by the measurement uncertainties. Therefore the 5-th measurement has a very high EU. In the following cycle(s)
the amplitude of the EU is much lower since the subsequent measurements now gradually shrink the ’volume’ of the parameter
posterior distribution. As long as the EU is above the intended threshold for new measurements (which depends on the addressed
physical problem) further measurements are indicated.

How much better is the BED derived experiment compared to an experiment with the same number but equidistant chosen
initial energies? The entropy of the parameter posterior distribution would be the obvious quantity to compare. However, for the
time being, many scientists are not happy with this measure and prefer a more familiar measure, e.g. the condition number. The
condition number of the (pseudo-)inverse ofM is often used to characterize linear least squares problems[20] and is a measure
how strongly uncertainties in the data vectord may be amplified by multiplication with the pseudo-inverse matrix. Using this
measure the BED optimized setting surpasses the equidistant experiment by a factor of more than 100 (!).

B. Non-linear Design

The analytical solution in the preceeding case was possiblebecause several approximations have been applied: The integration
range of the integration over the predicted datum (a positive quantity) had to be changed from

∫ ∞
0 dD to

∫ ∞
−∞dD. Given the actual
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number of counts and the uncertainties this can easily be justified. Unfortunately, a similar change of the integration limits had
to be applied also in the parameter integration (from

∫ 1
0 dc to

∫ +∞
−∞ dc) and here it definitely affects the results. The analysis could

be repeated substituting the analytical integration by thenumerical counterparts (e.g. using codes like VEGAS [20] orMCMC
approaches). Furthermore, the uncertainty of the predicted datum D is not constant but proportional to the signalσD ∝ D and
therefore also the integrations over the data space have to be done numerically. Under those circumstances there is no difference
in the computation to a non-linear experimental design problem. Additionallyit turned out that the actual quantity of interest is
the decay length of the hydrogen depth profile and that quite accurate data for the surface hydrogen concentration are available
(additionally measuring the4He of the D

(

3He, p
)

4He reaction). Therefore the optimal energy settings for theestimation of the
parametersa1 anda2 of concentration profiles of the functional form of Eq. 4 haveto be computed. However, in non-linear
experimental design the measured data influences the EU (in contrast to the linear case: the maximum of the EU is independent
of the actually measured data, cf. Eq. 10) and this poses a practical problem: The next accelerator energy has to be determined
after the previous measurement. And longer computation times to optimize the EU, causing delays, are not tolerable.

Here the posterior sampling approach, suggested in [12], proved very valuable. It turned out that sets of posterior samples
p(a1i ,a2i|d,η) , i = 1..N drawn fromp(a1,a2|d,η) could be generated quite efficiently (partly due to the low dimensionality of
the parameter space). With that sample (typically of size 1000) the denominator of the logarithm in Eq. 6 is given by a simple
summation

∫

dα p(D|α,d,η) p(α |d) ≈
N

∑
i=1

p
(

D|αi ,d,η
)

. (12)

The biggest saving comes from the fact that the posterior sample is independent from the actual value ofD and of the design
actionη : all computations are reduced to repeated evaluations of the likelihood, which can efficiently be vectorized. Finding the
best energy is a matter of less than 5 minutes(!) on contemporary hardware (Linux-PC, 2GHz).

In Fig. 4 three cycles of the non-linear BED are shown: After afirst measurement at 500keV the posterior distribution of
{a1,a2} is visualized in the upper left graph by the posterior sample. The single measurement does not allow to distinguish
between a large decay constanta1 and low constant offseta2 or vice versa. The EU, plotted in the upper right graph, favors now
a measurement at the other end of the energy range (the maximum of the utility function is encircled). After a measurementwith
3MeV 3He the ’area’ of the posterior distribution is significantlyreduced (middle row, left graph): The background concentration
is below 3% but the decay length is still quite undetermined.The EU has a maximum at 1500 keV, still with a pretty high
EU. Performing a measurement with 1500keV localizes the posterior distribution around the true (but unknown value ofa1 =
395nm anda2 = 0.02). The next measurement should be performed at 1200keV butthe EU is significantly lower than before:
subsequent measurements are predominantly improving the statistics: a second measurement at 3 MeV provides nearly thesame
information.

III. CONCLUSION AND OUTLOOK

The concept of Bayesian Experimental Design allows to objectively optimize experimental designs. Here we presented two
different approaches to optimize NRA depth profiling: Firstin a linear setting, allowing an analytical solution and straightforward
parametric studies. Second, a time-critical non-linear experimental design problem which could be tackled using posterior
sampling. Both optimization procedures may considerably increase the accuracy of the derived depth profiles compared to
the present approach and at the same time reduce the overall measurement time by signaling a diminishing utility of further
measurements. With the posterior sampling approach many sequential measurements can now be optimized on the fly: This
opens up the door for a wealth of new applications of BED in thefield of ion beam analysis[2] as well as in other physical areas
[12, 16, 21]
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