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Nuclear Reaction Analysis withHe holds the promise to measure Deuterium depth profiles uarge
depths. However, the extraction of the depth profile fromntteasured data is an ill-posed inversion problem.
Here we demonstrate how Bayesian Experimental Design casdubto optimize the number of measurements
as well as the measurement energies to maximize the infammgain. Comparison of the inversion proper-
ties of the optimized design with standard settings revhatge possible gains. Application of the posterior
sampling method allows to optimize the experimental sgstimteractively during the measurement process.

PACS numbers: 02.50.Le, 02.50.Tt, 25.55.-e, 29.85.Fj

I. INTRODUCTION

The rising price for oil has recently shifted the focus toesthossible sources of energy, preferably without advdfeets to
the environment. One of the methods presently being deedlpnuclear magnetic fusion. The objective of fusion redes
to harness the energy provided by the fusion of hydrogeniest In the fusion experiment ITER, presently under canstn
in Cadarache, France, the necessary data to design andeogerdectricity-producing plant shall be gained. ITERtislke@amak,
an intermittent operating device in which strong magneéld§ confine a torus-shaped plasma. Since the confinemeot is n
perfect (and must not be) there are always interactionsdetwthe plasma and the plasma-facing (wall) componentsgPFC
which have to be taken into account. One of the key aspectseitidensing process of ITER is a strict upper limit of the
total amount of radioactive tritium accumulated in the ebsgalls, which is presently at 700g tritium[1]. The predict of
the amount of retained tritium is complicated by the matasfeice of ITER (Fig.1): The main vessel walls are Beryllium
the strike-points are made of carbon (CFC) and the othes pthe divertor are tungsten. During the operation of ITE& t
interaction of the plasma and high energy 14MeV-neutrorb e vessel walls will lead to erosion, redeposition, make
mixing and alloy formation. Since even the hydrogen retenfiroperties of pure materials are still subject to curresearch,

a significant amount of additional experimental data is ireglto develop and calibrate the theoretical models whighbs
needed to process the huge number of material combinatieated in ITER.

However, even the first step - measuring hydrogen depth esdfil material composites - is challenging for many reasons;
here we will mention only two: a) Hydrogen and its isotopes\ary volatile, which can easily distort measurements pthle
profiles and b) Hydrogen is usually the main component of ésédual gas in vacuum chambers which precludes the use of
many well-established analysis methods.

One method which holds great promise to overcome theseudiiéis is the Nuclear Reaction Analysis (NRA) of deuterium
using3®He as probing particle. It is a specific and sensitive methnd has a sufficient analysis depth. However every data point
takes about 30min to measure and the extraction of the ctnatien depth profile is an ill-posed inversion problem rieiqg
the deconvolution of the measured data vector, here evea amallenging than in Rutherford Backscattering[2]. Themethe
experimental setup (ie the choice of the analysis energhem)ld provide a maximum of information. So far the most canm
choice of the’He energies for the measurements was simply equidistaintg Bayesian Experimental Design the performance

FIG. 1: In-vessel view of ITER. The surface of the main chamber igllgen, the material of the divertor (in lower part of the vaan vessel)
is carbon and tungsten. Source:[1], published with perinis®f ITER.
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of the method can be improved considerably (in some casesangérs of magnitude) and quantitative measures can beederi
about the expected utility of further (time consuming) meaments. sectionNuclear Reaction Analysis The basiciplizof
Nuclear Reaction Analysis is straightforward: The samgplsubjected to an energetic ion beam (h#te) with initial energy

EiO and incoming angle, which reacts predominately with the species of interesutBrium) and the products of the reaction
are measured under a specified arfjl&iven the total number of impinging iong,Nhe energy dependent cross-section of the
reactiono (E), the efficency of the detection and the geometry of the sqi-the measured total signal coudtgdepend (in the
limit of small concentrations) linearly on the concenwatprofilec(x) of the species in the depsh

di = d (EP) = uN; /(;X(EP)dXU(E)c(x) = uN; '/O.X(Eio)dxa(E (x,E?))c(x)+&, (1)

whereg ~ N(0,q;) represents normal distributed noise. Repeated measutewitm different initial energies ofHe provide
increasing information about the Deuterium depth profilae Guestion addressed in the following Given a set of already
measured data (Eio) which measurement energy should be chosen next?

To evaluate Eq. 1 we first need to specify the cross sedi() and the energ¥ (x) of the incident particle on its path
through the sample.

A. Cross-Section

The relevant cross-section for the reactior®He — p-+“He+ 18.352 MeV (in standard notation written ag*Ble, p) “He)
has been (re-)measured recently [3] in the range of 550 ké®¥®V and the obtained cross-section values have been given i
tabular form. Using the same method as [3] we added seversd-@ection measurements at energies below 690keV and fitte
both data sets taking into account also earlier measurenri]

E283962(0.270713«e 2215€ 1 0.0182763 b @)
E3476%61.0.270713 6 1172 — 0,00123669 "

o (E[MeV]) = 82998

using the Levenberg-Marquardt algorithm minimizing ftremisfit with the variance set tdi. The cross-section is plotted in
Fig.2a and shows a broad maximum around 630 keV and is abowe\3ridarly constant at 8 mb/sr up to 6 MeV (above that
there are no data available). The reaction energy is vety (@18.352 MeV) and most of the energy is transferred to the
resulting proton. This leads to a very good S/N-ratio of theasurement because other particles can easily be sephyated
energy.

B. EnergylLoss

The energy loss of the impingirite-ion in the sample is determined by t#tepping power &) of the sample

dE
o= —SE). ®)

which can be solved to get the depth dependent ergiigry for different initial energiefio. Parameterizations and tablesf
for different elements are given in [7]. Since the amountyafiegen in the sample is usually well below 1% (with the exicep
of a very thin surface layer), the influence of the hydrogameatration on the stopping power can be neglected in messca

C. Simulation of Mock Data

To simulate mock data for typical accelerator parametersgsten sampl%p = 19.Bg/cn13) with a (high) surface con-

centration of 12% Deuterium, followed by an exponentiakydying Deuterium concentration down to a constant backgto
level, described by

X X

has been used [22]. The corresponding mock data for a settial Energies B={500, 700, 1000, 1300, 1600, 2000, 2500,
3000tkeV is shown in Fig. 2b. The variations in the detected yieldplay the interplay of the increasing range of the ions
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FIG. 2: a) Differential cross-section of the nuclear reatd@He,pf'He in the laboratory system with a reaction energy of Q=18 B8V
(left). b) On the right hand side the typical results for anMfReasurement are shown (simulated data of a tungsten savrithlan exponen-
tially decaying D concentration profile (cf. Eq.4). The urnamties due to the counting statistics are usually dotethady the uncertainty of
the analysis current.

with increasing energy and the reduced cross-section heh&nergies modulated with the decreasing Deuterium odrat®n

at larger depths. The increase of the signal by raising tiialienergy from 2500 keV to 3000 keV is already caused by the
constant Deuterium background of 2%. The accelerator titmelwwvould be needed to obtain the 8 data points is around one
working day taking into account the necessary interleawadithration measurements:The ion bombardment causes agyene
and depth dependent loss of Deuterium. Commonly a first aaieection is applied by normalizing the yields with respec

the yields obtained from repeated calibration measuresnesimg the same (typically low, e.g. 690keV) initial eng&p].

The uncertainty of the detector is given by Poisson-stesistHowever, fluctuations in the beam current measurenazats
very often the dominating factor, affecting the pre-fadigrin Eq.1. An accuracy of up to 3% can be achieved (e.g. by
using the number of Rutherford-scatteféte ions on a thin gold-coating on top of the sample as refeerkhe error of the
renormalization procedure is harder to quantify. For siaifglwe will use g; = max(S%di, \/d_.) as uncertainty of the data in
the following, acknowledging that there is room for improent.

II. BAYESIAN EXPERIMENTAL DESIGN

Bayesian Experimental Design (BED) offers the temptingsjimlity to actively select (and optimize) the experiméma-
rameters for the next measurement(s) based on objecttegiariEspecially if measurements are expensive or timswoing
(like in the case of energy changes of an accelerator) it isge ladvantage to know where to look next, so as to learn as much



U. von Toussaingt al. ‘Optimizing Nuclear Reaction Analysis ...’ Published walP Proceeding4073 (2008) 348-358

as possible. The problem of experimental design has alreaey studied by Lindley back in 1956 [10] in a Bayesian sgttin
and Fedorov published his influential book in 1972 [11] - g kimitations in computational power limited the applioatof
experimental design almost always to simple (linear) potd. This situation changed in the recent years and constyue
there is a renewed interest to apply BED also to (non-linesalyworld problems (see e.g. [12] and references theme@mg
[13-16]. Not surprising the interest is biggest in branatfgzhysics where the experimental possibilities are séyeestricted:
Astronomy, Fusion research,... Given the excellent adoofBED in [12] we only summarize the key principles: In a fisggp
an appropriatatility function Uhas to be agreed upon: It describes the value which we assthe measurement results of an
experiment and may include parameters like costs of an empat, duration, parameter uncertainty etc. Severakyfilinc-
tions are considered in [17]. With focus on parameter esiimdt was proposed [10, 18] to use the Kullback-Leiblerdyence
(KLd) between the posterior and the prior distributions @igyifunction. The KLd for a new datum D is given by

p(a|D.d, n)}
p(ald,n)
Next we try to identify the actiom which maximizes the expected utility. 'Expected’ utilitetause we have to account for the

prediction uncertainty fob. To compute the expected utility (EU) we have to average theenew datum D weighted by the
marginal likelihood for the new datum given the observatibthe old datal

Uk (0.4.1) = [da p(g|D,g,n>log[ (5)

U(d.n) = [dD p(DId.n)- U (D.d.n)
= /dDp(DIQ,n)/dgp(ng,g,n)log[ @ld.n)

) p(Dla.d.n)p(ald. ) [p(Dla.d.n) p(ald.n)
= [dopoldn) [da EEETEEE  log [ (ald.n) p(D[d. 1) }
(DI_,Q,n)]

p(Dld,n)

Jdo [dap(la.d.np(aid,)iog [fda p?éﬂgfh%(a|g>]

where we dropped the—dependence of the posterior @fin the last line, since our knowledge abauts not influenced by a
possible future action. Closer inspection of Eq. 6 revdasanly two different probability distributions are reged to compute
the expected utility: the posterior distribution@fgiven the old datd, p(a|d) and the likelihood of the new datuBbased on
the previous measuremenpgD|a,d, n).

p(a|D,d,n)
i
P

/dD /dﬁ p(Dla.d,n) p(glg,n)mg{
(6)

A. Thelinear Design

Assuming that the concentration profig) depends linearly on the concentratiangs) ,i = 1..q at a given set off support
pointsx then Eq.1 can be recast in the following form

d=f+e=Mc+eg, (7)

where the data vectatis of sizep, the matrixM is a pxq—matrix and the parameter-veciohasgq components. However, the
requirement of linearity applies only to the concentraf@nameter vectoe, the functional form of the concentration may be
much more complex, e.g:(x) = 1 * (X—x3)* + ¢ * \/|X— Xq|, although almost always(x) is chosen to be constant between
the different support pointg(x) = ¢;, VX € [, Xi+1] or as linear interpolation between the support points. Tdisevector is
normally distributece ~ N (0,;), whereZ is a diagonal matrix with the entrigs = 1/oi2. Every row ofMj is given by the

T
solution of Eq. 1 for a specified initial ener@?, m(EJO) . The consideration of the uncertainties in the entries efrtiatrix

due to energy straggling of the impinging particles is beal/the scope of the present paper, but see e.g. [19].
With a Gaussian likelihood for the existing data and a flabipfor the parameters the posterior of the concentratiotovec
reads

pled.n) Opdie.n) = Fexp( 3 (d-Mo)"£(d- Mo

= f;t; exp( ;(E—E)Té@—@)> (8)

T
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The posterior distribution of including the new data poir® with its uncertaintyo, p(c|D,d,n) can similarly be cast in a
Gaussian form. Therefore Eq. 6 can be solved analytically §hd yields a simple closed form for the exponential wtilit
[15, 16]:

EU(d,n) =5 (log(1+G) —r) (10)

1
2
with

m(n)"A'm(n)
g2 '

If p(Dlc,n) is Gaussian then= 0. The variation of the EU depends on the veaidn) which in turn is uniquely determined

by the choice of the initial energﬁrgﬂ. The optimum (maximum of the EU) can be found by a simple 1-&hsuf the energy.

The sequential design approach in action is displayed irBFi§tarting from the surface the concentration at increhgin
larger depth intervals is of interest. For this example thesen depths are 0 nm, 80 nm, 240 nm, 470 nm and 950 nm. After
initial measurements at 400 keV, 700 keV and 3000 keV (remtasg the lower and upper limit of the useful energy range fo
the measurements and one calibration measurement) ther@gy for the next measurement has to be determined. TherEU f
this first cycle has a maximum at 1250keV (solid line). Aftenaasurement with this energy the EU for the next measurement
has its maximum at 960keV and about twice the EU than befohés, Bn the first glance, surprising increase of the EU can
be made transparent: With 5 unknowns and 5 (informative)someaents the solution space of this linear problem no longe
covers a sub-manifold of the parameter space: It 'colldpmed the volume of the 'occupied’ parameter space startseto b
determined by the measurement uncertainties. Therefer-th measurement has a very high EU. In the following cggle(
the amplitude of the EU is much lower since the subsequensuneaents now gradually shrink the 'volume’ of the paramete
posterior distribution. As long as the EU is above the ingghithreshold for new measurements (which depends on the st
physical problem) further measurements are indicated.

How much better is the BED derived experiment compared toxperament with the same number but equidistant chosen
initial energies? The entropy of the parameter postergiridution would be the obvious quantity to compare. Howglee the
time being, many scientists are not happy with this measulggaefer a more familiar measure, e.g. the condition numiies
condition number of the (pseudo-)inverse\fis often used to characterize linear least squares prolj&shand is a measure
how strongly uncertainties in the data veatibmay be amplified by multiplication with the pseudo-inversatnx. Using this
measure the BED optimized setting surpasses the equitéstpariment by a factor of more than 100 (!).

G= (11)

B. Non-linear Design

The analytical solution in the preceeding case was pods#@ulause several approximations have been applied: Thygatitmn
range of the integration over the predicted datum (a pesifisantity) had to be changed froffidD to [, dD. Given the actual
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number of counts and the uncertainties this can easily lidi¢as Unfortunately, a similar change of the integrationits had

to be applied also in the parameter integration (frfa]rmigto [*2dg) and here it definitely affects the results. The analysidccou
be repeated substituting the analytical integration bynilmaerical counterparts (e.g. using codes like VEGAS [2Gy1i@MC
approaches). Furthermore, the uncertainty of the pretldé¢um D is not constant but proportional to the sigmalld] D and
therefore also the integrations over the data space havedore numerically. Under those circumstances there isffevatice

in the computation to a non-linear experimental design lgrabAdditionallyit turned out that the actual quantity of interest is
the decay length of the hydrogen depth profile and that quitarate data for the surface hydrogen concentration aitabiea
(additionally measuring th&He of the D(*He, p) “He reaction). Therefore the optimal energy settings foesstemation of the
parametersy anday, of concentration profiles of the functional form of Eq. 4 hawebe computed. However, in non-linear
experimental design the measured data influences the EQifinast to the linear case: the maximum of the EU is indepande
of the actually measured data, cf. Eq. 10) and this posesctigabproblem: The next accelerator energy has to be détedn
after the previous measurement. And longer computatioegiton optimize the EU, causing delays, are not tolerable.

Here the posterior sampling approach, suggested in [1@Y,gorvery valuable. It turned out that sets of posterior dasp
p(asi,aq|d,n),i = 1..N drawn fromp(as,ay|d, n) could be generated quite efficiently (partly due to the lomelsionality of
the parameter space). With that sample (typically of siZg0})&he denominator of the logarithm in Eq. 6 is given by a $anp
summation

N
Jdap®ladnp@d ~ 3 p(Oladn). 12)

The biggest saving comes from the fact that the posteriopkais independent from the actual valuel»fand of the design
actionn: all computations are reduced to repeated evaluation®dikiblihood, which can efficiently be vectorized. Findimgt
best energy is a matter of less than 5 minutes(!) on conteanpbardware (Linux-PC, 2GHz).

In Fig. 4 three cycles of the non-linear BED are shown: Aftdirgt measurement at 500keV the posterior distribution of
{a1,ay} is visualized in the upper left graph by the posterior samflee single measurement does not allow to distinguish
between a large decay constantand low constant offset, or vice versa. The EU, plotted in the upper right graph, favamw
a measurement at the other end of the energy range (the maafrthe utility function is encircled). After a measuremedith
3MeV 3He the "area’ of the posterior distribution is significantéduced (middle row, left graph): The background concéiotra
is below 3% but the decay length is still quite undeterming@tie EU has a maximum at 1500 keV, still with a pretty high
EU. Performing a measurement with 1500keV localizes théegpios distribution around the true (but unknown valueapt=
395nm andh, = 0.02). The next measurement should be performed at 1200ket&UEU is significantly lower than before:
subsequent measurements are predominantly improvinggfitiss: a second measurement at 3 MeV provides nearbetine
information.

1. CONCLUSION AND OUTLOOK

The concept of Bayesian Experimental Design allows to divjely optimize experimental designs. Here we presented tw
different approachesto optimize NRA depth profiling: Ainsd linear setting, allowing an analytical solution anéghtforward
parametric studies. Second, a time-critical non-linegreexnental design problem which could be tackled using grast
sampling. Both optimization procedures may consideratdydase the accuracy of the derived depth profiles compared t
the present approach and at the same time reduce the overadlunement time by signaling a diminishing utility of fueth
measurements. With the posterior sampling approach mapeséial measurements can now be optimized on the fly: This
opens up the door for a wealth of new applications of BED irfigsdd of ion beam analysis[2] as well as in other physical sarea
[12, 16, 21]
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