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Abstract. Spectroscopic data are analyzed by fitting a collisiondiative model to the emission
spectrum of a low-temperature plasma in the wavelengtherahgisible light. The inference pro-
cedure employs Bayesian probability theory and accoumtalfaneasurement and model uncer-
tainties. An effort is made to assign well-justified uncitias to the atomic data needed for the
description of the plasma. The credibility region of theamstructed electron energy distribution
function is obtained by the analysis.
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INTRODUCTION

Low-temperature plasmas are widely used, e.g., in indglgirocesses or for lighting
purposes [1]. The physics of these discharges is such thaléttron gas is the key
component of the plasma. The energy dissipation in inelasillisions and heating
processes prevent the electron gas to reach a state of tregmkbrium. The electron

energy distribution function (EEDF) may thus substantialeviate from a Maxwell

distribution and has to be described by more complex paenmations such as the
Druyvestein distribution.

Experimentally, EEDFs are usually determined by eledtjicabe measurements.
This approach has the disadvantage of perturbing the pldsmg investigated by
the electrically biased probe. Moreover, the spatial ggmt of probe measurements
Is limited due to the extent of sheaths appearing close t@tblee. Therefore, a non-
invasive assessment of EEDFs is attractive both for thdatdin of probe measurements
and physical modeling and for process control.

The approach presented here aims at an assessment of the fEEDEMIssion
spectroscopy. We employ the light emitted from atoms in geeghase (line emission),
which are excited by electron collisions. Since the disgbarcan be observed with
appropriately designed imaging optics, emission specbms may attain high spatial
and temporal resolutions [2]. Therefore, the idea to uss&ion spectroscopy for EEDF
assessments is long standing, see e.g. [3]. First attermpise this approach were
based on line-ratio techniques mapping the intensitiesftégrent spectral lines onto



temperatures. For the plasmas under consideration, hovtlegdine intensity ratios are
affected by too many processes to infer the EEDF directlgrétore, the approach used
here extends a method described by Fischer and Dose [4]. Xtbeseon of the data
descriptive model consists in a direct modeling of the ratdather than the analysis
of pre-analyzed line intensities.

The basic idea is to fit a full physical model to a large numbespectral lines rather
than inferring information from a few spectral lines as damgrevious approaches.
The expected benefit of this method results from the comgistee of correlations in
the data. The spectroscopic data to be analyzed are obtasnegl a cylindrical neon
discharge, a well-investigated system with various puklisresults, which can be used
for validation [5, 6].

DATA DESCRIPTIVE MODEL OF THE SPECTROSCOPIC
MEASUREMENT

The forward model maps the quantity of interest, the EERE), onto a simulation of
the measured dafd (spectrometer pixels). It consists of a chain of differdrtreents,
which is described below. More details about the data maalebe found in [7].
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Different parameterizations of the energy distributioe amployed to determine
electron collision rates for the collisional-radiative ded (CRM). EEDFs derived from
hybrid modeling of neon discharges, accounting for a kane&atment of the electrons
[5, 6], are used to validate the obtained result.

The CRM consists of a set of balance equations for the popnldeasitieq; of 31
excited states of neutral neon taking into account pomgadnd depopulating elemen-
tary processes. THecally emitted power;j [W/ (m3~sr)} can be readily obtained by
multiplication with the inverse lifetime of the excited &8aA;; and the photon energy
hw, and division by the full solid angle (3.

The radiation has to pass through the plasma before it |e¢heedischarge device.
The apparent lifetime of the excited states is affected bytthnsport of photons if the
absorber density is high, i.e., for transitions to the grbsiate of the atom [8]. Together
with the integration along the line of sight (l.0.s.) of th@estrometer, the description
of this opacity results in theffective radiance il of each transition. The convolution
with the apparatus function and a summation over all cominlg transitions yields the
effective spectral radiancas a function of the wavelength

The modeling of the actual measurement comprises the atéorslof L(A) into the
detected signals and the mapping of wavelengths to pixelbeusn This requires an
absolute intensity calibration, which is obtained usingtandard light source. The
mapping of pixels to wavelengths is a second-order polyabmihose parameters are
fitted to the data within the reconstruction.
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FIGURE 1. Result of the forward model. The intensity is shown as a foncbf wavelength on a
logarithmic scale. The curve inside the light-colored Jratka depicts the modeled spectrum with the
uncertainty of the apparatus function. The gray curve irblaek area, which is partly hidden behind the
modeled spectrum shows the measurement and its uncertaifitie dashed line represents the difference
between model and measurement in units of standard devéatio

Figure 1 shows the result of the forward model together withreasurement. Pa-
rameters are estimated that yield the best descriptioneadiéita by minimizing the dif-
ference between modélsi,, and measuremerm while taking into account additional
prior information (see below). The likelihod®(D|®, 1), stating the probability to mea-

sure a certain spectrubgiven a parameter s, is formulated. Assuming an effective
Gaussian error distribution (see also next paragraph)edfitipixel of the spectrometer
with width g, it is given by

p(ﬁ’é,”:;exp{_} (D'_—DS““')Z} (1)
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Bayes’ theorem is used to combine the likelihood of the spattwvith information
about model parameteP§©®) not contained in the measurement:
P(©)

P(D)




The resulting probability distribution function (PDIP(®|D, 1) for the parameters of
the model is called the posterior distribution, while theFPRY®) is called the prior.
Together with the marginalization rule quoted below, Bayksorem is used to assess
parameters entering the model that are not known precisely.

The marginalization theorem for probability distributgoallows to integrate out pa-
rametersij, called nuisance parametersvhich are not parameters of direct interest.
However, their uncertainties still affect the uncertaiotythe parameters of interest via
error propagation:

P(B|®,1) :/P(D|é,r7,l)dﬁ. 3)

A table with the relevant nuisance parameters can be foufd].in

Sour ces of Uncertainty

The forward model of the measurement may deviate from theoowg of the experi-
ment for various reasons:

Noise: The actual measurement as well as the measurement of theitgtealibration
contain electronic noise of the detector chip.

Apparatus Function: The apparatus function is extracted from spectral measmtm
An error band describes the reproducibility of the line foamndifferent wave-
lengths.

Model Parameters: Quantities entering the model may not be known to perfectipre
sion, thereby biasing the modeling result in a systematic wa

Model Assumptions: The plasma model necessarily contains approximations;twhi
may influence the result of the reconstruction.

The noise and the uncertainty of the apparatus functionakentinto account by
the effective Gaussian error distribution, which is theibésr the likelihood [9, 10].
The effective widtha; of the error distribution of thé" pixel is obtained by adding in
quadrature the widths of the noise of the measuremgnrdasand the uncertainty of the

apparatus functio; app
. _ /g2 2
0i = \/ O meast Oi app (4)

As mentioned above, the formalism of Bayesian data anal§feissdhe possibility to
treat uncertain model parameters by means of nuisance paenThis generalization
of Gaussian error propagation automatically takes int@aectcorrelation effects. The
choice of the prior distributions for the atomic data emtgrihe model is discussed in
the next paragraph. The other relevant nuisance paranasersnting for experimental
uncertainties (wavelength and intensity calibration) adel uncertainties (e.g., some
of the escape factors) are listed in [9].

Simplifications of the model may influence the result of theorestruction. For exam-
ple, the description of the plasma column with a single CRMHtergopulation densities
at the symmetry axis of the discharge and the descriptiohefadiation transport in



terms of escape factors are important approximations ofmgel. Therefore a valida-
tion of the reconstruction result and its uncertainty masgith independent results are
performed to study the applicability of the analysis praged

Uncertainties of the Employed Atomic Data

The collisional-radiative model requires atomic data dbstg each elementary pro-
cesses in the plasma. For the electron excitation croseseend Einstein coefficients,
there exists an extensive and consistent dataset Bespline Breit-PauliR-Matrix
(BSRM) close-coupling calculations [11, 12]. These data arelined with those from
the atomic line database NIST [13]. The cross sections foization of neon in the
ground and excited states are taken from [14] and [15].

For the electron-impact excitation cross sections, we ntakeassumption that the
uncertainties can be can be described by a single, enedgpémdent scale parameter
for each cross section. This is a reasonable choice, giarthle energy dependence
of the cross sections is often known more accurately tharaliselute scale (see, for
example, ref. [16]), thereby allowing for an efficient implentation in the model.
The relative width (root mean-square-variance, rms, @ity expectation value) of
the prior distributions for the scale parameters is listetable 1. The numbers were
chosen according to details of the BSRM calculations and thdadle independent
experimental validations of the cross sections (see [1]}, 12

TABLE 1. Uncertainties of the excitation cross sections.

final state  gyms/u Of log-normal distribution
(relative error)

2p°3sJ=1 10%
2p°3s J=12 20%
2p°3p 40%
2p4s 60%
2p°3d 60%

The uncertainty of the Einstein coefficiemtg is assessed by considering the results
of the BSRM calculations in the length and the velocity form loé €lectric dipole
operator. Since both should, in principle, yield the sanseiltethe difference gives an
estimate for the uncertainty. Figure 2 shows the relatifferdince between the results
in the two forms of the dipole operator as a function of theoélie value of the Einstein
coefficient. For smallAjj, the calculations are expected to be less accurate than for
stronger transitions. Consequently, the relative widthhef prior distributionoyms/
in fig. 2 was chosen depending on the valueAgf It is taken as large as the biggest
relative difference for a certain value 8fj, but never smaller than 10%. Where both
numbers are available, a weighted average of the Einsteifidents from the BSRM
calculations and the NIST database [13] was computed.

For the scale parameters and the Einstein coefficientsidedabove, a log-normal
distribution is used as prior. This is a convenient choiceemlthe parameter under
consideration may vary over several magnitudes. It isiotstt to positive values. For
small relative errors, the distribution may be approxirdalby a Gaussian, while it



| length and velocity form results |

<ﬁ§ 0.24

2 0.22
<

+
+ +
+

A

Lol MR 21 PR TS X1 N R A A AT

10° 10° 107 108

FETT T T[T [T T TT T TTI T[T TT[TTT[TFT[TTT]TTT
RN EARN RN LN RN R ) R R R AR

=
o
>

FIGURE 2. The absolute value of the relative differend&2,, — Aj 1) |/(Aij ) +Aj 1)) between the
BSRM results for the Einstein coefficients in the length aelbeity form of the dipole operator is shown
as a function of the absolute value of the Einstein coefftci€he straight line depicts the rms-width of
the prior distribution as a function of the absolute valughef coefficient (see text).

becomes similar to Jeffrey’s prior [17] for larger variaac&he PDF of the log-normal
distribution is given by

e—(lnx—ﬂ)z/(szz)
Giog(X|[1,0) = ;
Iog( “’l ) X&\/ET

with an expectation valug and an rms-variance.

U= eﬂ+52/2; Orms = (652 o l)eZi:H-&z (5)

Results and Discussion

The effect of model assumptions on the EEDF is exemplifiedjuré 3. Different pa-
rameterizations of the EEDF are shown together with thdtreftiybrid modeling [5].
The latter, which is validated with probe and LIF measuresaacts as a reference. The
Maxwellian distribution is shown to demonstrate the dewis from thermal equilib-
rium. In addition to the Druyvestein parameterization, evhdlescribes energy distribu-
tions with two temperature parameters, a spline-basedrEdesization

Fm(E) =2 % exp{ ;_-II?} X exp{ fSpIine(E)} (6)

h .
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FIGURE 3. The result of the reconstruction is shown for a Druyvestkgft)(and for the spline based
parameterization described in the text (right). The uradexd histograms show the probability of the
EEDF to have a certain value, given the measured data and emsilenptions (grey-scale-coded z-axis).
The line with error bars shows the expectation value anchmad of the logarithm of the EEDF. The
Maxwellian and the reference curve (solid curve withoubemargins), obtained by hybrid modeling of
a neon discharge [5, 6], is shown for comparison.

is used. The specific choice of the splifigine(E) accounts for the typical scale and
form of distribution functions.

The histograms shown in fig 3 depict the posterior distrimg; i.e. probability of
the EEDF to have a certain value, given the measured data adel mssumptions. The
histograms are summarized in the overlayed curve with drxaod, which is obtained
by computing the expectation value and variance of the Itgarof the EEDF as a
function of energy. The logarithmic scale for the mean valias chosen, because for
high energies the posterior has got a flat shape in the lbgamif the EEDF, which
corresponds to a strongly asymmetric shape in the line#ée.sca

For energies below 25eV, the EEDF reconstruction from the experimental data
coincides with the reference distribution. At higher emesghowever, the Druyvestein
reconstruction deviates from the reference curve whilesgiime-based reconstruction
is more consistent with the reference distribution withie tespective error margins.
The additional model constraints of the Druyvestein distion restricts the set of
possible EEDFs, thereby leading to a reduced error band.rdfeeence distribution
IS not compatible with the constraints introduced by theydastein parameterization.
In contrast, the spline-based reconstruction does natdotre additional information
about the form of the EEDF, therefore it is called form-fresrgmeterization. It can
be seen that for energies above 25eV the posterior digbibdiattens out, here the
spectroscopic data is not able to determine the value of EBH: given the model
uncertainties discussed above. The error margins of theesphsed parameterization
reflect the pure information content of the spectroscopia.da
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