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Abstract. Spectroscopic data are analyzed by fitting a collisional-radiative model to the emission
spectrum of a low-temperature plasma in the wavelength range of visible light. The inference pro-
cedure employs Bayesian probability theory and accounts for all measurement and model uncer-
tainties. An effort is made to assign well-justified uncertainties to the atomic data needed for the
description of the plasma. The credibility region of the reconstructed electron energy distribution
function is obtained by the analysis.
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INTRODUCTION

Low-temperature plasmas are widely used, e.g., in industrial processes or for lighting
purposes [1]. The physics of these discharges is such that the electron gas is the key
component of the plasma. The energy dissipation in inelastic collisions and heating
processes prevent the electron gas to reach a state of thermal equilibrium. The electron
energy distribution function (EEDF) may thus substantially deviate from a Maxwell
distribution and has to be described by more complex parameterizations such as the
Druyvestein distribution.

Experimentally, EEDFs are usually determined by electrical probe measurements.
This approach has the disadvantage of perturbing the plasmabeing investigated by
the electrically biased probe. Moreover, the spatial resolution of probe measurements
is limited due to the extent of sheaths appearing close to theprobe. Therefore, a non-
invasive assessment of EEDFs is attractive both for the validation of probe measurements
and physical modeling and for process control.

The approach presented here aims at an assessment of the EEDFfrom emission
spectroscopy. We employ the light emitted from atoms in the gas phase (line emission),
which are excited by electron collisions. Since the discharges can be observed with
appropriately designed imaging optics, emission spectroscopy may attain high spatial
and temporal resolutions [2]. Therefore, the idea to use emission spectroscopy for EEDF
assessments is long standing, see e.g. [3]. First attempts to use this approach were
based on line-ratio techniques mapping the intensities of different spectral lines onto



temperatures. For the plasmas under consideration, however, the line intensity ratios are
affected by too many processes to infer the EEDF directly. Therefore, the approach used
here extends a method described by Fischer and Dose [4]. The extension of the data
descriptive model consists in a direct modeling of the raw data, rather than the analysis
of pre-analyzed line intensities.

The basic idea is to fit a full physical model to a large number of spectral lines rather
than inferring information from a few spectral lines as donein previous approaches.
The expected benefit of this method results from the consistent use of correlations in
the data. The spectroscopic data to be analyzed are obtainedusing a cylindrical neon
discharge, a well-investigated system with various published results, which can be used
for validation [5, 6].

DATA DESCRIPTIVE MODEL OF THE SPECTROSCOPIC
MEASUREMENT

The forward model maps the quantity of interest, the EEDFfe(E), onto a simulation of
the measured data~D (spectrometer pixels). It consists of a chain of different elements,
which is described below. More details about the data model can be found in [7].

fe(E)
︸ ︷︷ ︸

kinetic theory

→ ni

︸ ︷︷ ︸

collisional radiative model

·Ai j h̄ω
4π→ Ii j →

∫

l.o.s.
Ii j dV

︸ ︷︷ ︸

radiation transport

→ Li j → L(λ )
︸ ︷︷ ︸

apparatus fcn.

→ ~D
︸ ︷︷ ︸

intensity calib.

Different parameterizations of the energy distribution are employed to determine
electron collision rates for the collisional-radiative model (CRM). EEDFs derived from
hybrid modeling of neon discharges, accounting for a kinetic treatment of the electrons
[5, 6], are used to validate the obtained result.

The CRM consists of a set of balance equations for the population densitiesni of 31
excited states of neutral neon taking into account populating and depopulating elemen-
tary processes. Thelocally emitted power Ii j

[
W/(m3 ·sr)

]
can be readily obtained by

multiplication with the inverse lifetime of the excited statesAi j and the photon energy
h̄ω, and division by the full solid angle (4π).

The radiation has to pass through the plasma before it leavesthe discharge device.
The apparent lifetime of the excited states is affected by the transport of photons if the
absorber density is high, i.e., for transitions to the ground state of the atom [8]. Together
with the integration along the line of sight (l.o.s.) of the spectrometer, the description
of this opacity results in theeffective radiance Li j of each transition. The convolution
with the apparatus function and a summation over all contributing transitions yields the
effective spectral radianceas a function of the wavelengthλ .

The modeling of the actual measurement comprises the translation of L(λ ) into the
detected signals and the mapping of wavelengths to pixel numbers. This requires an
absolute intensity calibration, which is obtained using a standard light source. The
mapping of pixels to wavelengths is a second-order polynomial, whose parameters are
fitted to the data within the reconstruction.
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FIGURE 1. Result of the forward model. The intensity is shown as a function of wavelength on a
logarithmic scale. The curve inside the light-colored (red) area depicts the modeled spectrum with the
uncertainty of the apparatus function. The gray curve in theblack area, which is partly hidden behind the
modeled spectrum shows the measurement and its uncertainties. The dashed line represents the difference
between model and measurement in units of standard deviations.

Figure 1 shows the result of the forward model together with the measurement. Pa-
rameters are estimated that yield the best description of the data by minimizing the dif-
ference between model~Dsim and measurement~D while taking into account additional
prior information (see below). The likelihoodP(~D|~Θ, I), stating the probability to mea-
sure a certain spectrum~D given a parameter set~Θ, is formulated. Assuming an effective
Gaussian error distribution (see also next paragraph) of the ith pixel of the spectrometer
with width σi, it is given by

P(~D|~Θ, I) =
1

∏i

√

2πσ2
i

exp

{

−1
2∑

i

(Di −Dsim,i)
2

σ2
i

}

. (1)

Bayes’ theorem is used to combine the likelihood of the spectrum with information
about model parametersP(~Θ) not contained in the measurement:

P(~Θ|~D, I) = P(~D|~Θ, I) · P(~Θ)

P(~D)
. (2)



The resulting probability distribution function (PDF)P(~Θ|~D, I) for the parameters of
the model is called the posterior distribution, while the PDF P(~Θ) is called the prior.
Together with the marginalization rule quoted below, Bayes’theorem is used to assess
parameters entering the model that are not known precisely.

The marginalization theorem for probability distributions allows to integrate out pa-
rameters~η , callednuisance parameters, which are not parameters of direct interest.
However, their uncertainties still affect the uncertaintyof the parameters of interest via
error propagation:

P(~D|~Θ, I) =
∫

P(~D|~Θ,~η , I)d~η . (3)

A table with the relevant nuisance parameters can be found in[9].

Sources of Uncertainty

The forward model of the measurement may deviate from the outcome of the experi-
ment for various reasons:

Noise: The actual measurement as well as the measurement of the intensity calibration
contain electronic noise of the detector chip.

Apparatus Function: The apparatus function is extracted from spectral measurements.
An error band describes the reproducibility of the line format different wave-
lengths.

Model Parameters: Quantities entering the model may not be known to perfect preci-
sion, thereby biasing the modeling result in a systematic way.

Model Assumptions: The plasma model necessarily contains approximations, which
may influence the result of the reconstruction.

The noise and the uncertainty of the apparatus function are taken into account by
the effective Gaussian error distribution, which is the basis for the likelihood [9, 10].
The effective widthσi of the error distribution of theith pixel is obtained by adding in
quadrature the widths of the noise of the measurementσi,measand the uncertainty of the
apparatus functionσi,app:

σi =
√

σ2
i,meas+σ2

i,app. (4)

As mentioned above, the formalism of Bayesian data analysis offers the possibility to
treat uncertain model parameters by means of nuisance parameters. This generalization
of Gaussian error propagation automatically takes into account correlation effects. The
choice of the prior distributions for the atomic data entering the model is discussed in
the next paragraph. The other relevant nuisance parametersaccounting for experimental
uncertainties (wavelength and intensity calibration) or model uncertainties (e.g., some
of the escape factors) are listed in [9].

Simplifications of the model may influence the result of the reconstruction. For exam-
ple, the description of the plasma column with a single CRM for the population densities
at the symmetry axis of the discharge and the description of the radiation transport in



terms of escape factors are important approximations of ourmodel. Therefore a valida-
tion of the reconstruction result and its uncertainty margin with independent results are
performed to study the applicability of the analysis procedure.

Uncertainties of the Employed Atomic Data

The collisional-radiative model requires atomic data describing each elementary pro-
cesses in the plasma. For the electron excitation cross sections and Einstein coefficients,
there exists an extensive and consistent dataset fromB-spline Breit-PauliR-Matrix
(BSRM) close-coupling calculations [11, 12]. These data are combined with those from
the atomic line database NIST [13]. The cross sections for ionization of neon in the
ground and excited states are taken from [14] and [15].

For the electron-impact excitation cross sections, we makethe assumption that the
uncertainties can be can be described by a single, energy-independent scale parameter
for each cross section. This is a reasonable choice, given that the energy dependence
of the cross sections is often known more accurately than theabsolute scale (see, for
example, ref. [16]), thereby allowing for an efficient implementation in the model.
The relative width (root mean-square-variance, rms, divided by expectation value) of
the prior distributions for the scale parameters is listed in table 1. The numbers were
chosen according to details of the BSRM calculations and the available independent
experimental validations of the cross sections (see [11, 12]).

TABLE 1. Uncertainties of the excitation cross sections.

final state σrms/µ of log-normal distribution
(relative error)

2p53s J= 1 10%
2p53s J= 2 20%
2p53p 40%
2p54s 60%
2p53d 60%

The uncertainty of the Einstein coefficientsAi j is assessed by considering the results
of the BSRM calculations in the length and the velocity form of the electric dipole
operator. Since both should, in principle, yield the same result, the difference gives an
estimate for the uncertainty. Figure 2 shows the relative difference between the results
in the two forms of the dipole operator as a function of the absolute value of the Einstein
coefficient. For smallAi j , the calculations are expected to be less accurate than for
stronger transitions. Consequently, the relative width of the prior distributionσrms/µ
in fig. 2 was chosen depending on the value ofAi j . It is taken as large as the biggest
relative difference for a certain value ofAi j , but never smaller than 10%. Where both
numbers are available, a weighted average of the Einstein coefficients from the BSRM
calculations and the NIST database [13] was computed.

For the scale parameters and the Einstein coefficients described above, a log-normal
distribution is used as prior. This is a convenient choice when the parameter under
consideration may vary over several magnitudes. It is restricted to positive values. For
small relative errors, the distribution may be approximated by a Gaussian, while it
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FIGURE 2. The absolute value of the relative difference 2|Ai j ,(v)−Ai j ,(l)|/(Ai j ,(v) +Ai j ,(l)) between the
BSRM results for the Einstein coefficients in the length and velocity form of the dipole operator is shown
as a function of the absolute value of the Einstein coefficient. The straight line depicts the rms-width of
the prior distribution as a function of the absolute value ofthe coefficient (see text).

becomes similar to Jeffrey’s prior [17] for larger variances. The PDF of the log-normal
distribution is given by

Glog(x|µ̃, σ̃) =
e−(lnx−µ̃)2/(2σ̃2)

xσ̃
√

2π
; µ = eµ̃+σ̃2/2; σrms = (eσ̃2 −1)e2µ̃+σ̃2

(5)

with an expectation valuẽµ and an rms-variancẽσ .

Results and Discussion

The effect of model assumptions on the EEDF is exemplified in figure 3. Different pa-
rameterizations of the EEDF are shown together with the result of hybrid modeling [5].
The latter, which is validated with probe and LIF measurements, acts as a reference. The
Maxwellian distribution is shown to demonstrate the deviations from thermal equilib-
rium. In addition to the Druyvestein parameterization, which describes energy distribu-
tions with two temperature parameters, a spline-based parameterization

FM(E) = 2

√

E
π(kT)3 exp

{−E
kT

}

︸ ︷︷ ︸

Maxwellian

×exp
{

fSpline(E)
}

(6)
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FIGURE 3. The result of the reconstruction is shown for a Druyvestein (left) and for the spline based
parameterization described in the text (right). The underlayed histograms show the probability of the
EEDF to have a certain value, given the measured data and model assumptions (grey-scale-coded z-axis).
The line with error bars shows the expectation value and variance of the logarithm of the EEDF. The
Maxwellian and the reference curve (solid curve without error margins), obtained by hybrid modeling of
a neon discharge [5, 6], is shown for comparison.

is used. The specific choice of the splinefSpline(E) accounts for the typical scale and
form of distribution functions.

The histograms shown in fig 3 depict the posterior distributions, i.e. probability of
the EEDF to have a certain value, given the measured data and model assumptions. The
histograms are summarized in the overlayed curve with errorband, which is obtained
by computing the expectation value and variance of the logarithm of the EEDF as a
function of energy. The logarithmic scale for the mean valuewas chosen, because for
high energies the posterior has got a flat shape in the logarithm of the EEDF, which
corresponds to a strongly asymmetric shape in the linear scale.

For energies below≈ 25eV, the EEDF reconstruction from the experimental data
coincides with the reference distribution. At higher energies, however, the Druyvestein
reconstruction deviates from the reference curve while thespline-based reconstruction
is more consistent with the reference distribution within the respective error margins.
The additional model constraints of the Druyvestein distribution restricts the set of
possible EEDFs, thereby leading to a reduced error band. Thereference distribution
is not compatible with the constraints introduced by the Druyvestein parameterization.
In contrast, the spline-based reconstruction does not introduce additional information
about the form of the EEDF, therefore it is called form-free parameterization. It can
be seen that for energies above 25eV the posterior distribution flattens out, here the
spectroscopic data is not able to determine the value of the EEDF, given the model
uncertainties discussed above. The error margins of the spline based parameterization
reflect the pure information content of the spectroscopic data.
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