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Abstract. The diagnostics requirements for the control of NTM instabilities is outlined stressing 
the importance of correctly managing the estimate uncertainty by the control system. A 
methodology for the Bayesian assimilation of model predictions and observations is outlined 
together with an example of application. 
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INTRODUCTION 

In this paper the diagnostic requirements for the control strategy and the 
suppression of NTM instabilities in a tokamak will be outlined. The topic will be 
assessed as a decision making problem under risk and uncertainty. In its most essential 
formulation the decision problem can be stated as the way to maneuver the ECRH 
antenna angles, subject to some static and dynamic actuator constrains, given the 
uncertain knowledge concerning the amplitude and position of the NTM instabilities 
and about the locations of the ECRH power deposition in the plasma. 

The actuator control variables in this case are the antenna steering angle α for each 
ECRH line and the power modulation PECH for each gyrotron. As aforementioned the 
information available for the control/decision task are the amplitude WNTM and radial 
position rNTM of the NTM instability and the deposition radiuses rDEP together with 
PECH and α. In the following we will suppose for simplicity that there is only one 
instability subject to control, but the approach outlined can be extended to the case of 
more instabilities. 

If the information concerning WNTM, rNTM, rDEP, PECH and α were perfectly known, 
i.e. with negligible uncertainty, together with a dynamical model M(·) of the instability 
growth: 
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classical control theory would allow the design of an open loop control law with the 
objective of minimizing WNTM given the actuators constraints. If the uncertainty of the 
model (1) was too large a feedback loop control strategy would be necessary. In this 
case the success of the control objective would be attained only if little uncertainty 
was affecting the knowledge of the quantities WNTM, rNTM, rDEP, α and PECH (actually 
for NTM stabilization, since part of the control problem is tracking rNTM by rDEP, it 
would be sufficient to have a low uncertainty on the tracking error e=rNTM-rDEP only, 
even with large uncertainties on rNTM and rDEP). 

In practice the uncertainty affecting the knowledge of WNTM, rNTM, rDEP and α is far 
to be negligible, and thus the likely of a wrong decision taken by the control system is 
large. For this reason it is mandatory to explicitly process together with the estimates 
of the quantities involved in the decision procedure also their uncertainties. For 
example figure 1 shows the instability tracking with two different levels of rNTM 
uncertainty. When the uncertainty is high the ECRH deposition radiuses are far from 
each other and the ECRH power is switch off. When the rNTM uncertainty drops the 
various rDEP converge rNTM and the ECRH power is switched on. 
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FIGURE 1.  Steering of rDEP for the case of high and low rNTM uncertainty 
 
Formally the information about all the quantities whose knowledge is affected by 

uncertainty will be described by random vector variables characterized by a proper 
joint probability density function (pdf). From this point of view there is no reason to 
discriminate among uncertain information coming from either direct measurements or 
physical models: it is always a proper pdf. When both these two sources of 
information are available their respective information must be assimilated together. 
For NTM stabilization we can count on the plasma equilibrium code for predicting 
rNTM and on a ray tracing code for rDEP; figure 1 shows the block diagram of the 
diagnostic and control system including two assimilation algorithms. 
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FIGURE 2.  Block diagram of the NTM control system with two model-data assimilation filters for 
rDEP and rNTM 

BAYESIAN MODEL-DATA ASSIMILATION PARADIGM 

The assimilation algorithm is named Bayesian filter in figure 2 since it is based on 
the Bayes’ formula: 
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In (2) the likelihood function L(d|r) is the stochastic model of the diagnostic system 
generating the data vector d, the a-priori pdf p(r) is the stochastic model predicting the 
position r either of the NTM instability (r=rNTM) or of the ECRH deposition radius 
(r=rDEP), while the a-posteriori pdf p(r!d) is the estimate of r given the observation 
data vector d. The number p(d) at denominator of (2) is the evidence pdf representing 
the agreement among the observation vector d and the a-priori model of the quantity r 
which have generated the data d. The evidence can be evaluated as: 

 ( ) ( ) ( )∫=
IR
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The evidence (3) is also used by the control system since action is taken, i.e. ECRH 
power is switch on, only if there is a high agreement among physical models and 
observations. 

Figure 3 shows an example of application of equations (2) and (3) for the 
estimation of rDEP for one ECRH line using a rough time invariant a-priori pdf p(r) and 
the correlation among the ECRH power modulation and the ECE channels response as 



the data vector d for shot No. 17107 in ASDEX Upgrade. Figure 4 shows the estimate 
(mean and standard deviation) and the its evidence versus time. 
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FIGURE 3.  rDEP estimate for shot No. 17107 in ASDEX Upgrade by PECH/ECE cross-correlation at 
time 2.89 s 
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FIGURE 4.  rDEP estimate (mean and standard deviation) and its evidence for shot No. 17107 in 
ASDEX Upgrade by PECH/ECE cross-correlation 
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