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Abstract. Integrated Data Analysis (IDA) offers a unified way of combining information 

relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data 

analysis.  In IDA, all information is consistently formulated as probability density functions 

quantifying uncertainties in the analysis within the Bayesian probability theory. For a single 

diagnostic, IDA allows the identification of faulty measurements and improvements in the set-

up. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and 

integration of different diagnostics results. Validation of physics models can be performed by 

model comparison techniques. Typical data analysis applications benefit from IDA capabilities 

of nonlinear error propagation, the inclusion of systematic effects and the comparison of 

different physics models. Applications range from outlier detection, background discrimination, 

model assessment and design of diagnostics. In order to cope with next step fusion device 

requirements, appropriate techniques are explored for fast analysis applications.  

Keywords: magnetic confinement fusion, data analysis, data fusion, integrated data analysis, 

Bayesian probability theory 
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DATA ANALYSIS FOR MAGNETIC CONFINEMENT FUSION 

DEVICES 

Next step fusion devices define several new requirements for data analysis. Since 

the demonstration of fusion reactor capabilities aims at steady-state operation, the data 

processing paradigm needs to be shifted from a shoot-and-collect to a view-and-react 

philosophy.  Therefore, fast and reliable physics information is mandatory to use the 

experimental devices most efficiently and off-line analysis schemes as in pulsed 

devices will restrict operational capabilities. Long-time scales due to plasma-wall 

effects and magnetic field relaxation will require intelligent control schemes which 

employ physical models in multi-variate adaptive controllers.  

 

The major challenge for data analysis in magnetic fusion experiments is to link 

many different heterogeneous information sources [1]. The reason for the 

heterogeneity lies in the variety of methods in plasma diagnostics which is required to 



determine the parameters for the assessment of device performance. In engineering, 

e.g. robotics, this link of different signals is called data fusion [2] which aims at 

reduction of uncertainties by a synergistic combination of multiple measurements. The 

task for fusion data analysis goes even one step ahead since the link of data requires 

extensively the use of physical models, e.g. equilibrium calculations or transport 

considerations. 

 

Data analysis in fusion poses several system specific issues. The large number of 

intricate dependencies makes magnetic confinement fusion devices (MCF) a complex, 

large system. The complexity is even enhanced by the fact that the information suffers 

from heterogeneity not only in space and time but particularly in quality. In 

consequence, the validation of data is a demanding and time consuming task. Any 

progress towards an accelerated data analysis process allows one to increase both the 

number of analyzed fusion experiments and the quality of analyses. A vision is a 

framework aiming at automated procedures for analyses, validation and the detection 

of new features (e.g. pattern recognition techniques or data mining). In addition to an 

increased efficiency for an off-line analysis, the potential benefit of advanced data 

analysis methods is to allow a direct feed-back both to device operation (see e.g. [3]) 

and the planning of experiments. 

 

Present data analysis methods fail to meet with these requirements for large fusion 

devices in general. For burning plasma experiments, new data analysis issues resulting 

from deterioration of signals in harsh environments may even complicate the analysis 

task. The key issue why data fusion in MCF devices is troublesome is the lack of 

standardization of uncertainty measures. Uncertainties are the key for a quantitative 

assessment of different data – the error is the information which allows to put 

decisions on agreement of data or to indicate disagreements and failures. 

 

A concept to meet with typical fusion data analysis issues and new data analysis 

requirements is the Integrated Data Analysis (IDA). From an information science 

point of view, data fusion in IDA employs Bayesian Probability Theory (BPT). The 

strict formulation of the data analysis problem within BPT is the required data analysis 

standard. Moreover, the first-principle based calculus of BPT allows a couple of 

further applications typically occurring in fusion science ranging from outlier 

detection, background estimation to model selection for confinement studies. 

Although the thorough assessment of uncertainties and the technical treatment of high 

dimensional integrals lead to substantial effort in the data analysis process, techniques 

for fast analysis are available as well: Bayesian Neural Networks can be used for fast 

implementations of complex analysis tasks since the Bayesian pruning algorithm leads 

to efficient networks. Moreover, the proposed data analysis recipe allows for tools for 

the design of diagnostics and the planning of experiments. 

 

This paper introduces the IDA concept after a brief revision of some data analysis 

requirements. Examples for applications are introduced. 

 



Survey of Data Analysis Requirements 

Issues, resulting requirements and possible IDA techniques to cope with the 

requirement are summarized in Table 1, particularly including issues from steady-state 

devices and harsh environments. The purpose of this list is to give a survey on the 

present requirement discussion and to arrive at a prioritization of tasks. 

 
Table 1: Data Analysis Requirements for Fusion Devices. 

Issue Requirement Integrated Data Analysis 

Technique 
Data Analysis Standard Framework for standardized 

data analysis 
Standardized Bayesian error 

treatment 
Global data consistency - standardized error analysis 

- coherent linkage of different 

data analysis procedures 

- linkage to modeling  

Bayesian formulation 

(sum and product rule for pdfs) 

Systematic errors - error propagation for model 

parameters 
hyper parameter, marginalization 

Amount of data Automated analyses Bayesian formulation (standard) 

Bayesian Neural Networks 
Reactor like operation On-line physics analysis Laplace approximations, BNN, 

IDA 
Data mining Novelty detections 

Data warehousing 
BNN, probability density 

functions, standard formulation 
Error propagation with 

interdependencies/parameter 

correlations 

- generalized error propagation 

- treatment of non-Gaussian 

errors 

Bayesian formulation, 

Integrated Data Analysis 

Sensitivity optimization Super-Fit (joint analysis) Integrated Data Analysis 
Model choice Technique for model comparison Bayesian model comparison 
Direct model assessment (e.g. 

data in transport models) 
- inference of derived quantities 

(e.g. gradients) 
Bayesian formulation 

(marginalization, forward 

model) 
Signal identification Signal – background separation Mixture models 
Radiation induced effects outlier identification Mixture models, 

Robust fitting (non-Gaussian 

likelihood) 
Use of physics data for device 

control 
Fast analyses for real-time use Simplified/adapted data analysis 

models 

Bayesian Neural Networks 
Identification of transient effects Combination of data for in-situ 

calibration  
Bayesian formulation 

Planning of experiments Optimized set of control 

parameters  for experimental 

settings 

Bayesian Experimental Design 

Diagnostic Design Optimization of settings Bayesian Experimental Design 
Robust/redundant set of 

diagnostics in harsh 

environments 

Multi-tasking diagnostics, 

Use of information in case of 

failures 

Meta-Diagnostics 

Integrated Analysis 

Identification of failures & 

mismeasurements 
validation tools Probability density function 

Interdependencies (IDA) 



 BASIC CONCEPTS 

Bayesian Probability Theory is introduced in several textbooks, see e.g.  [4,5]. 

Here, we give a summary introducing the basic concepts and notions. 

 

Data analysis is regarded to be a learning process: knowledge (or ignorance) on a 

parameter of interest is updated with knowledge from measurements. Mathematically, 

the updated knowledge on a parameter q due to data d can be phrased in a conditional 

probability  

 

),|( Idqp                       (1) 

 

which reads to be the conditional probability p to find the parameter q given the data 

d. By explicitly mentioning the background information I, it is acknowledged that 

information is always context sensitive. Both the quantity and the data can be vectors. 

In the Bayesian concept p encodes the uncertainty on the quantity q.  

 

The calculus of conditional probabilities is based on the sum and the product rule for 

probabilities. Bayes theorem results from product rule: 
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where I  is the background of  the prior information )|( Iqp  on the quantity q , i.e., 

the knowledge on q  without data d . IDA uses the prior to encode physics or technical 

knowledge, e.g. positivity of temperatures or detection limits. In order to describe the 

measurement, the likelihood function ),|( Iqdp  describes the probability to find data 

d  given a quantity q under background information I . The likelihood function 

employs the forward calculation and the error statistics of the measurement. The 

evidence )|( Idp  ensures that the sum of all possible outcome of q is normalized. The 

actual result ),|( Idqp  is called the posterior probability. It represents the update 

from )|( Iqp  with data d .  Hence, Bayes theorem (2) provides the prescription for 

learning from data, i.e. the transformation from a less informative state to a more 

informative one.  

THE BAYESIAN RECIPE 

In the Bayesian formulation the course of actions in data analysis (parameter 

estimation) is: 

  

• a clear statement of the data analysis problem, i.e. the forward calculation from 

the quantity of interest to the data and the background (context) information. 

 



• formulation of a data model (likelihood) with a quantification of all 

uncertainties (provided by experimental assessments or by physically justified 

assumptions, e.g. densities have to be positive) 

 

• quantification of the prior information  

 

• the inference step: the application of Bayes theorem  

 

• the focusing step: marginalization onto the quantity of interest. 

 

The final steps are an application of the product and sum rules. The marginalization 

is a technique to derive estimates of quantities from the full posterior: the posterior 

contains all parameters which enter the forward model like, e.g., calibration factors 

ic as well as quantities to be inferred, e.g. densities n ( },{ ncq i= ). For the estimation 

of the specific quantity of interest, one to apply the marginalization rule to extract the 

desired information from the full posterior, in this example: 

 

∫= ii dcIdcnpIdnp ),|,(),|(       (3) 

 

The result of Eq. (3) is the marginal posterior of quantity n . Since Eq. (3) incorporates 

the uncertainty of ic
in the estimation of n , the marginalization is a generalization of 

Gaussian error propagation laws. 

 

These two basic rules can be applied both for the analysis of a single diagnostics 

and for a set of diagnostics: independent probabilities need to be simply multiplied. 

Therefore, the rules (2) and (3) are the framework of an integrated data analysis. 

 

Parameter estimation, as discussed, is one of the basic problems in data analysis. A 

second basic problem in data analysis is the question if a model or hypothesis should 

be preferred to a different one. This problem is called model comparison. In the 

Bayesian framework this can be treated by regarding the ‘quantity of interest’ to be a 

hypothesis or a model. A typical example is the question if a polynomial of nth degree 

fits data better than one of (n+1)
th

 degree. In usual approaches, one has to put a 

decision on the trade-off between model complexity (which generally leads to lower 

discrepancies between data and fits) and model simplicity (which is the question if a 

lower complex model already explains the data within the error margins of the 

experiment). Bayesian model comparison allows one to compare the probability of 

different models iM
which is quantified by the odds ratio O: 
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If models are not to be preferred a priori, the odds ratio can be rephrased in the ratio 

of global likelihoods [4] which give the probability to find the data if a model is given. 

Since this quantity includes integration over the model parameter space, a higher 

complexity is punished by weighting the enlarged parameter space. This principle is 

called Occam’s razor which states that a simpler model is to be preferred when it 

explains the data. It is clear, that a measure for model consistency must incorporate 

errors (as done in Eq. (4)), since those allow one to judge if deviances are significant. 

 

A third basic problem is the design of measurements, i.e. which settings are to be 

chosen to optimize the outcome of an experiment. In the Bayesian experimental design 

[6] it is proposed to employ a utility function. A utility function based on information 

theory is the Kullback-Leibler distance [7] which measures the information gain of a 

measurement by comparing the posterior probability with the probability without a 

measurement: 
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Marginalizing the utility function over an expected data space yields an expected 

utility EU which depends on the settings η only: 

 

( ) ∫= dDUIDpEU ),|( ηη        (6) 

The expected utility can be maximized with respect to η in order to arrive at the 

requested optimum setting. 

IDA OF SINGLE DIAGNOSTICS: FROM ONE … 

An example for the application of IDA is the analysis of Thomson scattering data on 

Wendelstein 7-AS [8].  As usual for Thomson scattering, the purpose of the 

measurement is the determination of electron densities and temperatures. Background 

information is given by the details of the experimental set-up, calibration 

measurements and so on. The forward function is given by the data descriptive 

equation of the measurement:  
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The data model considers background radiation, amplifications and all respective 

noise sources.  For the specific formulation of the likelihood and prior probability 

density functions one needs to assess all parameters η
r

entering the model, a good 

guidance is given by the full data model which transfers the physics origins of the 

measurement to the data as measured. The likelihood for data d measured with an 

error σ is given by the normal distribution according to the principle of maximum 

entropy, i.e., the most uninformative likelihood function for given data and errors: 
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Here, the likelihood function resembles the χ2
 misfit statistics in accordance with the 

maximum entropy principle [5]. For the priors on density and temperature, flat 

functions cut at high values were chosen (e.g. 25 meV < Te < 10 keV).   

 

It should be noted that the largest effort in the application of the Bayesian 

recipe lies in the specification of all parameters and errors. The formalized treatment 

requires numerical techniques for high-dimensional integration.  

 

The Bayesian analysis was found to have a couple of important benefits 

meeting with fusion specific requirements discussed in the introduction. Moreover, the 

Integrated Data Analysis formulation can be proposed to serve as a data analysis 

standard. Then, a reliable comparison of results can be performed. Second, the result 

contains all (non-linear) correlations introduced by the forward model. In the case of 

Thomson scattering, a correlation of electron temperature and density is introduced by 

Eq.  (7). As will be discussed later, these correlations are informative and are barely 

used in traditional data analysis approaches.  Third, the sensitivity of the Thomson 

scattering analysis in W7-AS was enhanced. This was of particular interest for 

formerly unexpected high density H-mode regimes with very high densities.  Fourth, 

systematic effects can be included in the Bayesian approach by additional model 

parameters. These model parameters are assigned with an appropriate prior 

distribution [4, 5]. In the case of the Thomson scattering analysis alignment factors 

were introduced describing differences in the optical path in laboratory calibrations 

and at the plasma vessel. The technique to treat these systematic effects is 

marginalization. Fifth, the data model can be used to assess the impact of different 

errors (e.g. systematic alignment errors or statistical noise due to electronics). This 

assessment is valuable for the design and maintenance of diagnostics.  

… TO MANY: INTEGRATED ANALYSIS OF DIAGNOSTICS 

SETS 

The step to an integrated data analysis is conceptually straight-forward once 

diagnostic models are available. Provided the data are taken independently – a trivial 

prerequisite for separate measurements – the linked result is proportional to the joint 

product of likelihoods and prior probabilities. IDA infers the quantities inductively 

(calculation of the probability to find a quantity, cf. Fig. 1(b)), differently to traditional 

approaches which perform a deductive analysis (Fig. 1(a). Fig. 1 shows the concept 

for a combination of Thomson scattering and ECE. The traditional approach requires 

iterative validation steps, each of which individually affected by additional 

information. This leads to complicated validation steps which require large effort for 

documentation. The IDA standardized formulation is compact and transparent. The 

joint posterior is the result of the integrated analysis.  

 



 
 

FIGURE 1.  Traditional (a) vs. IDA (b) data fusion (combination of Thomson scattering and ECE).  

 

The feasibility of this approach was demonstrated in Ref. [9]. The results show the 

power of the integrated approach with respect to the reduction of uncertainties of 

combined analyses: the joint (integrated) probability density function can be regarded 

as a meta-diagnostic which takes its (heterogeneous) data from different diagnostic 

units. This approach allows one to combine the measuring capabilities of different 

diagnostics to make use of their redundancies. An application of this idea is relevant to 

diagnostics in harsh environments where set-ups might suffer from radiation effects or 

from a lack of accessibility for maintenance.  

 

A technical representation of IDA is given by probabilistic graphical models [10].  

IDA can be used to evaluate uncertainties of formerly not accessible quantities, e.g. 

the error of the equilibrium (mapping). IDA also allows one to use physics constraints. 

Fig. 2(a) shows a flow diagram of already analyzed data, fits and model quantities; the 

link of which is given by the arrows representing probabilistic or deterministic 

relationships. In the analysis, the data are ne, Te, Ti and Er measurements fitted to 

smooth model functions. Those are used as input for equilibrium calculations and for 

transport analyses. The latter provides a link of density and temperature profiles to the 

radial electric field. Moreover, the particle Γ and heat fluxes Q are outcome of this 

analysis and can be compared with results from separate modeling results (solid 

curves in Fig. 2 (b)). The joint posterior can be regarded as a super-fit to all data which 

is shown in Fig. 2(b) [11]. The uncertainty of the fit is indicated by the grey shaded 

histograms in Fig. 2(b). 
 

 



  
 

FIGURE 2.  The left panel shows information sources and the data fusion scheme for a super-fit 

including equilibrium calculations and transport equations to link, e.g. data for the radial electric field. 

The right panel shows the result; note the errors in the quantities from the transport analysis. 

MORE APPLICATIONS OF BAYESIAN PROBABILITY THEORY 

IN FUSION 

 In addition to conceptual improvements of the data fusion issue for fusion, 

Bayesian probability gives several solutions to fusion typical problems. The following 

selection gives some examples.  

The idea to model systematic effects by additional model parameters can be 

extended to data descriptions consisting of two mutual exclusive hypotheses. An 

example is a typical spectroscopic issue: does a data point belong to a peak or to 

background? Mixture models consist of a sum representing the exclusive propositions 

and the occurrence of which are assigned to their probability: the probability to find a 

datum consist of the probability to find the datum to be a spectral line and the 

probability, that the datum is not a spectral line. In the introduced terminology, this 

probability is a hyper-parameter which can be marginalized. This technique was 

successfully applied to background estimation [12] and outlier estimation [13]. 

Rather than inferring parameters of the data model, the Bayesian framework may 

also be employed for the design of fusion measurements [14, 15]. The design is 

considered to provide experimental settings to measure given quantities of interest 

optimally as suggested in the previous chapter. So far, optimization studies of 

interferometer chords and Thomson scattering spectral filters were performed. 

Physically motivated optimization targets can be defined and cost-vs.-efficacy 

considerations can be performed on the basis of information gain measures. The 

outcome indicates the impact of errors on the optimum configuration. An application 

of the idea to planning of experiments is underway. 

The model comparison technique can be used to test different basic plasma models 

against confinement data. The idea consists in the application of the 

Kadomtsev/Connor-Taylor invariance principle: If a basic equation is invariant against 

scaling transformation, then any derived relationship is invariant again. An example is 

basic plasma equations (e.g. Fokker-Planck kinetic equation) and energy confinement 

scaling laws. Model differences were found, e.g., in different β regimes of stellarator 

confinement data [16]. 
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Artificial neural networks have several applications. A key problem is the so-called 

pruning, i.e. to reduce the neural network to relevant parts. Here, Bayesian neural 

networks (BNN) employ model comparison techniques to identify the relevant parts of 

the network. Again, errors play a key role in this consideration. BNNs also allow the 

identification of novelties since confidence measures for the reconstructed quantities 

are part of the BNN result [17]. 

SUMMARY AND OUTLOOK 

The concept of integrated data analysis is a framework meeting with many data 

analysis issues of contemporary fusion devices. IDA also faces new challenges for 

next step fusion machines. The applications of the IDA concept indicate feasibility and 

the data analysis techniques were implemented in routine operation and applied to on-

line data analyses. IDA offers a frame-work for standardized data-analysis. 
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