Collisionless dynamics of zonal flows in
stellarator geometry

A. Mishchenko, P. Helander and A. Kdnies

Max-Planck-Institut fir Plasmaphysik, EURATOM-AssdoiatD-17491 Greifswald, Germany

Abstract. The collisionless time evolution of zonal flows in stellanegystems is investigated. An
analytical solution of the kinetic and quasineutrality atjons describing the residual zonal flow is
derived for arbitrary three-dimensional systems withquiraximations in the magnetic geometry.
The theory allows for an arbitrary number of particle specitehas been found that in stellarators the
residual zonal flows are not in general steady but oscillé#te awcertain frequency. This frequency is
determined by the speed of the bounce-averaged radia dfithe particles trapped in the magnetic
field and vanishes in tokamaks, where such net drifts arendbSeeduction of the bounce-averaged
radial drifts in configurations optimized with respect toonkssical transport results in a smaller
zonal-flow frequency.
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INTRODUCTION

Stellarator systems are known to have larger particle b#san tokamaks, because of
the lack of symmetry resulting in bounce-averaged radiftisdof helically-trapped par-
ticles. The reduction of these particle losses is a necgssaudition for the realization
of fusion in non-axisymmetric devices. Since the early J9&0range of approaches to
the optimization of the stellarator geometry has been apesl [1, 2]. One of the goals
of this optimization has been a reduction of the neoclaksi@asport. As a result, in-
terest has also arisen to reduce the turbulent transpororAekamaks, it is believed
that an important mechanism regulating the transport chbgethe microinstabilities
are the so-called zonal flows [3], which invol#ex B flows due to a radially varying
electrostatic potentiad(r,t) driven by the nonlinearities in the kinetic equation. It is
known that zonal flows are partially shielded due to the fihaeana-orbit width of the
particles (resulting in so-called neoclassical polar@af4]). In this respect, it is impor-
tant to know how large the residual flow is because, to somenéxthis flow indicates
how effectively the turbulence can be suppressed. It is@isaterest to study how the
magnetic geometry affects the level of the residual zonal.f®eing well developed
in tokamaks [4, 5, 6, 7], the theory of zonal flow shielding daaeoclassical plasma
polarization is under development in stellarators [8, 9].

A strong interest in the dependence of the zonal flow shigldin the magnetic
geometry has been triggered by recent experimental refolts the Large Helical
Device [10] (LHD) where it has been observed that not onlyctessical but also
anomalous transport is reduced by an inward shift of the ratgaxis. This decreases
the radial drift of helically-trapped particles but alse@ieases the unfavorable magnetic



curvature to destabilize pressure-gradient-driven lribtees such as the ITG mode (see
Ref. [11] and the papers referenced therein). It has beerdrat the drift optimization
is closely correlated with the optimization of the residaahal flow level. Thus, the
larger linear growth rates of the ITG modes in the LHD confagiom with the inward
shift of the magnetic axis can be compensated by more eféetttrbulence suppression
through a larger zonal flow. To support this argumentatioa kinetic theory of the linear
evolution of zonal flows in multiple-helicity systems haghealeveloped in Refs. [8, 11]
(employing some approximations with respect to the magrggometry). This theory
has shown that bounce-averaged radial drifts play an iraporole in the collisionless
long-time evolution of zonal flows. Also Ref. [9], where thetian-angle formalism is
used to solve the kinetic equation, has demonstrated a bidsbetween the particle
radial drifts and the value of the residual zonal flow.

In this paper, we develop a kinetic theory of the linear etioluof zonal flows in
arbitrary three-dimensional geometry (assuming that flufages exist). We consider
the long-time evolution of the zonal flow (i.e. we assume tharte time to be much
smaller than the characteristic time of the zonal flow). Weesthe kinetic equation in
guiding-center coordinates similar to Ref. [8], howeveg, @0 not rely on approxima-
tions in the magnetic field geometry. As we shall see, theluadizonal flow resulting
from the analytical solution of the kinetic equation can Epressed in terms of some
flux-surface and orbit averages. We compute these geomadated quantities numeri-
cally.

BASIC EQUATIONS

The basic equations for the Rosenbluth-Hinton theory [4s3he coupled system of
the linear gyro-kinetic equation and the quasineutralgfyation for the self-consistent
electrostatic field potential:
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wheree = mv?/2 is the kinetic energyp, = /Mg Ta/(€2B) is the thermal gyroradius
and ngg is the equilibrium density of the speci@s The kinetic energy changes due
to the electrostatic field perturbatian= — evq - 0@ with vq = pj0 x v| being the
particle drift velocity ando; = v/« being the parallel gyroradius. It is assumed that
the characteristic scale of the zonal flow is larger than éimegyroradius. The sums in
the quasineutrality equation are taken over the partickeigs (an arbitrary number of
species is allowed).

As we are to consider the long-time evolution of the residleal (on a time scale
much slower than the bounce time), the evolution of the slstdtic potential inside a
flux surface can be neglected because it occurs on the boumesdale. Consequently,
the perturbed electrostatic potential depends on the lufese labek and timet only,

@ = @(s,t). Applying this assumption to the kinetic equation (1) gives
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The quasineutrality equation can be rewritten using thegtiaa:
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Here, ¢’ = dg/ds, V' = dV/ds, V is the magnetic volume inside the flux surfage

and <> is the flux-surface average. Substituting Eqg. (3) in Eq. (&%ults in a
quasineutrality equation in the following form:
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In Boozer coordinates [12, 1], the magnetic field can be amits

B=F/Osx 06 +Fs0¢ x Os=JO6 +10¢ + B0s (5)

with the toroidal fluxFy, poloidal flux F5, toroidal currentd, poloidal currentl and
Boozer angle®) and ¢. The derivative along the magnetic field line and the radial
projection of the drift velocity take the form:
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where,/g = [(Osx 06) - O¢] 1 is the Jacobian.
We define an orbit-average operati@dmhat annihilates the differential operatgf ],

so thatyJ; f = O for any functionf. Note that for the trapped particles this operation
coincides with the bounce average and is given in Boozedioaies by the expression:

Altrapped= (f Avéde> / <}{ :\é;d9> 7)

where the integrals are computed back and forth betweenetecting points. For
passing particles, the orbit-average operation can beatktimough the flux-surface
average:
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Extracting an orbit-averaged part out of the radial drifioeéty, one can write it as a sum
of “averaged” (slow) and “oscillating” (fast) parts:

(8)
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Here, the quantitys can be found from the following “magnetic differential e¢joa”:

VHDHG:(T)(, (I)r:&)(—mr. (10)



The notationwy = vg - s has been employed. One can show that in the case of trapped
particlesw, ~ dJ;/da whereJ; is the second adiabatic invariant aod= ¢ —q0 is

the field-line label. Recall that the derivatigd /da is related to the radial precession

of locally-trapped particles in non-axisymmetric geornestr For passing particles, one

finds: B Bvg
@ [ <— Os > 0. (11)

M
COLLISIONLESS THEORY OF RESIDUAL ZONAL FLOW

Integrating the gyrokinetic equation Eq. (2) over velo@pace and averaging the result
over the flux surface, one obtains the continuity equation:
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Taking into account thall - (Bvg/v)) = 0 (which follows from the relationg = p [ x
v|), one can rewrite the second term in Eq. (12) in the followforgn:
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Here,&? = 1— AB, ©(&?) is the Heaviside function [recall th@(é?) = 1 for €2 > 0
and ©(&2) = 0 otherwise],A = /¢ is the pitch angleyu is the magnetic moment,
o =V //|vy|. Note the relation:
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which has been employed in the derivation of Eq. (13). Bnallibstituting the repre-
sentation of the drift velocity as a sum of oscillating an@éraged parts from Eq. (9)
and integrating the [ -term in Eq. (13) by parts (this term results from the ostitig
component/ L, G of the radial drift velocityvg - Us), one can obtain:
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The perturbed distribution function appearing in Eq. (1&) e found from the kinetic
equation. To the lowest order in the drift velocity (negiegtfinite-orbit-width effects),
the kinetic equation can be written in the form:
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The equations (12) and (16) coupled to the quasineutratdjiiyagon (4) can be consid-
ered as an initial value problem. Before solving it, notdl¢iwing Xiao and Catto [6])
that in the original Rosenbluth-Hinton zonal flow problenj, [urbulent fluctuations
build a charge source within a time much smaller than the betime but much larger
than the gyroperiod. Thus, the initial zonal flow potents&aproduced by this turbulent
charge source through classical polarization (i.e. parteparture from the guiding cen-
ter). This process happens on a time scale of several ionigynaeriods. After several
bounce times, the initial potential is modified by the totalgsization, which includes
not only classical, but also the neoclassical polarizadiee to the guiding center depar-
ture from the flux surface. This argumentation can be traegdlato the initial conditions
for Eqgs. (12) and (16):
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We start solving the kinetic equation from the observattuat it is suitable to split the
distribution function as follows:
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Applying the Laplace transform to the kinetic equation (I)e can write:
p%—l—VHDH% = faod\J/lIJ, Y =pG—wr. (19)

Here, 7 (p) is the Laplace transform of the functiitt), @' (p) is the Laplace transform

of the potentialy (t) and the initial condition for the distribution functidig; (t = 0) = 0

has been written als(t = 0) = f,0G ¢ (t = 0). One can solve the kinetic equation by
successive approximations assummgg w, wherew is the characteristic frequency
of the field perturbations ang, is the bounce frequency. In zeroth and first orders, one
obtains:

VHDH%(O) = O, p%(O) = faodslw, VHDH%(]') = faod\JllII. (20)
Using this ordering, one can rewrite Eq. (15) in the form:
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Finally, substituting the solution of the kinetic equatiomo the Laplace transform of
Eq. (21), one can obtain:

( [dwe-07a(m) = Gra [VTalp)] (22)



with .%,1(p) being the Laplace transform of the distribution functiian and
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Here,G = G — G. Note that in order to derive Eq. (23), the symmetry progsrih o
of the expression under the integral have been used (onlgwbe part survives the
integration ovew| from —o to +0). For trapped particles, Eq. (23) can be rewritten in
terms of the bounce averages:

) . (24)
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Here, the sum is taken over all possible sorts of trappedgbest(toroidally-trapped
particles, helically-trapped particles, etc) for a givexidiline labeled byr = ¢ —q(s) 6.
Note that along each such field line, there are a number of etegmells where particles
with large enough pitch angles are trapped. The orbit aesragprrespond to each
such well, labeled by the number In Eq. (24), we have introduced a new quantity
(the bounce timeJy = §(B,/0)/(Fav)) d6 with the integral taken along the field line

(back and forth) between the reflecting points. Note thapto@ertyG = 0 for trapped
particles has been used in Eq. (24).
For passing particles, Eq. (23) can be written as follows:
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This expression can be rewritten in the same form as Eq. @4)) {trap taking into
account that for the passing particles the orbit averagefimed according to Eq. (8)
andw; = 0.

Applying the Laplace transform to the continuity equati@f), one finds:
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where_#,(p) is the Laplace transform dhj(t)) and<na(t = O)> is related to the elec-

trostatic potential through Eq. (17). Substituting the sies. 43 into the the Laplace-
transform of the quasineutrality equation (4) and inteégtpbvers, one can obtain the
relation between the residual potential and the initial aséollows:

®'(p) = [H/\(p)/%]lw , (28)



where the classical polarization is given by the quantigy

No=Y °a€%<pams\ ). (29)
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The neoclassical polarization and the effect of the radsainze-averaged drift motion
are contained in the quantity:
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Taking the integral over the velocity in Eq. (30) and tramm"nng Eq. (28) back into
the time domain (recall that the inverse Laplace transfan¥i* [p/(p?+a?),t] =
cogat), see Ref. [13]), one can write the residual zonal flow in threnfo
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Here, the neoclassical polarization enters through thettya\;:
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and the frequency of the zonal-flow mode is given by the qtianti:
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with the first sum taken over particle species (ions, impesiand electrons) and the
second sum (in the trapped-particle term) taken over thepg®f particles (banana-
trapped, locally-trapped etc). Note that only trappediplad contribute to the quantity



N2. The indexth in Egs. (32) and (33) means that all energy-dependent digsnare
computed according to their definitions but using the théwaocity ving = /Ta/Ma
instead ofv. Note thatvy,, is used solely as a normalization constant to keep proper
dimensions of various quantities and that the integrals theevelocity in Eq. (30) have
been computed exactly [the coefficient®23and 152 in Egs. (32) and (33) result from
this computation].

DISCUSSION AND CONCLUSIONS

In the previous sections we have seen that the linear respafing non-axisymmetric
plasma to an applied radial electric field generally has amlla®ry character. Physi-
cally, this may be understood as follows. Following Hintordd&osenbluth [4, 5], we
have been considering how the potential evolves in respanaeadial voltage pertur-
bation att = 0. In tokamak geometry, after a few ion bounce times, theataslectric
field in the plasma is smaller than the initially applied fibkecause the plasma is polar-
izable: the ion banana orbits move radially in such a way tthey shield much of the
applied voltage. The plasma thus acts as a capacitor, amddra voltage is related to
the current as

i(t) = C@ (34)

dt

In stellarators, there is also an additional effect due &glresence of locally trapped
particles with net radial drift. Some of these particlestdadially inward while others
drift outward, but there is no net current (on a flux-surfagerage) if the distribution
function is the equilibrium Maxwellian - the inward and owatnd currents then cancel.
However, if the radial electric field is applied for some fnitme, then the distribution
function starts to depart from a Maxwellian. The outwardtohg ions gain energy (if
the radial electric field points outward) and the inward ttrd ones lose energy, and
vice versa for the electrons. Since the drift velocity isgrdional tov?, the speed of the
outward drifting ions increases with time, the inward dmnift ones get slower, and a net
current arises that is proportional to the time integralhaf voltage. Thus

t
i(t)=L"1 / u(t’)dt’+Cd—u, (35)
0 dt
so the plasma behaves like an LC-circuit and oscillatesratméncyQ = (LC) /2. Itis
beyond the scope of the present paper to consider the effeallisions in detail, but we
note that these also produce a radial current. A stellarstargeneral not automatically
ambipolar, and the equilibrium radial electric field is sgtthe requirement that the
neoclassical particle fluxes of ions and electrons shoul@deal. In the vicinity of
this equilibrium, a radial current arises that is propartbto the departure from the
ambipolar electric field [9]. On time scales longer than teke¢tron) collision time,
neoclassical transport thus provides a resistor in the ic€ist, which leads to damping
of the zonal flow oscillations. The turbulence introducesoglsastic generator into our
circuit.
An important question raised already in Refs. [8, 9] is thek lbetween the
neoclassical-transport optimization and the reductiontted anomalous transport.
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FIGURE 1. Theresidual zonal-flow frequency (left) and the amplitudtght). The inward-shifted LHD
equilibrium vs. the standard LHD equilibrium. The ion andcetton temperatureég = To = 5 keV (flat
profiles), Hydrogen ions.

The discussion in this respect has been triggered by expatahresults from the Large
Helical Device [10] (LHD). It has been observed that not ahly neoclassical but also
anomalous transport is reduced by the inward shift of themafig axis in LHD. The
inward shift decreases the radial drift of helically-trappparticles but it increases the
unfavorable magnetic curvature destabilizing pressuaglignt-driven instabilities such
as the ITG mode (see Ref. [11] and the references thereimyhwhould lead to a higher
level of the anomalous transport. On the other hand, in R&f€], it is suggested that
the properties of zonal flows are more favorable in the dnftimized configurations.
The reason is that the residual Rosenbluth-Hinton leverigelr, which leads to a more
effective suppression of the turbulence in the inwardtstifconfiguration. The zonal
flow oscillations found in this paper are however not consden Refs. [8, 9].

For a given magnetic equilibrium, one can solve the magrifierential equation
(10) and compute the zonal flow parameters (its amplitudesggehfrequency) numer-
ically (see details in Ref. [14]). In Fig. 1, results of onelsicomputation is presented.
Here, we compare the so-called standard LHD configuratidh thie inward-shifted
LHD configuration and observe a substantially smaller fegtuy in the inward-shifted
configuration. At the same time, the amplitude of the zonal i fairly similar over
most of the plasma volume, suggesting that the main effettteoflrift optimization for
the case considered is due to the reduction of the frequéate that the zonal-flow
eigenfrequenc®; ~ /A, is a measure of the bounce-averaged radial drifts of the par-
ticles [see Eq. (33)]. Clearly, reduction of the radial trinake<2, smaller.

The role of electrons is different from that in tokamaks. hgvthe same bounce-
averaged radial-drift velocities, electrons make a cbotron to the zonal-flow eigen-
frequency comparable to that of ions. At the same time, tidribition of the electrons
to the neoclassical polarization remains negligibly sr@aibportional to the mass ratio,
as it is the case in tokamaks).



Finally, we can speculate how the reduction of the zonal fi@guency in the drift-
optimized configurations may effect the anomalous trarisplwte that the zonal flow
is constantly produced (in a non-coherent way) by the teree (recall the “stochastic
generator” in our LC-circuit). Thus, it is instructive totesate response of our system
to a noise source. Following Ref. [5], the mean square piaiesgn be written as

t t1
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where the double brackets indicate a statistical average&kdrneKy(t) = @ (t)/ @ (t =
0) results from the linear theory and the noise source coragldtinction is modelled
according to the equation:

((Re(t1)R(t2))) = ((|R«|?)) exp(— 1%/12) (37)

with T = t; —tp and 1 being the correlation time. Substituting(t) = ArcosQ,t in
Eqg. (36), one finds that the mean square potential can beagstirfort > (1/Qy, 7c) as
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In EqQ. (38), we have neglected the term corresponding to tigl @scillations because
of their large frequencyws 7. > 1 leading to a near cancellation of this contribution
into the mean square potential [5]. One sees that the mearesgotential can be
substantially reduced if the zonal-flow frequency is largewh so thaf); 7o > 1 is
satisfied (this reduction occurs because the zonal-flowWascns with opposite phases
cancel each other). In stellarators, this collisionlesagiag mechanism acts in addition
to the usual Rosenbluth-Hinton shielding due to neoclaspiglarization of the plasma
[represented in Eq. (38) through the quan#éigy. Clearly, this kind of damping becomes
less important if the frequend®, of the residual flow is small.

Note that if the radial scale of the electrostatic field pdyaion is short enough, the
finite-orbit-width termvgy, - [ fa1 neglected in Eq. (16) may become important. Formally,
this is a small term, since it is assumed that the radial veength of the zonal flow
exceeds the ion gyroradius. However, in Ref. [8], it was Shdwat this term can lead
to a damping of the zonal flow due to vanishing of the non-aatialresponse of the
helically-trapped particles at the times 1, ~ L, /V4r whereL, is a characteristic radial
length of the electrostatic field perturbation afRgis the bounce-averaged drift velocity.
Note, however, that for the long-wavelength part of the etestatic field, the time; is
large whereas for the short-wavelength part it can becom®egable to the zonal flow
frequency. Thus, one can expect that the collisionlessmdjssaof the long-wavelength
part of the electrostatic field is mainly controlled by theitlations found in this work
whilst the dynamics of the short-wavelength part is dongddiy the finite-orbit-width
mechanism described in Ref. [8].

Another problem which has not been considered in this paptei role of collisions.
In general, collisions introduce a damping mechanism ferzbnal flow [5, 15]. For
example, in the limive > Q, (here,ve the electron collision frequency a2} the zonal




flow frequency) one can show that electron collisions predexponential damping of
the zonal flow:

p(t)
=0 Ag exp(—yzrt) cosQt . (39)
Furthermore, in this case the electrons are omitted fromstima in Eq. (32) and do
not contribute to the frequend@,. The damping ratgzr is defined by the collisional
flux of the trapped electrons. This flux can be shown to be selgrproportional to
the collision frequency. As a consequence, one can show4haQ, ~ Q;/ve < 1. A
detailed calculation will be presented elsewhere.
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