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Abstract

The bootstrap current in small magnetic islands of neoclassical tearing modes is studied
in numerical simulations whith the guiding center particle code HAGIS. The contributions
of both, electrons and ions, are included, as well as the island rotation and its electric field.
The case of islands that are smaller than the ion banana orbit width is studied. We find that
the size of the bootstrap current in small islands depends strongly on the rotation frequency
of the island.

1 Introduction
Neoclassical tearing modes play an important role in the hot plasma of present large tokamak
experiments and the planned International Thermonuclear Experimental Reactor (ITER), since
they often limit the achievable pressure to a lower level than other instabilities [1]. The neoclas-
sical tearing mode is a perturbation creating a helical magnetic island structure, which would be
stabilized by the equilibrium current profile, but is driven instable by the loss of the bootstrap
current inside the island, which corresponds to a current perturbation in the opposite direction
driving the growth of the island [2]. The bootstrap current is lost by the flattening of the density
and temperature profiles due to the strong transport along field lines. Here, we study the boot-
strap current in small islands including the island rotation and the electric field. Both ions and
electrons are treated kinetically including electron-ion collisions for determining the current.

2 The simulation model
The model consists of the unperturbed magnetic field B = ∇φ × ∇ψ + q(ψ)∇ψ × ∇θ and a
perturbation with single helicity corresponding to a rotating island, δψ = ψ̂ cos(mθ−nφ−ωt),
with mode numbers m and n and mode frequency ω. Here ψ ist the poloidal flux, q = 1 +
2ψ/ψedge, is the safety factor, and θ and φ are poloidal and toroidal angles. The perturbation

creates an island of half-wdith wψ =

√
4ψ̂qs/q′s (half of the poloidal flux difference across the

island), where qs = m/n is the value of q at the resonant surface and the prime denotes the
derivative with respect to the poloidal flux. We introduce a helical angle ξ = mθ−nφ−ωt, and
a normalized helical flux Ω = 2(ψ − ψs)2/w2

ψ − cos ξ, where the index s denotes the resonant
surface. On the perturbed flux surfaces Ω is constant, B · ∇Ω = 0, and Ω = 1 defines the island
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separatrix, while a minimum value of Ω = −1 is obtained at the O point. We adopt the usual
approximation for the time-dependent electric potential of the rotating island (obtained from
E‖ = 0) [3],

Φ =
qω

m

{
(ψ − ψs)±

wψ√
2

(
√

Ω− 1)Θ(Ω− 1)

}
(1)

(positive sign for ψ < ψs), with Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0 and ω/m is
the poloidal rotation frequency of the island. The electric field −∇Φ vanishes far away from
the island, where the plasma is assumed to be at rest (relative to the island). The first part
of Φ is constant on the unperturbed flux surfaces and the corresponding electric field Er =
−(qω/m)∇ψ ≈ −(qω/m)RBp causes the plasma inside the island to co-rotate with the island.
In our simulations the finite width of the particle orbits smoothes out the effect of the jump of
the electric field at the separatrix.

Since the effect to be studied depends on the banana orbit width, we perform simulations
with the Hamiltonian guiding center particle code HAGIS [4], which was augmented by a Monte
Carlo procedure for pitch-angle collisions [5, 6]. Momentum conservation in the ion-ion col-
lisions and the electron-electron collisions is achieved by adjusting the particle weights. The
necessary velocity space integrals are calculated separately in volume elements obtained by di-
viding the plasma volumes between helical flux surfaces into ten parts of equal extent in helical
angle ξ. The code solves the equations of motion of either ion or electron marker particles
which trace the trajectories in phase space. Integrals of the distribution functions of ions (fi) or
electrons (fe) are calculated by summing up the contributions of all marker particles in a finite
phase space volume element. The electric current is computed in two steps [6]:

First the equations for the ions are solved to provide the distribution function fi. In the
second step the equations for the electrons are solved, where the collision operator depends also
on fi. This is possible, since in the ion equation the ion-electron collisions can be omitted,
i.e. C(fi) = Cii(fi), because the momentum loss caused by them is negligible, whereas for
the electrons the electron-ion collisions are crucial: C(fe) = Cee(fe) + Cei(fe, fi). With this
procedure there is no need to follow the electrons for several ion collision times, but a few
electron collision times are sufficient. HAGIS is used as a δf code, i.e. f is split into two parts,
f = f0 + δf , where f0 is a Maxwellian, and only δf is represented by marker particles. For
the ions fi0 is a Maxwellian centered around v = 0, hence the collision operator is reduced
to Cii(δfi, fi0). For the electrons fe0 is a shifted Maxwellian centered at the ion flow velocity
Within Cei(fe, fi) we approximate fi by a Maxwellian (the exact form of fi is not important
here) such that Cei(fe0, fi) = 0 holds. Then the collision operator is Cee(δfe, fe0) +Cei(δfe, fi).
The contribution of fe0 to the electric current just cancels out the ion current eniui‖, such that
the electric current is given by an the integral over δfe.

3 The small island effect
The island of a neoclassical tearing mode is normally rotating with respect to the surrounding
plasma and a radial electric field is present inside the island that acts to force the plasma to
co-rotate with the island. However, since the trapped particles cannot follow, on average, the
poloidal E × B drift and by collisions the poloidal rotation of the passing particles is also
damped, a contribution to the parallel flow with velocity u‖ = 〈Er/Bp〉 arises [7], where Bp is
the poloidal magnetic field and the brackets denote the flux surface average. These contributions
to the parallel flows of ions and electrons are equal if the island width is large compared to the
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Figure 1: Parallel currents (symbols) of ions (a) and of electrons w/o e-i collisions (b) versus the
radius through the O point of a small island (w/wb = 0.6) rotating in the electron diamagnetic
drift direction. Also shown by solid lines are 〈enEr/Bp〉 (a) and 〈−enEr/Bp〉 (b) and the
neoclassical current obtained from the perturbed gradients (l.h.s., grey line).
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Figure 2: Left: Surface averaged electric current (symbols) in the island of Fig. 1. Also shown
are 〈−enEr/Bp〉 (dark line) and the bootstrap current calculated with the perturbed density gra-
dients (grey line). Right: Density perturbation normalized to the trapped ion density (symbols)
in this island compared to −eΦ/kTi (solid line).

ion banana orbit width. In small islands, however, this is not true as shown below.
We illustrate this by particle simulations of a small island rotating in the direction of the

electron diamagnetic drift in a plasma with constant density and temperature. The ratio of island
width to the orbit width is w/wb = 0.6. The parallel ion current in steady state after several
collision times is shown in Fig. 1(a). The ion flow is strongly reduced in the island compared
to the neoclassical velocity 〈Er/Bp〉, because the ions do not feel the strong electric field all
along the orbit, but only inside the island. The electron current obtained without e-i collisions
is shown in Fig. 1(b). The electron velocity is close to 〈Er/Bp〉 due to the small electron orbit
width. Since the ion flow velocity is much smaller, an electric current in the island of the order
of 〈−enEr/Bp〉 arises. The friction between electrons and ions reduces this current to the value
shown in Fig. 2(a). where the current obtained with e-i collisions is shown.

The ion current goes along with a density perturbation ∆n/ntrapped = −eΦ/kTi (Fig. 2(b)).
This agrees with the result from Ref. [8], that the ions with a large orbit width move radially to
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Figure 3: Bootstrap current (symbols) in a small island rotating at ω = ω∗e (left) or ω =
ω∗i (right). Dashed line: bootstrap current without island, solid grey line: bootstrap current
calculated with the perturbed gradients. Vertical dashed lines indicate the position of the island.

acquire a Boltzmann distribution inside the island, since most trapped ions belong to this group
of ions. (The density perturbation and the electric current have the opposite sign if the island is
rotating in the direction of the ion diamagnetic drift, since the potential is proportional to ω).

Surprisingly, the ion current and the electric current agree with the corresponding neo-
classical results obtained from the perturbed density gradient (except close to the separatrix),
although the island is smaller than the ion orbit width. On the other hand, since the density
variation is only a percent or two over the island width, the gradient length remains rather large.
However, one could expect some nonlocal behaviour, since the gradients inside and outside the
island are very different.

4 The bootstrap current
In our simulations ω is a free parameter, but in the experiment it is the result of a complex
process. Analytic estimates for the rotation frequency of neoclassical tearing modes [9] find
that ω should be near either of the diamagnetic frequencies,

ω∗i/e = ±mkTi/en′0/qen0 (n′0 = dn0/dψ). (2)

Then the current treated above is of similar size as the bootstrap current, which therefore can
differ considerably from the result for big islands: the electric current is enhanced if the island
rotation frequency is near the electron diamagnetic frequency, but it is decreased in case of
rotation at the ion diamagnetic frequency.

We performed simulations for islands of the same size as before, but with finite density and
temperature gradients in the unperturbed plasma (η = T ′/n′ = 1). In Fig. 3 the results for
the surface averaged parallel electric current are shown, the corresponding density profiles in
Fig. 4. In an island rotating with ω = ω∗e a large fraction of the unperturbed bootstrap current
is preserved. Here the small island effect tends to enhance the bootstrap current. The trapped
particle density perturbation is the important one and is similar to that in Fig. 2(b) as shown in
Fig. 5. In the case of rotation at ω = ω∗i only a small residual parallel current remains, although
previously a restoration of the ion current in small non-rotating islands was found [10]. This
fits to the result that the current treated in the last paragraph is opposite to the bootstrap current.
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Figure 4: Density profile of ions (dashed) and electrons (solid) for the two cases in Fig. 3,
ω = ω∗e (left) and ω = ω∗i (right). Vertical dashed lines indicate the position of the island.
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Figure 5: Density profiles of trapped ions for ω = ω∗e (left) and ω = ω∗i (right). Vertical dashed
lines indicate the position of the island.

The density profile is completely flattened like in big islands, while the density perturbation
found in the previous paragraph has the same sign, but is smaller in magnitude. The trapped
particle density perturbation is reversed compared to Fig. 2(b), since ω has the opposite sign.
We find again that the parallel electric current agrees with the neoclassical result calculated with
the perturbed gradients (Fig. 3).

The violation of quasi neutrality in the case ω = ω∗e indicates that in such islands the
electric field must be different from that derived for big islands as given by Eq. (1). In order
to get an idea of how the electric field has to change, we did simulations with different electric
fields obtained by multiplying the potential in Eq. (1) by a factor (this results in a finite parallel
electric field). For the case ω = ω∗e and w/wb = 0.6 the mismatch of ion and electron densities
can be strongly reduced by setting the potential to zero. Then the density profiles are close to
the unperturbed profiles and the bootstrap current (Fig. 6) is even larger than with the electric
potential. Apparently the steepening of the ion density in Fig. 4 can not fully compensate the
flattening of the electron density. The current is lower than the unperturbed one, since in all
three cases the electron temperature profile is flattened (Fig. 6). Only a small residual gradient
remains, while the ion temperature profile is unperturbed due to the large orbit width. If the
unperturbed temperature profile was flat (η = 0) the full bootstrap current would be preserved.
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Figure 6: Left: Parallel current (symbols) in island rotating at the electron diamagnetic fre-
quency with vanishing electric potential (see text). Dashed line: unperturbed bootstrap current.
solid grey line: bootstrap current calculated with the perturbed gradients. Right: Temperature
profile of ions (dashed) and electrons (solid). Vertical dashed lines indicate the position of the
island.

Of course, simply multiplying the potential in Eq. (1) by a factor can only give an approximation
to the true electric potential, which is likely to be finite, but the result obtained indicates that the
electric field in a small island could be much smaller than in big islands.

5 Summary
The bootstrap current in islands that are smaller than the ion banana orbit width was calculated.
It is small if the island is rotating at the ion diamagnetic frequency, but in the case of rotation at
the electron diamagnetic frequency a large fraction of the bootstrap current is preserved. In both
cases the current agrees with the neoclassical result calculated with the perturbed gradients.
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